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ABSTRACT 

This study investigates feature selection techniques for 
predicting the Remaining Useful Life (RUL) of aircraft 
engines, addressing the persistent challenge of inaccurate 
predictions due to suboptimal feature selection. In this 
context, a robust methodology was developed to select 
optimal features for enhancing the model’s predictive power. 
Using inferential statistical methods for analysing operation 
data from aircraft engines, the study involved data pre-
processing to test its feasibility, feature engineering to 
minimise data variability, backward elimination for linear 
regression, random forest and gradient boosting for effective 
feature selection. The models’ performance was evaluated for 
predictive accuracy and reliability using various performance 
metrics. Findings show that the random forest model with an 
R-squared value of 0.86 surpassed linear regression (0.76) 
and gradient boosting (0.73). It further highlighted that the 
integration of advanced feature selection techniques in non-
linear modelling substantially improved the prediction 
accuracy of RUL while also capturing the essential 
degradation patterns typical in aircraft engines, as depicted in 
the Partial Dependence Plots (PDPs). All the three models 
highlighted the critical importance of the 'time' (current age) 
feature in predicting RUL, accounting for more than half of 
the model's predictive power. The findings of this work not 
only supported some initial hypotheses regarding sensor 
relationships and operational settings' effects but also 
unveiled complex interactions previously unrecognized. By 
identifying and eliminating redundant sensors though a 

systematic approach of feature selection, this study 
significantly contributes to the field of predictive 
maintenance for aircraft engines in enhancing the robustness 
of predictive models.  

1. INTRODUCTION 

Maintenance costs have historically been a significant 
portion of the overall expenses in various industries, ranging 
from 15% in food-related sectors to as high as 60% in heavy 
industries like iron and steel, pulp and paper. According to 
surveys, nearly one-third of the maintenance costs in various 
industries are wasted because of the improper and 
unnecessary maintenance practices (Mobley, 2002). To 
combat this, predictive maintenance has emerged as a 
transformative approach. Using data analytics, predictive 
maintenance not only helps in reducing unforeseen downtime 
and equipment failures but also improves maintenance 
schedules, thus enhancing the machine’s performance 
(Theissler et al., 2021; Karuppiah et al., 2021). Predictive 
maintenance practices have been significantly improved with 
the advancement in sensor technology and data analysis, as 
these can efficiently gather massive raw data from sensors 
and convert it into meaningful information to avoid any 
disruptions and raise the system’s security and efficiency 
(Lee et al., 2019; Zhang et al., 2019; Çınar et al., 2020; Javaid 
et al., 2021; Chinta et al., 2023).  

The estimation of the machinery’s RUL remains a 
cornerstone within the predictive maintenance strategy. In the 
aviation industry, the reliable and accurate prediction of the 
aircraft engines’ RUL is crucial to ensure safety and reduce 
operational costs. However, this remains a daunting task 
because of the highly variable operating conditions of the 
aircraft engines. Also, the stochastic nature of degradation 
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processes and different failure mechanisms within the engine 
further complicate the accurate prediction of RUL (Li et al., 
2018; Adryan & Sastra, 2021; Zhao et al., 2023). 

Researchers have approached RUL prediction from various 
perspectives and different methodologies have been 
implemented. For instance, similarity methods have been 
used that compare previous degradation patterns with current 
data, while sensor-based degradation models predict RUL 
based on the identification of the instances when a machine 
is likely to cross the predefined operating limits (Natsumeda, 
2023; Shaheen et al., 2023). Some researchers have adopted 
physics-based models that predict RUL by assuming the 
finite crack at the initial stage and linking the extent of 
damage to the growth of crack using stain life methodology 
and fracture mechanics (Rial et al., 2014). Another common 
approach is the energy-based fatigue life prediction that 
calculates life by dividing the total monotone strain energy 
by strain energy per cycle. However, both physics-based and 
energy-based models have limitations in their practical 
applications, as the former cannot fully capture the machine’s 
behaviour under variable conditions due to sophisticated 
mechanical structures, whereas the latter involves 
assumptions and requires more experimental data for reliable 
estimations. This demands a shift and search for more 
sophisticated and state-of-art machine-learning techniques 
for better prognostics (Lei et al., 2018; Hu et al., 2019; Liu et 
al., 2020). 

Data-driven approaches—utilising probabilistic models, 
artificial intelligence, and stochastic methods—offer an 
alternative by utilizing operational data for RUL prediction. 
These methods include statistical analysis of life cycle 
information and advanced forecasting techniques to identify 
anomalies and trends with better accuracy by analysing 
historical and real-time data (Muneer et al., 2021; Victoria & 
Priyardarshini, 2023). But the efficacy of different methods 
used varies according to the conditions and datasets. For 
instance, deep neural networks offer better accuracy but at the 
cost of interpretability, while linear models like regression 
offer ease of interpretation and might suffice for systems with 
linear degradation patterns but are unable to capture non-
linear degradation profiles, which are typical in mechanical 
systems like aircraft engines (Zhang et al., 2017; Melis & 
Jaakkola, 2018; Salahuddin et al., 2022; Mishra et al., 2023; 
Talaat et al., 2023). In such cases, more advanced models, 
like random forest and gradient boosting, perform well. Some 
studies encourage the use of adaptive modelling techniques, 
which assist in striking a balance between interpretability and 
accuracy over the system’s lifecycle because these 
techniques dynamically select models according to the 
system environment. (Angelov et al., 2010). On top of that, 
using a hybrid approach by leveraging the strengths of both 
simpler and complex models a robust framework can be 
developed for effective RUL prediction where simple models 
can be used for initial screening and complex ones for 

detailed analysis (Liao & Köttig, 2014; Liao & Köttig, 2016; 
Li et al., 2022; Gardner-Frolick et al., 2022). 

Regardless of the modelling approach, feature engineering 
plays a critical role in improving the model’s performance. 
Well-engineered features can significantly enhance the 
prediction accuracy of both simple and complex models. 
Hence, the effective feature selection techniques not only 
determine the most influential parameters of engine 
degradation, but they also minimise the excessive 
maintenance costs and operational risks (Hong et al., 2020; 
Xiong & Wang, 2022; Kartal & Altunkaynak, 2024; 
Hayajneh et al., 2024). Despite its critical importance, many 
organisations struggle with implementing proper feature 
selection techniques, which result in inefficient predictive 
maintenance practices (Rong et al., 2019). Moreover, the 
adaptation of feature selection techniques to dynamic 
operational data, which typically varies non-linearly with the 
change in operating conditions, has been less emphasized in 
the current literature. Majority of the research provides 
generalised insights without digging into the unique datasets 
and operational characteristics of complex industrial 
machinery such as aircraft engines. This oversight results in 
suboptimal modelling results, hence jeopardizing the 
reliability and accuracy of RUL predictions.  

To address the aforementioned research gaps, this work aims 
to enhance the accuracy and reliability of RUL predictions 
for aircraft engines by identifying and implementing optimal 
feature selection techniques in predictive modelling. In this 
regard, for the first time, the performance of backward 
elimination, random forest, and gradient boosting models is 
evaluated in identifying the essential features affecting the 
degradation processes in aircraft engines. This not only will 
help in eliminating redundant and irrelevant features but will 
also enhance the robustness of the predictive models. 
Consequently, this will pave the way for better industry 
practices and ensure greater reliability in the aerospace 
sector. 

This study utilizes the FD001 subset of the C-MAPSS 
dataset, a widely recognized benchmark in predictive 
maintenance research. The dataset comprises simulated 
sensor and operational data from 100 aircraft engines, each 
progressing through a full degradation cycle under consistent 
flight conditions. For each engine, 21 sensor readings and 3 
operational settings were recorded across multiple time steps 
(Saxena & Goebel, 2008). The dataset enables RUL 
estimation by providing time-series data up to the point of 
failure for each engine. The process followed in this study is 
shown in Figure 1, which involves several sequential steps. 
The data is rigorously pre-processed, which includes 
converting text files into Excel format for better visualization 
and ensuring it is clean and ready for analysis. Then, the 
correlation coefficient analysis and Variance Inflation Factor 
(VIF) are applied to determine its feasibility. Further, the 
predictive model is developed using the multiple linear 
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regression method to establish a relationship between the 
RUL and operational parameters of aircraft engines. 
Logarithmic transformation is also applied to the data in order 
to improve the model performance. Furthermore, the 
performance of three feature selection techniques, named 
backward elimination, random forest, and gradient boosting, 
in enhancing the accuracy of the predictive model are 
compared using the same performance metrics as shown in 
Figure 1. For this work, the code is written in Python and run 
in Google Colab. 

Figure 1. Sequential steps undertaken in current study 

2. METHODOLOGY 

2.1. Data Feasibility Assessment 

The viability and integrity of the data are assessed using two 
key statistical methods. The first method, Pearson's 
correlation coefficient, is used to examine the linear 
relationships between variables, while the second method, 
VIF, is applied to further scrutinize the features (independent 
variables) for multicollinearity. 

2.1.1. Pearson Correlation Coefficient 

Pearson's correlation coefficient quantifies the degree to 
which pairs of variables are linearly connected, providing 
insights into potential model predictors and highlighting any 
signs of multicollinearity. For each pair of features, the 
Pearson correlation coefficient (r) is calculated using Eq. (1), 
which provides a value between -1 and +1 that indicates both 
the strength and direction of the relationship. Coefficients 
close to +1 and -1 indicate strong positive and negative linear 
relationships, respectively, whereas coefficients around 0 

imply little to no linear relationships. Although, features 
exhibiting strong correlations with RUL are remarked as 
important predictors, the relationships between features are 
scrutinized for indicators of multicollinearity. When 
multicollinearity is identified, one of the features is removed, 
preferably the one with the lowest correlation with the RUL. 

The mathematical expression of Pearson correlation 
coefficient (r) described for two features X and Y with n 
number of observations each is given as follows (Yu & 
Hutson, 2022): 

              𝑟 = ∑ (#!$#%)	((!$(%)
"
!#$

)∑ (#!$#%)%"
!#$ 	)∑ ((!$(%)"

!#$

                      (1) 

Where 𝑋* and 𝑌*  denote the individual sample points and 𝑋% 
and 𝑌% are the mean values of X and Y, respectively, and are 
given as: 

                         𝑋	' 𝑎𝑛𝑑	𝑌% = ∑ #!
"
!#$
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	𝑎𝑛𝑑	 ∑ (!
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                  (2) 

n represents the number of observations. 

2.1.2. Variance Inflation Factor (VIF) 

VIF serves as a metric quantifying the degree to which the 
variance of an estimated regression coefficient inflates as a 
result of multicollinearity in the model. As predictor 
correlations increase, VIF values rise, indicating increased 
multicollinearity and potential issues in model estimation. A 
VIF near 1 indicates minimal inflation, while values 
surpassing a threshold (typically 5 or 10) imply problematic 
multicollinearity, warranting further investigation and 
possible variable exclusion from the model. 
Features with lower variance (i.e., lower VIFs) may have 
limited predictive power as they exhibit minimal change 
across the dataset. Addressing high VIFs leads to more stable 
and interpretable models, which improve predictive accuracy 
and facilitate informed decision-making in model 
development and refinement. The following formula is used 
to calculate the variance inflation factor for each predictor 
variable in a regression model (Cheng et al., 2022): 

                                      𝑉𝐼𝐹 = ,
,$-!

%                                     (3) 

where           𝑅*. = 1 −	
∑ /(!&$(0!&1

%"
&#$	

∑ /(!&$(%!&1
%"

&#$	
= 1 −	223

224
		               (4) 

In the equations above, 𝑅*. is the coefficient of determination 
of predictor i on all the other predictors, whereas 𝑌*5,  𝑌1*5, and 
𝑌%* are the actual predictor, predicted predictor of regression 
model, and mean value of predictor i for the number of 
observations j (Garcia et al., 2014). 
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•Root Mean Squared 
Error

•Mean Absolute Error
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2.2. Logarithmic Transformation  

Logarithmic transformation, which is typically performed 
using the natural logarithm, is used in this study, as it is an 
effective data transformation method for resolving scale 
differences within a dataset. Applying this transformation can 
help create a more uniform scale across the data by 
transferring skewed distributions into more symmetrical 
ones. This is how it eliminates the influence of outliers by 
compressing the data scale and helps in preventing the 
model’s training process from being distorted (Shachar et al., 
2018; Kuhn and Johnson, 2018).  

As machinery and components approach the end of their 
useful life, degradation patterns often become increasingly 
nonlinear and less predictable. This shift in behavior, 
particularly in the later stages, poses challenges for accurate 
RUL prediction (Cui et al., 2023), and requires models that 
can accommodate dynamic and irregular degradation 
trajectories. This process of linearization can be extremely 
useful for predictive models by facilitating the application of 
linear models and improving the interpretability of the result 
when there are multiplicative relationships between the 
features and RUL (Babu et al., 2016). 

The mathematical form of the transformation process for 
each value 𝑥𝑖 within each feature X is given as below (Shim, 
Bonifay & Wiedermann, 2022): 

                                     𝑥́* = log7(𝑥*)		                                 (5) 

𝑙𝑜𝑔	𝑌* =	𝛽8 + 𝛽,𝑙𝑜𝑔	𝑋, 	+ 𝛽. 𝑙𝑜𝑔 𝑙𝑜𝑔	𝑋. 	+ ⋯+
𝛽+𝑙𝑜𝑔	𝑋+ 	+ 	𝜖	                                                                     (6) 

where, 𝑥*  and 𝑥́*  are the original and transformed feature 
values, respectively.   

2.3. Model Development  

Multiple Linear Regression (MLR) model is based on the 
principle that there exists a linear relationship between the 
dependent variable (𝑌) and multiple independent variables 
(𝑋,, 𝑋.,……, 𝑋+). The general form of the MLR model is 
given as (Maulud & Abdulazeez, 2020): 

               𝑌 = 𝛽8 + 𝛽,𝑋, + 𝛽.𝑋. +⋯+ 𝛽+𝑋+ + 	𝜖	            (7) 

In the above equation, 𝛽1, 𝛽2, … , 𝛽𝑛  represent the 
coefficients of the independent variables and 𝛽0  is the y-
intercept. 

First of all, the dependent variable (i.e., RUL) is defined, and 
independent variables (i.e., features) are selected based on the 
knowledge base of the system and expected results. Then, 
coefficients (𝛽1, 𝛽2, … , 𝛽𝑛) are estimated using the Ordinary 

Least Squares (OLS) method, which is widely accepted 
because it is simple to use, interpretable, and efficient under 
common conditions. The OLS estimate is made to find the 
line (or hyperplane in multiple dimensions) that best fits a set 
of data points, thereby reducing the sum of the squared 
differences between the predicted and observed values of the 
dependent variable by the linear model. This estimation leads 
to a set of normal equations as given below, which are solved 
to find the coefficient estimates.  

                              𝑆𝑆𝑅 = ∑ 	D𝑌* − 𝑌1*E
.+

*=,                            (8) 

where SSR is the sum of the squared residuals and 𝑌𝑖	and 𝑌1  
represent the observed and predicted values of the dependent 

variable for the ith observation, respectively. 	

Several key assumptions underlie the MLR model, and their 
validity must be assessed to ensure reliable results; the 
relationship between features and RUL is linear, the residuals 
(errors) are independent of each other, normally distributed 
and not too highly correlated, the variance of residuals is 
constant across all levels of the independent variables. 

2.4. Feature Selection  

With the aim of developing strong predictive model, the 
selection of relevant features is critical in improving the 
model performance and interpretability. Among the available 
techniques of feature selection, backward elimination, 
random forest (Tree-Based) method, and gradient boosting 
method stand out for their distinct approaches and advantages 
in refining the feature space. 

2.4.1. Backward Elimination 

Backward elimination process aims to refine the predictive 
model by retaining only those variables that significantly 
contribute to explaining the variance in the dependent 
variable, thereby enhancing the model’s simplicity and 
interpretability. The process begins with the full regression 
model (i.e. Equation 7). 

Each predictor’s coefficient 𝛽! 𝑖 undergoes a t-test to assess its 
statistical significance, where the null hypothesis "𝐻0: 𝛽𝑖 =
0# implies no effect on Y. The t-test is computed as (Fashoto 
et al., 2021):  

                  𝑡 = >?!$8
23/>?!1

                                           (9) 

where 𝛽! 𝑖  is the estimated coefficient for the predictor 
variable 	𝑋* , 0	 is the hypothesized value of the coefficient 
under the null hypothesis usually testing if "𝛽! 𝑖 = 0#, 
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indicating no effect, 𝑆𝐸D𝛽K*E	 is the standard error of the 
estimated coefficient 𝛽! 𝑖. The standard error 𝑆𝐸D𝛽K*E	measures 
the average difference between the estimated 𝛽! 𝑖	 and the 
actual (unknown) coefficient 𝛽𝑖	 , given the data. It is 
calculated from the data and depends on the variability of the 
Y values and the distribution of the 𝑋𝑖 values. 

The p-value is determined for each coefficient, reflecting the 
probability of observing the given data under 𝐻0 . The 
predictors with highest p-value exceeding a predefined 
threshold (α = 0.05) are considered the least significance and 
sequentially removed, thereby reducing the number of 
predictors and reformulating the model. The reduced model 
is then fitted using Ordinary Least Squares (OLS), updating 
the estimates of the coefficients for the remaining predictors. 
This process is repeated iteratively until all the remaining 
predictors have p-values below the threshold. The final 
optimised model retains only statistically significant features, 
resulting in greater interpretability and prediction power. 

2.4.2. Random Forest 

A random forest regressor is an ensemble learning technique 
in which multiple decision trees are generated during the 
training process, and predictions are combined by     
averaging of regression tasks. The number of trees in the 
forest and the seed used by the random number generator for 
reproducibility are key initialising parameters. 

During training, random forest uses bootstrap samples (given 
in Equation 10) to build individual trees.  

                 𝐷* = MD𝑥,* , 𝑦,*E, D𝑥.* , 𝑦.*E, … , (𝑥+* , 𝑦+*)O               (10) 

Each decision tree in a random forest splits the data based on 
a feature and split point that minimizes the variance within 
each child node compared to the parent node. The variance 
reduction (VR) for a feature at a split is calculated as: 

𝑉𝑅 = 𝑉𝑎𝑟(𝑃𝑎𝑟𝑒𝑛𝑡) − R
@()*+

@,-.)"+
× 𝑉𝑎𝑟(𝑙𝑒𝑓𝑡) + @.!/0+

@,-.)"+
×

𝑉𝑎𝑟(𝑟𝑖𝑔ℎ𝑡)W                                                                      (11) 

Where 𝑉𝑎𝑟(. ) is the variance of the target variable in the 
node, 𝑁ABCD+E	, 𝑁FDGE	𝑎𝑛𝑑	𝑁C*HIE  are the number of samples 
in the parent, and right and left child nodes, respectively. 

After training, the random forest model provides the 
importance of each feature. This importance is a measure of 
how much each feature contributes to reducing the variance 
(uncertainty) in the predictions across all trees in the forest. 
So that features with higher importance scores are considered 
more valuable for predicting the target variable (RUL).  

2.4.3. Gradient Boosting 

Gradient boosting is a powerful ensemble technique that 
develops models in a sequential manner, with each new 
model incrementally corrects previous models’ errors, using 
decision trees as the base learners. It is widely used for both 
classification and regression tasks. When it comes to feature 
selection, gradient boosting evaluates feature importance as a 
by-product of the model training process, making it an 
effective method for identifying significant features in a 
dataset. 

This method involves three key components: a loss function 
(L), to measure the model fit, shallow decision trees (i.e., few 
levels deep) as weak learner, and an additive model, where 
each tree address the residual errors of its predecessors. An 
initial guess for the model is made, usually a constant value 
such as the mean or median of the target variable. The 
pseudo-residuals are computed as negative gradient of the 
loss function with respect to the model predictions. For 
observation (i) at iteration (m), this is given as: 

                       𝑟*J = −ZKL/M!,O12$(P!)1
KO(P!)

[
O(P!)=O12$(P!)

         (12) 

where 𝐿D𝑦* , 𝐹(𝑥*)E	is the loss function evaluated for the ith 
data point. 𝐿 measures discrepancy between observed target 
𝑦*  and the model’s prediction 𝐹(𝑥*) . 𝐹J$,(𝑥*)	  represents 
the accumulated predictions up to the previous step (𝑚 − 1). 
𝑟*J represents the negative gradient of the loss function by 
the model’s predictions 

The decision tree ℎJ(𝑥)	is fitted to these pseudo-residuals, 
the multiplier 𝑌J  is optimized for the tree's predictions to 
minimize the loss when added to the current model. This is 
done by: 

      𝑌J = 𝑎𝑟𝑔𝑚𝑖𝑛( ∑ 𝐿D𝑦* , 𝐹J$,(𝑥*) + 𝑌ℎJ(𝑥*)E@
*=,        (13) 

The model is then updated with the new tree: 

                       𝐹J(𝑥) = 𝐹J$,(𝑥) + 𝑉𝑌JℎJ(𝑥)                    (14) 

The final model after M iterations become: 

                  𝐹Q(𝑥) = 𝐹8(𝑥) + ∑ 𝑉𝑌JℎJQ
J=, (𝑥)                  (15) 

where ℎ𝑚(𝑥) represents the corrections to be applied to the 
previous ensemble's predictions, V is the learning rate, a 
parameter that scales down the contribution of each tree to 
prevent overfitting, N is the total number of data points in the 
dataset, M is the total number of iterations or trees in the 
ensemble.  
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Feature importance is typically assessed based on the 
improvement in model performance related to each feature. 
Two common measures are; total gain, which is the sum of 
the reduction in loss provided by splits over a given feature 
across all trees, and the frequency of use, which is how often 
a feature is used to split across all trees. 

Mathematically, the importance of a feature (j) can be 
expressed as the sum of the gains (ΔGain) of all splits that 
use j, normalized by the total number of splits across all trees: 

                          𝐼(𝑗) =
∑ ∆TB*+U(5)-((	3,(!+3	43!"/	&

∑ ∆TB*+U-((	3,(!+3
                      (16) 

After training process, gradient boosting ranks the features 
based on their importance scores. Low-importance score 
features can be eliminated from the model as they are less 
useful in making predictions. As such, besides being a 
powerful predictive modelling technique, gradient boosting 
also performs feature selection given its inherent 
computation of feature importance.  

2.5. Performance Metrics  

In the realm of feature selection, the evaluation of model 
performance involves identifying features that minimise 
errors and optimise model accuracy in predicting RUL of 
aircraft engines. In this study, the following six performance 
metrics are used for the evaluation of linear regression model 
using different techniques of feature selection.   

Coefficient of determination (R2): It represents the 
proportion of the variance explained by the model; values 
near 1 indicate better fit, which means more variance is 
explained by the model (García et al., 2014). 

                                      𝑅. = 1 −	22-
224

                                    (17) 

SSR and SST are the sum of squares of residuals and the total 
sum of squares, respectively. 

Adjusted R2: It refines R2 and offers a more precise metric 
for feature selection by accounting for the number of 
predictors in the model (Fashoto et al., 2021). 

                      𝐴𝑑𝑗𝑢𝑠𝑡𝑒𝑑	𝑅. = 1 −	 /,$-
%1(+$,)

+$A$,
	                   (18) 

Here 𝑛  and 𝑝  are the sample size and the number of 
independent variables, respectively. 

Mean Squared Error (MSE): It calculates the average 
squared difference between the estimated and actual values, 
with values near zero are better. 

                               𝑀𝑆𝐸 = ,
@
	∑ 	(𝑦* − 𝑦d*).@

*=,                      (19) 

Where 𝑦* and 𝑦d* represent the actual value (from the dataset) 
and predicted value (by the model) respectively, and N is the 

total number of observations in the dataset.  

Root Mean Squared Error (RMSE): This is a commonly 
used metric for measuring the model’s error in predicting 
quantitative data and represents the square root of MSE 

                         𝑅𝑀𝑆𝐸 = e,
@
	∑ 	(𝑦* − 𝑦d*).@

*=,                       (20) 

Mean Absolute Error (MAE): It calculates the average of 
the absolute difference between actual and estimated values 
for all observations. MEA, unlike MSE and RMSE, provides 
a linear score, which means all individual differences are 
equally weighted, and lower values of MAE indicate better 
model performance. 

                               𝑀𝐴𝐸 = ,
@
	∑ 	|𝑦* − 𝑦d*|@

*=,                         (21) 

Partial Dependence Plots (PDPs): It demonstrates the effect 
of a single or two features, 𝑋V, on the model prediction after 
considering the average effects of all other features. The 
partial dependence function, 𝑓#V(𝑥), is as follows (Inglis et 
al., 2022): 

                             𝑓#V(𝑥) =
,
@
	∑ 	𝑓K(𝑥, 𝑋* , −𝑘)@

*=,                (22) 

where  𝑓! is the prediction function of the trained model, 𝑥 is 
a value of feature 𝑋V, and (𝑋𝑖, −𝑘) represents all features for 
the ith observation except 𝑋V which is set to 𝑥. 

PDPs are especially useful for models like gradient boosting 
and random forest because they display complex, non-linear 
feature interactions, helping to elucidate the "black box" 
nature of such models. 

3. RESULTS AND ANALYSIS 

A viability check using the correlation analysis and VIF was 
performed to identify redundancy and multicollinearity 
among features. This process is crucial for ensuring that each 
variable in a predictive model contributes unique, valuable 
information and that coefficient estimates are not distorted by 
high inter-variable correlation, thereby preserving the 
model's reliability and interpretability. 

Figure 2 illustrates the correlation heat map which shows the 
pairwise correlation between different sensor measurements 
and operational settings of the aircraft engine. High 
correlation coefficients, represented by darker shades of red, 
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suggest strong positive linear relationships, whereas darker 
shades of blue indicate strong negative relationships. Near-
zero values, shown in lighter shades, imply a weak or no 
linear correlation.  

The heat map provides crucial insights about the relationships 
between aircraft engines, highlighting high correlations 
among certain operational settings and sensor measurements. 
Operational settings 1 and 2 show a high correlation 
coefficient (0.944), suggesting they are closely linked, 
possibly controlled together or respond to similar engine 
states. Conversely, these two settings have an inverse 
relationship with operational setting 3, as evidenced by the 
negative correlation coefficient (-0.237 with setting 1 and -
0.385 with setting 2). This may reflect a compensatory 
mechanism within the engine's operation, where adjustments 
to settings 1 and 2 are counterbalanced by changes in the 
setting 3. 

On the other hand, sensor measurements 5 and 6 exhibit a 
very strong positive correlation (0.996 and 0.996, 

respectively), which may reflect sensors measuring related 
engine parameters, perhaps due to physical proximity or  

shared functional pathways. One of the most significant 
negative correlation between 'time' and 'RUL' (-0.788) 
validates the expected trend of decreasing RUL with increase 
in time due to wear and degradation over time. The high 
degree of correlation among sensors suggests some level of 
redundancy. Including all these sensors in a predictive model 
could unnecessarily complicate the model without adding 
value, potentially making it prone to overfitting. Meanwhile, 
sensors with low correlations may be valuable for detecting 
specific types of engine faults or performance issues that are 
not apparent from more correlated measurements. Thus, the 
correlation matrix not only indicates which variables to 
include or exclude from the model, but also provide insights 
into the complex interplay of engine operations and sensor 
responses. 
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Figure 2. Correlation Heat Map of the Aircraft Engine’s Sensor features 

Table 1 presents the VIF, providing insights into 
multicollinearity among features. As can be seen that several 
features have VIFs much greater than 1, indicating that these 
variables have some level of linear correlation with other 
predictor variables in the dataset. Notably, the 'const' feature 
has an extremely high VIF, signaling it is highly linearly 
dependent on other features. This is because of the model 
intercept being included in the VIF calculation, which is not 
typically necessary since it is not a predictor. Some sensor 
measurements, such as 1, 5, 18, and 19, exhibit very high VIF 
values (in the range of millions and even billions), suggesting 
severe multicollinearity. This could distort the coefficient 
estimates, undermine the statistical significance of the 
independent variables and affect the outcome and predictive 
power of the regression model. The presence of high VIF 

values is a strong indication that feature engineering is 
needed.  

 

Techniques like feature selection (choosing a subset of 
relevant predictors) and feature extraction (creating new 
features from the original ones while preserving essential 
information) could be used. Given the observed high VIFs, 
transforming or reducing these features becomes crucial to 
mitigate multicollinearity. 

The logarithmic transformation was systematically applied 
across the dataset to the features to normalize the scale and 
distribution of the features, thereby preparing the dataset for  

more effective analysis. Table 2 demonstrates the raw and 
transformed data for some features as an example. 
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After performing the data viability checks, the multiple linear 
regression model was developed as described in section 2.3, 

resulting in an R-squared value of 0.693 and adjusted R-
squared of 0.692. 

Serial 
Number 

Features Description VIF 

1 Time Operational cycles 2.34 
2 Operational Setting 1 Altitude (ft) 3.02 e07 
3 Operational Setting 2 Mach number 2.30 e05 

4 Operational Setting 3 Throttle resolver angle (°C) 1.13 e07 

5 Sensor Measurement 1 Total temperature at fan inlet (°R) 2.16 e10 

6 Sensor Measurement 2 Total temperature at LPC outlet (°R) 1.43 e04 

7 Sensor Measurement 3 Total temperature at HPC outlet (°R) 6.67 e02 

8 Sensor Measurement 4 Total temperature at LPT outlet (°R) 7.53 e02 

9 Sensor Measurement 5 Pressure at fan inlet (psia) 2.74 e08 

10 Sensor Measurement 6 Total pressure in bypass-duct (psia) 2.31 e06 

11 Sensor Measurement 7 Total pressure at HPC outlet(psia) 1.15 e05 

12 Sensor Measurement 8 Physical fan speed (rpm) 1.25 e07 

13 Sensor Measurement 9 Physical core speed (rpm) 4.37 e03 

14 Sensor Measurement 10 Engine pressure ratio (P50/P2) 4.81 e03 

15 Sensor Measurement 11 Static pressure at HPC outlet (psia) 7.73 e02 

16 Sensor Measurement 12 Ratio of fuel flow to Ps30 (pps/psi) 1.71 e05 

17 Sensor Measurement 13 Corrected fan speed (rpm) 8.59 e06 

18 Sensor Measurement 14 Corrected core speed (rpm) 3.51 e02 

19 Sensor Measurement 15 Bypass Ratio 1.09 e03 

20 Sensor Measurement 16 Burner fuel-air ratio 9.97 

21 Sensor Measurement 17 Bleed Enthalpy (BTU/lbm) 7.98 e02 

22 Sensor Measurement 18 Demanded fan speed (rpm) 1.30 e11 

23 Sensor Measurement 19 Demanded corrected fan speed (rpm) 8.94 e10 

24 Sensor Measurement 20 HPT coolant bleed (lbm/s) 9.05 e03 

25 Sensor Measurement 21 LPT coolant bleed (lbm/s) 9.09 e03 

Table 1. Variance inflation score of features

3.1. Model Comparison: Feature Selection Techniques 

Following the logarithmic transformation of the dataset to 
mitigate the effects of large-variance numerical features, the 
performance of backward elimination, gradient boosting and 
random forest regression models is compared to identify the 
most effective approach for RUL prediction. 

The application of the backward elimination technique 
resulted in a more streamlined and efficient model by 
removing five features, including various sensor 
measurements and operational settings, due to their high p-
values, indicating a lack of statistical significance in 
predicting RUL. Following this, the relative significance of 
each feature in making accurate predictions of RUL is 
evaluated using random forest and gradient boosting 

regression models, as illustrated in Figures 3 and 4. Notably, 
the 'time' feature stands out in both models with an 
importance score of about 0.543 and 0.866 in random forest 
and gradient boosting, respectively. This shows that time, 
which represents the machinery's usage duration, is the main 
predictive factor for RUL. Sensor measurement 11 ranked as 
the next most important feature (0.095) in random forest, 
while gradient boosting identified sensor measurement 15 as 
the second most significant feature (0.145). However, the 
importance score of these second features is substantially less 
than time, indicating a steep drop-off in importance between 
the top feature and subsequent ones, contributing 
incrementally less to the model's ability to predict RUL. Both 
models show a similar trend, with feature importance 
diminishing progressively down the list. The bar graphs 
present a clear picture that only a handful of features 
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significantly drive the model's predictions, with gradient 
boosting requiring fewer features than random forest to 
achieve comparable performance. 

Raw Data 

Time 
(Cycles) 

Operational 
Setting  
1 (ft) 

Operational 
Setting  

2 

Operational 
Setting  
3 (°C) 

Sensor 
Measurement 

1 (°R) 

Sensor 
Measurement 

2 (°R) 

Sensor 
Measurement 

3 (°R) 
1 10.01 0.25 20.00 489.05 604.13 1499.45 
2 0.01 0.01 100.00 518.67 642.13 1584.55 
3 34.99 0.84 60.00 449.44 555.42 1368.17 
4 20.01 0.70 0.00 491.19 607.03 1488.44 
5 42.01 0.84 40.00 445.00 549.52 1354.48 

Transformed Data 
0.69 2.40 0.22 3.04 6.19 6.41 7.31 
1.10 0.01 0.01 4.61 6.25 6.47 7.37 
1.38 3.58 0.61 4.11 6.11 6.32 7.22 
1.61 3.04 0.53 0.01 6.20 6.41 7.31 
1.79 3.76 0.61 3.71 6.10 6.31 7.21 

Table 2. Logarithmic transformation of the data 

 

 
Figure 3. Feature importance of the random forest model 

 

Figure 4. Feature importance of the gradient boosting model 

Figures 5 and 6 show the scatter plots comparing the actual 
with predicted RUL using random forest and gradient 
boosting methods, respectively. As can be seen, most points 
in both plots cluster around the ideal dashed line, indicating 
generally accurate predictions. However, there is noticeable 
dispersion, especially at lower RUL values in random forest 
and at higher RUL values in gradient boosting. This 
variability suggests that while both models perform well 
overall, the accuracy of random forest decreases for 
predictions involving lower RUL. On the other hand, gradient 
boosting model predictions vary more widely for engines 
with longer expected life. 
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Figure 5. Actual vs predicted RUL plot of the random forest 
model 

 
Figure 6. Actual vs predicted RUL plot of the gradient 

boosting model 

The performance of the optimised models is further 
quantified through several metrics presented in Table 3. 
Backward elimination achieved an R-squared value of 0.762, 
indicating that 76.20% of the variance in the RUL was 
explained by the model, with relatively low values of RMSE 
and MAE reflecting the model's predictions are fairly close 
to the actual values. In contrast, random forest outperformed 
the other models with the highest R-squared of 0.864 and 
lower values of error metrics (i.e., MSE: 0.128, RMSE: 
0.357, and MAE: 0.271), indicating superior predictive 
capability. Gradient Boosting, while achieving a reasonably 
good R-squared of 0.733, resulted in relatively high values of 
MSE, RMSE, and MAE which are 1248.52, 35.33, and 26.95, 
This indicates that the average errors are somewhat 
significant; but, without additional context such as the scale 
and range of RUL values, it is difficult to assess the severity 
of these errors. It is worth noting that the difference between 
the R-squared and Adjusted R-squared values in all the three 
models is very minimal, implying that the number of features 

included in the models is appropriate and does not introduce 
unnecessary complexity. 

Metric Score 

 Backward 
elimination 

Random 
forest 

Gradient 
boosting 

R-squared 0.762 0.864 0.733 
Adjusted R2 0.761 0.864 0.732 

Mean Squared 
Error (MSE) 

0.225 0.128 1248.52 

Root Mean 
Squared Error 

(RMSE) 

0.473 0.357 35.334 

Mean Absolute 
Error (MAE) 

0.358 0.271 26.956 

Table 3. Performance comparison of feature selection 
techniques 

3.2. Partial Dependence Plots (PDPs)  

Partial Dependence Plots (PDPs) are used to visualize the 
isolated impact of individual features on a model’s 
prediction, by averaging out the effects of all other variables. 
In this study, PDPs were generated for both the Random 
Forest and Gradient Boosting regression models to explore 
how selected features influence the prediction of Remaining 
Useful Life (RUL) in aircraft engines. To illustrate the 
models’ interpretability and feature sensitivity, three 
representative features were selected: time (representing 
operational age), Mach number (operational setting 2), and 
demanded corrected fan speed (sensor measurement 19). 
These features were chosen to reflect both dominant and 
marginal contributors to model predictions. Figure 7 presents 
a side-by-side comparison of how each model responds to 
changes in these inputs, offering insight into the internal 
decision-making processes and highlighting the contrasting 
ways these models interpret engine degradation. 
 
Both models exhibit a clear negative relationship between 
time and predicted Remaining Useful Life (RUL), which 
aligns with the intuitive expectation that engine health  
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Figure 7. Comparison of the PDP plots of random forest and gradient boosting models illustrating the effect of some 
operational features on RUL  
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declines as operational cycles accumulate. In Figure 7a, the 
decrease in partial dependence of RUL was initially moderate 
but becomes significantly sharper around the 5-cycle mark, 
suggesting the model detects a distinct degradation phase, a 
critical point at which wear accelerates. This behavior reflects 
Random Forest’s ability to capture nonlinear, threshold-
based changes in the data. In contrast, Figure 7b shows a 
smooth and gradual decline throughout the time range, 
indicating a consistent interpretation of wear progression. 
This suggests that Gradient Boosting is better suited for 
modeling continuous degradation trends, while Random 
Forest is more responsive to sudden drops in performance. 
Overall, both models confirm time as a dominant predictor of 
RUL, though they capture its effects in structurally different 
ways. 
 
When examining Mach number and demanded corrected fan 
speed, both models exhibit low sensitivity to these features, 
albeit in model-specific ways. The Random Forest PDP for 
Mach number in Figure 7c displays minor, inconsistent 
fluctuations in predicted RUL, suggesting a weak or noisy 
influence. For fan speed, the Random Forest PDP in Figure 
7e shows a subtle positive linear trend, implying that slightly 
higher fan speeds may correspond to longer predicted RUL. 
However, given the narrow range of this, this trend may be 
due to localized data behavior. Furthermore, the slight 
variation in this PDP plot suggests that this variable has 
relatively little influence on the model’s prediction. In 
contrast, the Gradient Boosting PDPs for both features 
(Figures 7d and 7f are nearly flat, indicating that the model 
considers these variables uninformative for RUL prediction. 
This consistent insensitivity highlights Gradient Boosting's 
ability to filter out irrelevant features, reinforcing its strength 
in maintaining a focused and generalizable prediction 
structure. In addition, negative values observed in particle 
dependence of RUL for the Gradient Boosting Regression 
model (Figures 7b, 7d, and 7f) suggest that the dependence 
of predicted RUL on the feature of interest is lower as 
compared to the model’s average prediction. This behavior is 
a common characteristic of PDPs and does not imply a 
negative lifespan. Instead, it reflects a relative decline in the 
model’s expected RUL. 
 
Overall, the PDP analysis highlights the complementary 
strengths of the Random Forest and Gradient Boosting 
models in predicting Remaining Useful Life (RUL) for 
aircraft engines. The Random Forest model demonstrates 
strong responsiveness to critical degradation phases, 
particularly through its sharp transitions in response to time, 
suggesting it is well-suited for identifying early signs of 
failure or sudden wear. However, its interpretation of less 
relevant features, such as Mach number and fan speed, can be 
inconsistent or overly sensitive. In contrast, the Gradient 
Boosting model captures smooth and gradual degradation 
patterns, showing greater stability and robustness in its 

predictions. Its insensitivity to weak features like Mach 
number and fan speed reflects effective internal 
regularization, making it more reliable in later stages of 
degradation when wear progresses slowly and predictably. 
Based on the feature importance analysis (Figures 3 and 4), 
which identifies the most revealing features; Figures 5 and 6, 
which present the comparison between actual and predictive 
power of the models; and the Partial Dependence Plots in 
Figure 7, Gradient Boosting appears to provide smooth and 
consistent responses to gradual degradation, while Random 
Forest demonstrates greater sensitivity to abrupt changes. 
Therefore, selecting the appropriate model thus depends on 
the specific degradation profile and operational context of the 
engine system. 

To contextualize the effectiveness of the proposed approach, 
the obtained results were compared with prior studies that 
employed the same FD001 subset of the C-MAPSS dataset. 
The Random Forest model in this study achieved an R² value 
of 0.864, which aligns with performance levels reported in 
the literature. For instance, Muneer et al. (2021) implemented 
a deep learning-based framework combining convolutional 
and recurrent layers (CNN-LSTM) and reported R² values of 
approximately 0.860 on FD001. Their study emphasized the 
importance of capturing temporal dependencies to improve 
RUL prediction. In another effort, Li et al. (2018) applied 
ensemble learning techniques, combining the outputs of 
multiple models to improve robustness, and achieved an R² 
score of 0.865. Their findings highlighted that ensemble 
methods can effectively reduce variance and increase 
prediction reliability through model diversity. This aligns 
with the principle demonstrated in our study, where a single 
tree-based model, when paired with careful feature selection 
and natural logarithmic transformation, was able to achieve a 
comparable level of accuracy. Although a direct 
benchmarking exercise was not conducted, these 
comparisons suggest that properly tuned, interpretable 
models like Random Forest can perform competitively with 
more complex architectures in the context of RUL prediction. 

4. CONCLUSION 

This study significantly contributes to the field of predictive 
maintenance by optimizing the performance of RUL 
prediction models for aircraft engines. Using multiple linear 
regression for model development, the main aim of the study 
was to enhance the model’s prediction accuracy through 
optimal feature selection, addressing the challenge of 
inefficient RUL estimations. For this purpose, three 
techniques were investigated: backward elimination, random 
forest, and gradient boosting, and their performance was 
compared using various metrics. Results indicated that 
certain features were more critical and demonstrated a much 
stronger correlation with RUL compared to others, indicating 
their greater importance in the predictive models. 

The key contributions of this study are as follows: 
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• The random forest model performed best with a 
higher R-squared value (0.864) and lower error 
metrics compared to backward elimination for linear 
regression and gradient boosting. This implies that 
complex models subjected to non-linear 
transformations can substantially improve the 
accuracy of predictive model. Furthermore, 
negative correlations between operational 
parameters suggested a compensating mechanism 
within engine operations. This insight can lead to 
more targeted interventions to optimize engine 
performance. 

• The study identified significant sensor redundancy, 
particularly among certain sensors with nearly 
perfect correlations. This finding is crucial for 
optimizing sensor deployment and reducing 
computational costs without compromising model 
accuracy. However, in safety-critical applications 
such as aircraft, this kind of redundancy may be 
intentionally added to enhance reliability and fault 
tolerance; therefore, any optimization needs to be 
carried out cautiously for robust system 
performance.  

• The Partial Dependence Plots (PDPs) for both 
Random Forest and Gradient Boosting models 
highlight how each model interprets the influence of 
selected features on RUL prediction. While time 
emerged as a strong and consistent predictor in both 
models, Mach number and demanded corrected fan 
speed showed negligible or inconsistent influence, 
particularly in Gradient Boosting. 

• The analysis reinforces the theoretical expectation 
that RUL declines with time, validating time as a 
critical predictor. The Random Forest model 
captured abrupt degradation patterns, while 
Gradient Boosting offered smoother predictions, 
together providing deeper insight into how sensor 
data can inform predictive maintenance strategies. 
The minimal impact of Mach number and fan speed 
also underscores the importance of feature selection 
in improving model interpretability and efficiency. 

The empirical evidence from the study can inform the 
development of refined maintenance protocols that 
reflect the true drivers of engine degradation, improving 
overall maintenance efficacy and reliability. This 
ensures enhanced operational efficiency and reliability, 
laying a strong foundation for future research and 
practical applications in predictive maintenance. 

5. FUTURE RECOMMENDATION 

• In this study, a natural logarithmic transformation 
was applied to address data skewness and reduce 
variability among features, contributing to improved 

model performance. While effective, alternative 
transformation techniques such as the square root or 
Box-Cox methods may further enhance the 
robustness and accuracy of predictive models. 
Future research could explore and compare these 
approaches to assess their impact on feature 
distribution and model outcomes.  

• Future research may also include a comparison of 
the outcomes of natural logarithmic transformation 
with other bases, such as base-10 logarithm, because 
examining alternative logarithmic bases could 
provide useful insights into the model's sensitivity 
to transformation choices.  

• Moreover, as the current work focused exclusively 
on sensor-based degradation data, the influence of 
maintenance activities on RUL prediction could not 
be explicitly evaluated due to the absence of 
maintenance records in the dataset. Incorporating 
such records in future studies could provide valuable 
insights into how scheduled and unscheduled 
interventions shape degradation trajectories and 
affect the reliability of predictive maintenance 
strategies. 
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