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ABSTRACT 

Multivariate CUSUM charts have been widely used as 

statistical-process-control tools to detect out-of-control states 

of monitoring variables. Most of earlier studies regarding 

multivariate CUSUM charts assume that observations of 

monitoring variables are independent or correlated with a 

limited structure. In this paper, we suggest a multivariate 

CUSUM chart that can handle the observations auto- and 

cross-correlated. The chart estimates its control limit 

analytically and captures small mean shifts faster when 

compared to existing charts. 

1. INTRODUCTION

With recent advances of sensors and computers, it becomes

possible to acquire and manage a large amount of data in real 

time. In order to monitor such real time data, statistical 

process control (SPC) has been studied popularly and used to 

raise an alarm when a monitoring process is in an out-of-

control state. Since the real time data monitored often have 

auto-correlation as well as cross-correlation, it is important 

for SPC methods to be designed with robustness and 

sensitivity to both correlations. 

Multivariate-CUSUM(MCUSUM) control charts have 

been used as SPC tools to detect mean changes in vectors 

observed. Many researchers have studied multivariate 

CUSUM chart (Healy, 1987; Crosier,1988; Pignatiello & 

Runger, 1990;) and it is well-known that MCUSUM chart is 

sensitive to detect small mean shifts in observation vectors. 

However, most of earlier studies for MCUSUM charts 

assume that the observations are independent and identically 

distributed (i.i.d.), and warn that the charts may not work if 

the assumption is violated. Noorossana and Vaghefi (2006) 

show that auto-correlated observation data are inappropriate 

to be applied to MCUSUM charts directly. 

Some MCUSUM charts have been studied to deal with 

cross-correlation in observation data. Woodall and Ncube 

(1985) monitor multiple univariate CUSUM charts that work 

well if there is little or no cross-correlation among the 

observations. Rogerson and Yamada (2004) find that 

monitoring an MCUSUM chart is better than monitoring 

multiple univariate CUSUM charts in terms of detection 

performance. Later, Jiang et al. (2011) propose an MCUSUM 

chart that can be used even with cross-correlated observation 

vectors. Motivated by the MCUSUM chart from Jiang et al. 

(2011), Lee et al. (2014) introduce Separated-MCUSUM(S-

MCUSUM) chart with the techniques to approximate its 

control limit analytically. However, the approximation of the 

control limit is not suitable for auto-correlated observation 

data because average run length (ARL) of the MCUSUM 

chart becomes much shorter than the expected ARL with the 

auto-correlation. 

A traditional approach to address auto-correlation in 

observation data is using model-based control charts (Loredo, 

2002; Kalgonda, 2004; Noorossana and Vaghefi, 2006;). 

Model-based control charts first set a model to represent the 

auto-correlated observation data, and use the residuals as the 

input data of control charts for monitoring. A typical 

selection for the model is a time-series model and, since the 

residuals are not auto-correlated usually, MCUSUM charts 

are often used as the control charts for monitoring the 

residuals. To improve detection performance with small 

mean shifts, Arkat et al. (2007) and Issam and Mohamad 

(2008) propose model-based MCUSUM charts using an 

artificial neural network (ANN) and a support vector 

regression (SVR), respectively. Kim et al. (2012) compare 

various model-based MCUSUM charts under 9 scenarios 

with different numbers of dimensions and different degree of 

auto-correlation. In their study, Kim et al. (2012) show that 

the SVR and ANN based MCUSUM charts perform better 

than other charts considered. 
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In this paper, we proposed a model based MCUSUM chart 

that can handle the auto- and cross-correlated observation 

data. For addressing the autocorrelation, we adapt Vector 

auto-regression (VAR) to model the data and apply the 

SMCUSUM chart to monitor the residuals. Section 2 

describes our MCUSUM chart proposed. In Section 3, we 

compared the performances of the proposed chart to those of 

existing charts. Finally, Section 4 provides conclusions of 

this paper. 

2. ALGORITHM DESCRIPTION

In order to deal with observations auto- and cross- correlated, 

we use a VAR to obtain residuals of the observations first and 

then apply the SMCUSUM chart (Lee et al., 2014) to the 

residuals. 

Suppose that we monitor a process of 𝑿𝑡 =
(𝑥1𝑡 , 𝑥2𝑡 , ⋯ , 𝑥𝑚𝑡)

′ , an (𝑚×1)  observation vector of 𝑚
variables at each time t. Under in-control state, we model 𝑿𝑡
as a VAR with p lags as follows. 

𝑿𝑡 = 𝝂 + 𝑨1𝑿𝑡−1 + 𝑨2𝑿𝑡−2 +⋯+ 𝑨𝑝𝑿𝑡−𝑝 + 𝜺𝑡 , (1)

where 𝑨𝑖 for 𝑖 = 1, 2,⋯ , 𝑝 are (𝑚×𝑚) coefficient matrices,

𝝂 =  (𝜈1, 𝜈2, ⋯ , 𝜈𝑚)
′ is a vector of intercept terms, and 𝜺𝑡 =

(휀1𝑡 , 휀2𝑡, ⋯ , 휀𝑚𝑡)
′ is a white noise vector that follows an i.i.d.

multivariate normal distribution with mean 𝐸[𝜺𝑡] = 𝟎 and a

known time invariant covariance matrix 𝚺𝑟 . Note that 𝜺𝑡  is
not auto-correlated but cross-correlated. 

Suppose that  𝝁 = (𝜇1, 𝜇2, ⋯ , 𝜇𝑚)
′ = 𝐸[𝑿𝑡]  when the

monitoring process of 𝑿𝑡 is in in-control state. With 𝝁, Eq. (1)

can be reformulated as 

𝑿𝑡 = 𝝁 + 𝑨1(𝑿𝑡−1 − 𝝁) + ⋯+ 𝑨𝑝(𝑿𝑡−𝑝 − 𝝁) + 𝜺𝑡, (2)

 and the estimated vector �̂�𝑡 is represented by 

�̂�𝑡 = 𝝁 + 𝑨1(𝑿𝑡−1 − 𝝁) + ⋯+ 𝑨𝑝(𝑿𝑡−𝑝 − 𝝁). (3) 

Then we can obtain the residual vector as follows   

𝑹𝑡 = (𝑟1𝑡 , 𝑟2𝑡 , ⋯ , 𝑟𝑚𝑡)′ =  𝑿𝑡 − �̂�𝑡. (4) 

 When the monitoring process is under out-of-control state, 

the mean vector  𝝁  is shifted by 𝛅𝑥 = (𝛿𝑥1 , 𝛿𝑥2 , ⋯ , 𝛿𝑥𝑚)′ .

Based on the mean shift 𝛅𝑥 in observations and Eqs. (2)-(4),

we can calculate the corresponding mean shift in residuals 𝜹𝑅,

𝜹𝑅 = (𝛿𝑟1 , 𝛿𝑟2 , ⋯ , 𝛿𝑟𝑚)
′
= (𝑰 − 𝑨1 −⋯−𝑨𝑝)𝜹𝑥. (5) 

𝑹𝑡  is expected to follow i.i.d. multivariate normal distribution

with the mean 0 in the in-control state and 𝜹𝑅 in the out-of-

control state. The variance-covariance matrix of 𝑹𝑡  can be

estimated by 𝚺𝑟 .

With the baseline mean value 0 under in-control state and the 

marginal variance 𝜎𝑗
2 of each residual component 𝑟𝑗𝑡 for 𝑗 =

1,2,⋯ ,𝑚, we generate the standardized residual vector 𝒀𝑡 =

(𝑦1𝑡 , 𝑦2𝑡 , ⋯ , 𝑦𝑚𝑡)′ where 𝑦𝑗𝑡 =
(𝑟𝑗𝑡−0)

𝜎𝑗
,  the standardized 

residual mean shift vector  𝜹𝑦 = (
𝛿𝑟1

𝜎1
, ⋯ ,

𝛿𝑟𝑚

𝜎𝑚
)
′

, and the 

variance-covariance matrix of 𝒀𝑡 ,  𝜮𝑦 . Since 𝒀𝑡  is a

standardized residual vector that contains cross-correlation 

only, we can apply the SMCUSUM chart for 𝒀𝑡.

Motivated by the statistic 𝑆𝑡
𝑐,𝑟

 from Lee et al. (2014) and

Jiang et al. (2011), we set our monitoring MCUSUM statistic: 

𝑆𝑡 = max(0,  𝑆𝑡−1 + 𝑙𝑡) (6) 

where 

𝑙𝑡 = 𝜹𝑦
′ 𝜮𝑦

−1𝒚𝑡  −
𝜹𝑦
′ 𝜮𝑦

−1𝜹𝑦

2
(7) 

As soon as 𝑆𝑡 hits a predetermined control limit, an alarm is

raised to announce the detection of out-of-control state. The 

control limit is calibrated to achieve a target average run 

length in in-control state (ARL0). 

Lee et al. (2014) inspired by Kim et al. (2008) provide an 

equation that enables us to analytically estimate the control 

limit of 𝑆𝑡 for a target ARL0:

ARL 

≈

{

Ω2

2𝑑2

{

exp [−
2𝑑(𝐻 + 1.166Ω)

Ω2
]

−1 +
2𝑑(𝐻 + 1.166Ω)

Ω2 }

 if 𝑑 ≠ 0 

(
𝐻 + 1.166Ω

Ω
)
2

 if 𝑑 = 0

(8) 

where 𝑑 ≡ 𝐸[𝑙𝑡], Ω
2 = 𝑉𝑎𝑟[𝜹𝑦

′ 𝜮𝑦
−1𝒚𝑡], and H is the control

limit of the MCUSUM statistics 𝑆𝑡.

3. EXPERIMENTAL STUDY

 In this section, we compare the performances of our 

proposed MCUSUM chart to those of existing charts under 

various experimental configurations.  

As a performance measure, we consider an average run 

length in the out-of-control state (ARL1). For a common 

ARL0, the chart that provides the shorter ARL1 is the better.  

3.1. Experiment setup 

 For the comparison of the charts, we generate a multivariate 

autoregressive data set using a simulation technique. 

Specifically, the multivariate autoregressive data set follows 

a VAR(1) which is modeled as follows (Arkat et al., 2007; 

Issam and Mohamed, 2008): 
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𝑿𝑡 = 𝝁 + 𝑨1(𝑿𝑡−1 − 𝝁) + 𝜺𝑡 , (9) 

with 

𝝁 = (
260
470

),  𝚺𝑟 = (
99.91 63.99
63.99 69.52

) , 

and 

𝑨1 = (
𝜌11 𝜌12
𝜌21 𝜌22

) = (
0.0146 0.0177
0.6493 0.0958

). 

 For existing charts, the target ARL0 is set to 205 based on 

1,000 replications of each shift which is the same as past 

studies. Note that we can analytically calculate the control 

limit of our chart under the target ARL0 which is 205. 

When generating the out-of-control state data, we simply 

change values in the mean vector of Eq. (9) by 

𝜹𝒙  while using the same values of the variance-covariance 

matrix and the coefficient matrix. 

As competitive existing charts, we select the MCUSUM 

chart with an ANN model (Arkat et al., 2007) and the 

MCUSUM chart with a SVR model (Issam and Mohamed, 

2008) because they empirically outperform other existing 

charts under various settings as in Arkat et al. (2007), Issam 

and Mohamed (2007), and Kim et al. (2012). 

3.2. Simulation results 

We denote VAR-SMCUSUM as our chart, ANN-

MCUSUM as the MCUSUM chart with an ANN model, and 

SVR-MCUSUM as the MCUSUM chart with an SVR model 

in Table 1 and Figure 1. 

Table 1 shows ARL1 values of ANN-CUSUM, SVR-

CUSUM, and VAR-SMCUSUM for ten different settings of 

the mean shifts. For the case with relatively small mean shifts 

(i.e., from case 1 to case 5), VAR-SMCUSUM achieves 

ARL1values which are 45~75% of ARL1 values of ANN-

CUSUM and SVR-CUSUM. For the rest of the cases, VAR-

SMCUSUM results in ARL1 values which are similar to or 

smaller than the ARL1 values of ANN-CUSUM and SVR-

CUSUM. 

Figure 1 shows ARL1 values of ANN-CUSUM, SVR-

CUSUM, and VAR-SMCUSUM according to ten different 

cases of the mean shift. As the amount of the mean shift 

increases, ARL1 values of all three charts decrease, and the 

differences between ARL1 values of VAR-SMCUSUM and 

ANN-CUSUM or SVR-CUSUM tend to decrease. 

Table 1. Empirical ARL1 for three different charts 

Case 
# 

Mean Shift  
𝜹𝒙 

ANN-MCUSUM 
(Arkat et al., 2007) 

SVR-MCUSUM 
(Issam and Mohamed,  

2008) 

VAR-SMCUSUM 

Shift in N-N 
residuals 𝜹𝑵 

ARL1 ARL1 
Shift in VAR 
residuals 𝜹𝒚 

ARL1 

1 [
0.50
0.30

] [
0.58
0.59

] 142.60 145.18 [
0.009734
−0.001962

] 106.70 

2 [
1.00
0.70

] [
1.10
1.24

] 101.40 117.27 [
0.009734
−0.001962

] 68.58 

3 [
1.50
1,00

] [
1.45
1,68

] 86.10 91.82 [
0.146106
−0.008365

] 47.22 

4 [
1.60
0.00

] [
2.05
0.05

] 56.10 42.36 [
0.157735
−0.124598

] 25.70 

5 [
−1.35
1.00

] [
−2.13
0.91

] 28.60 34.73 [
−0.134860
0.213574

] 18.42 

6 [
2.00
−2.80

] [
3.80
−2.75

] 6.90 8.13 [
0.202127
−0.459393

] 7.87 

7 [
−8.00
0.00

] [
−8.45
−0.37

] 5.10 3.58 [
−0.788675
0.622989

] 2.39 

8 [
6.60
−7.50

] [
10.27
−7.84

] 1.60 1.99 [
0.637376
0.299371

] 1.46 

9 [
9.00
−10.00

] [
−16.57
7.99

] 1.20 1.63 [
−0.904967
1.785313

] 1.14 

10 [
14.00
−14.00

] [
22.89
−12.91

] 1.00 1.20 [
1.404972
−2.608461

] 1.00 
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Figure 1. Change of ARL1 for three different control chart 

4. CONCLUSION

 This study proposes a model based SMCUSUM chart that 

can deal with multivariate auto- and cross-correlated data. 

Our chart is effective in two points of views mainly. Fist, 

while other existing MCUSUM charts need to calibrate their 

control limits by trial-and-error to achieve the target ARL0, 

our chart offers an analytical way to approximate its control 

limit that can save a great deal of time and efforts.  Second, 

while other charts based on data-mining models (such as 

ANN and SVR) take long time to find their parameters by 

training the models, our chart based on VAR and 

SMCUSUM can be set up in relatively short time. Because it 

takes a long time to find parameters and train the model. 

When compared to other existing MCUSUM charts 

considered, the proposed chart provides significant 

improvement in ARL1 performance under various 

experimental configurations, especially with the small mean 

shifts.  
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