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ABSTRACT

Chutes, bins, and hoppers are critical assets in bulk commod-
ity handling. Sacrificial wear liners are employed to protect
these assets from abrasive wear. An essential maintenance
challenge is optimising the timing of liner replacements. Tra-
ditionally, episodic human inspections have been in place,
but now, real-time wireless IoT sensing systems that mea-
sure liner thickness are being used. We propose a novel ap-
proach to estimate the remaining useful chute liner life. In-
stead of linear extrapolation based on individual sensor wear
rates (commonly used in industry), we leverage a Clustered
Bayesian Hierarchical Modeling (BHM). Two models are de-
veloped: Model 1 (Cluster Exemplar) uses parameters from
the closest cluster exemplar, while Model 2 (Spatial and Tem-
poral BHM) incorporates data from the active sensor, with
prior distribution informed by Model 1. Data are drawn from
a single hopper with 88 sensors, 20 of which reached their
end-of-life threshold. Both Model 1 and Model 2 outperform
the industry regression approach, significantly reducing over-
prediction. Notably, Model 2 predicts remaining useful life
within 95% credible intervals and identifies anomalous sen-
sor performance. This innovative use of historical and adja-
cent sensor data enhances wear degradation prediction, con-
tributing valuable insights to the literature.

1. INTRODUCTION

Bulk commodities are a major contributor to the Australian
economy with A$229 billion of products sold in 2023/24
(Thurtell, 2022). In the mining sector, the safe and efficient
transfer of bulk ore is achieved through a network of assets
and systems across a mine site. These include conveyor sys-
tems with multiple feed chutes, transfer chutes, bins, and hop-
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pers. Due to the high-throughput and coarse nature of the ore,
sacrificial wear liners are installed to protect these structures
from abrasive wear. If these liners wear too far, there is dam-
age to the structural steel and if they wear too quickly there
can be unplanned downtime resulting in lost production. The
replacement of worn liners is more cost effective than a re-
pair of the structural asset. Premature failure of liners can
lead to up to 50% more time dedicated to lining maintenance
(Malone, Hu, Clinton, & Ore, 2013). Traditionally, liners are
monitored, and data recorded by means of manual inspection,
ultrasonic thickness testing (Padole, Joshi, & Engineer, 2002)
or 3D laser scanning (Vanı́ček et al., 2012). These methods
all require a shutdown to allow operators to enter a high-risk
area to conduct inspections, the accuracy of which is depen-
dent on the skill of that operator.

A safer alternative is an Internet-of-Things (IoT) sensor mon-
itoring system for chute wear monitoring, such as
WearSense™ developed by Metso, a global technology and
services company in mining and aggregates. In the WearSense
design the sensor is housed in a fastener, which bolts the liner
to the chute wall. The sensor design, incorporates a probe
that penetrates to the wear surface of the liner and is shown
in Figure 1. The probe wears with the liner as material flows
through the chute, recording thickness as longitudinal point
estimates. A schematic of the installation of a sensor is also
shown in Figure 1. Sensor output is transmitted to a cloud-
based data warehouse where the data is processed and dis-
played on a web user interface. At present, linear regression
is applied to the data to predict future thickness values for
each sensor and interpolation between the sensors to provide
a visual map of the wear profile inside the chute. As the wear
of liners is measured by sensors, when referring to the wear
of a sensor in the text, we are referring to the degradation of
a liner at the particular location where the sensor is installed.

Wear is a complex mechanism and traditionally, in order to
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Figure 1. Schematic representation of a sensor installed on a
single liner of a coarse ore hopper chute.

predict the lifespan of liners, it is necessary to understand the
chute structural design, ore type, operating and environmental
factors to develop wear models for each individual chute.

Previous methods to model wear in chutes have involved nu-
merical and experimental studies. The application of exper-
imental studies (W. Chen, Biswas, Roberts, O’Shea, &
Williams, 2017; Hawk, Wilson, Tylczak, & Doğan, 1999)
which simulate wear in controlled environments using exper-
imental apparatus is limiting as fluctuations in the ore prop-
erties and external factors are not accounted for, therefore
making them unsuitable for complex, real-world situations
(Petrica, Badisch, & Peinsitt, 2013). Advancements in nu-
merical methods have enabled modelling of spatial wear un-
der operational conditions using discrete element modelling
(DEM) and finite element modelling (FEM) methods
(Forsström & Jonsén, 2016; Xu, Luo, & Zhao, 2018). The
accuracy and rapid prediction of wear using numerical meth-
ods is limited due to expensive computation time and the as-
sumptions of ideal modelling conditions (Ou & Chen, 2022).

Wear in chute liners can be visualised as a set of 3D images
over time. Modern 3D scanning produces a map of the chute
but is expensive to do requiring production to stop and the
chute to be clear. When sensors are used we only have ob-
servations at discrete points in space representing a fraction
of the surface area of the chute. When engineers analyse this
data they have to interpolate between the sensors (in space)
and examine the thickness measures of one or more sensors
in time. These processes impose a heavy cognitive load and
involve subjective interpretation.

The degradation of any physical process occurs over time and
there are uncertainties associated when observing these pro-
cesses. Well-known stochastic processes such as the gamma,
inverse Gaussian and most commonly the Wiener process are
used to describe the uncertainty pertaining to these processes.
In predicting the remaining useful life of cylinder liners in
ship engines (Hermann & Ruggeri, 2017), the authors present
a stochastic model for degradation which accounts for abra-
sive wear and corrosive wear through a differential equation,

considering a jump process and Wiener process respectively.
Inference and forecasts were made in a Bayesian framework,
computing posterior quantities through Markov Chain Monte
Carlo sampling and satisfactory results were obtained. The
authors were able to predict a probability for a thickness value
at specified time intervals. The data used was simulated for
30 cylinders, each of which assumed to be realisations of the
same process, therefore meaning the same model and param-
eters were used for each cylinder. In reality, each cylinder
should not be regarded as realisations of the same process as
they would be placed in different environments. This is also
an issue for the purpose of this study and is discussed fur-
ther in the hierarchical modelling section. Similarly (Guérin
et al., 2010; Wang, Lin, Wang, He, & Zhang, 2016), mod-
elled disc brake wear and the remaining useful life of a axial
piston pump as Wiener processes. A pitfall of the Wiener pro-
cess for a process such as wear is that it does not consider the
monotonically decreasing property of wear (Limon & Yadav,
2021).

When examining thickness data from one sensor in a chute,
it is expected that other sensors in the chute will have similar
rates of wear, albeit with some local variations to account for
place in the chute. This ‘other’ information is valuable and
should be included in a model for predicting future thickness
and can be used to identify if one sensor is exhibiting anoma-
lous behaviour. Statistical methods based on Bayesian hier-
archical modelling have been developed to incorporate addi-
tional information in the form of dependency between sensors
into the models for a single sensor. Our interest here is in 1)
prediction, making inference on a hidden state value at a time
beyond the current time, and in 2) filtering, making inference
on the hidden state at the current time based on the current
and all past data from that sensor and other sensors (Wikle,
Zammit-Mangion, & Cressie, 2019). A Bayesian hierarchical
model (BHM) has parameters with prior distributions at the
bottom level of the hierarchy. For further details on BHM the
reader is referred to (van de Schoot et al., 2021).

In reliability, the BHM has been shown to be a useful tech-
nique for modelling collective and individual conditions of
assets simultaneously compared to modelling all assets to-
gether. In 1996 (J. Chen & Singpurwalla, 1996) utilised
Bayesian hierarchical models when estimating reliability of
emergency diesel generators in separate nuclear power plants.
In 2015, a BHM was established to estimate the remaining
useful life of aerospace gas turbines operating in various con-
ditions and compared it to a non-BHM, finding that the BHM
was superior in typical (heterogeneous) scenarios (Zaidan,
Harrison, Mills, & Fleming, 2015). In general, hierarchical
modelling remains questionable when the first layer assumes
homogeneity between and within the similar assets, when re-
alistically different assets may have different environments.

In summary, automating processes for condition monitoring
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and prognosis in industry has become increasingly important
through the IoT revolution as the cost and safety benefits of
a successfully implemented system are indisputable. A great
deal of research has attempted to accurately model degrada-
tion in asset operations. In modelling chute lining wear, a
hybrid method, combining Bayesian hierarchical modelling,
and learning from historical sensors through clustering is pro-
posed. It has been shown that when sufficient data is pre-
sented, collaborative learning across assets will improve the
performance of predictions. The modelling approach pro-
vides a framework that can be applied to other systems or
industries in which similar degradation processes occur.

Focusing on a simple solution, easy to be developed and used
by companies, we develop a novel method using the Bayesian
Hierarchical Model (BHM) to estimate a linear regression
model for the degradation of each sensor. Then, we apply
a cluster analysis to identify a group of degradation patterns
of the sensor to use later as an informative prior for a new
sensor. Our new method considers the current available data
of the new sensor to match the previously identified patterns
and builds a model specific to the sensor. Also, the proposed
method enables us to determine whether a sensor in a specific
location is showing anomalous behaviour by comparing with
other sensors in the chute.

The challenges are that degradation data for some sensors do
not follow a linear trend; there are data available for only 20
sensors; and the only information available to be included in
a model is time and thickness. Extra information which could
describe the factors affecting wear, such as tonnage, angle of
impact, and the ore properties is not available.

2. DATA AND METHODS

2.1. Data Description

The data includes raw telemetry for liner thickness readings
from 968 sensors across 17 assets at 9 mine sites. This raw
data is noisy and features non-monotonous decreases, irregu-
lar observation intervals, sensor failures, outliers, corrections,
increasing values, and negative values. Only 3 chutes at 2
sites have historical data showing a liner thickness of 0mm
(RUL-0), indicating the end of the liner’s useful life. Upon
replacement, these sensors are decommissioned or replaced.
Table 1 presents the number of RUL-0 sensors. Full wear pro-
file data is vital for training the model to accurately describe
the wear process. Hopper 1 contains the most complete RUL-
0 data from January 2020 to February 2022, is the focus of
this study.

2.2. Data preparation

A SQL script was written to extract raw data from a data
warehouse. This involved creating joins between 13 tables,
producing a table that contains Site, Asset, Sensor, Liner ma-

Table 1. Total sensor counts and RUL-0 sensor counts for
assets which contain historical data.

Asset No. Sensors No. RUL-0 Sensors
Hopper 1 88 20
Hopper 2 43 7
Train Loadout 101 11

terial, Liner thickness, Timestamp, Commission date and De-
commission date as columns. This table was loaded into
RStudio (RStudio Team, 2020) as a data frame and all sub-
sequent processing and analysis is conducted in R (version
4.1.2) (R Core Team, 2022) using the RStudio IDE.

To manage incorrect measurements and ensure monotonic de-
creasing sensor values. A filtering algorithm was developed
which applied the following business rules in parallel:

• Remove all invalid points. This includes; all thickness
measurements greater than the initial liner thickness, less
than zero or NULL values.

• Remove large changes (> (thicknessi ÷ 10) + 1) in
thickness, unless the elapsed time is greater than a user-
defined minimum period (default 5 days). This removes
spurious measurements and allows for the wear that may
occur if a sensor is offline for an extended period of time.

• Remove any increases in thickness. The thickness of the
wear plate can not increase.

• Liner thickness can remain constant over extended pe-
riods of time and therefore there are duplicate measure-
ments. We are only interested in wear changes and the
current value. Remove duplicate values; only keep the
first recorded point (in time) at each recorded thickness.

A before and after of the filtering process is shown in Figure
2.

Modelling and evaluation requires the sensors which have
seen their liner reach the end of its remaining useful life.
Therefore the data set was filtered to contain only RUL-0 sen-
sors. A RUL-0 sensor is any sensor that satisfies the following
rules:

• Has at least one observation of 0mm thickness or below.

• Has at least 5 recorded thickness values.

• Has monotonically decreasing thickness (ie. no change
in thickness greater than 20% of initial thickness)

The resulting clean data, which is a set of 20 sensors in the
chute was randomly split into a 70% historical and 30% active
set, meaning there is data for 14 sensors in the historical set
and data for 6 sensors in the active set. Each of the active sen-
sors data sets are further split into 10% subsets of observed
data to assess each models prediction error over different lev-
els of wear.
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Figure 2. Thickness data over time for a single sensor before
(A) and after (B) filtering script has been applied.

2.3. Methods

We use Bayesian Hierarchical modeling (BHM) with cluster-
ing to incorporate historical data from sensors. Many sen-
sors can be in the same asset, so we do not assume that their
degradation is independent. Instead, we estimate a linear re-
gression for each sensor and use a hierarchical prior to model
their dependence. We create clusters based on the estimated
degradation parameters (intercept, which is related to the size
of the sensor before any degradation, and slope, which is re-
lated to the current wear rate) to use as a prior for predict-
ing the wear in new liners. Figure 3 shows the steps in the
modeling process. First, we prepare the data and then split it
into “historical” and “active” streams. The historical stream
is used to create the clusters, while the active stream contains
the sensor (or group of sensors) we are interested in. The ac-
tive stream is further divided into 9 subsets of observed data.
We use parameter estimates from the historical data to per-
form affinity propagation clustering. Each cluster is assigned
a characteristic value (exemplar), which is used as a prior to
the BHM.

Then, we have

1. Model 1: A BHM using the parameters of the closest
related sensor from the ‘historical’ set. See Section 2.4.1
for more details

2. Model 2: An informed Bayesian model which uses the

parameters of Model 1 as prior information and the cur-
rent observed data for the sensor being modelled. See
Section 2.4.3 for more details

The results of these models are compared with a linear re-
gression for an individual sensor (the model commonly used
in industry).

2.4. Bayesian modelling

Models are created in RStan (Stan Development Team, 2022),
a probabilistic programming language for full Bayesian sta-
tistical inference with Markov Chain Monte Carlo.

2.4.1. Parameter estimation from historical sensors

A hierarchical Bayesian linear regression model was created
to extract the parameter estimates for each sensor in the his-
torical set. The likelihood function is defined as:

Let Y = {Y1, . . . , Yn} be a random vector of response vari-
ables, and y = {y1, . . . , yn} its n observed values.

Consider a design matrix x = {1,x1, . . . ,xk}, where 1 is
a n ⇥ 1 vector of ones, and xj = {xj1, . . . , xjn}T is a n ⇥
1 vector of the jth covariate (feature/independent variable).
That is, x is a n⇥ (k+ 1) matrix. Also, define the ith row of
the matrix as xi = {1, x1i, . . . , xki}.

Finally, consider ✓ = {�, ⌧}, where � = {�0,�1, . . . ,�k}
is a 1 ⇥ (k + 1) vector of linear coefficients, ⌧ > 0 is the
precision parameter (�2 = ⌧�1) of a Normal distribution,
and ✓ is the vector of parameters.

The linear regression model is described as

E(Yi | xi,✓) = �xi (1)

and,
Yi | xi,✓ ⇠ N(µi = �xi, ⌧

�1) (2)

where N(µi, ⌧�1) is the Normal distribution with mean µi

and variance ⌧�1, and Yi | xi,✓ is independent of Y` | x`,✓,
8i 6= `.

For the hierarchical prior, we considered

µ ⇠ N(0, I), (3)
↵ ⇠ Gamma(0.01, 0.1) (4)
� ⇠ Gamma(0.01, 0.1) (5)

⌧ | ↵, � ⇠ Gamma (↵, �) , (6)
� | ⌧, µ,⇤ ⇠ N(µ, (⌧⇤)�1), (7)

where I is a 2 ⇥ 2 identity matrix, and ⇤ = 1000I . Note
that, E(↵) = E(�) = 0.001, and E(⌧ | ↵, �) = 0.000001.
Similarly, E(�0 | ⌧, µ,⇤) = E(�1 | ⌧, µ,⇤) = 0, and
Var(�0 | ⌧, µ,⇤) = Var(�1 | ⌧, µ,⇤) = 1000. That is,
we are considering diffuse priors for the parameters models
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Figure 3. An overview of the approach used, depicting how data flows through filtering, clustering and modelling stages.

{�, ⌧}.

Sampling was initialised with 4 chains, a max sampling length
of 2000 iterations and a warm up period of 1000 iterations.
Utilising parallel processing, and no-u-turn (NUTS) sampling,
the Markov Chain converged and a sample from the posterior
distribution of the parameters was obtained.

2.4.2. Clustering the historical parameter estimates

As known, there is a relationship between different sensors
based on their location in the chute. Sensors co-located on the
same liner are expected to wear at similar rates whereas sen-
sor at different ends of the chute will have different wear pat-
tern. This suggests a spatial model would be useful. However,
for industry, we need a simple and easy-to-interpret model to
support the estimate of degradation prediction to unseen lin-
ers. To explore this spatial relationship, we have opted to first
build a clustering analysis from historical data. The cluster-
ing analysis is used to group sensors for a liner with similar
degradation patterns. Using the beginning of life of the new
sensor (unseen liners), we find the historical cluster most sim-
ilar to it. From the selected cluster, we extract the degradation
parameters and use them to produce informative priors for the
liner wear prediction.

The posterior means of the parameter estimates (�0,�1) for
each sensor were standardised so that values represent the
number of standard deviations above or below the mean. These
values are then clustered using the affinity propagation method
with Laplace kernel hyperparameterisation (Micchelli, 1984;
Fitzgerald, Micchelli, & Pinkus, 1995). The affinity propaga-

tion clustering method was selected as the number of clusters
is not known and needs to be informed by the data provided.
The algorithm returns a number of exemplars, one for each
cluster. An exemplar is a representative point for all points
within the cluster. Further information on this calculation is
in (Frey & Dueck, 2007).

2.4.3. Modelling and clustering active sensors

With Model 1 (Section 2.4.1) parameters estimated, and the
clusters defined (Section 2.4.2), the modelling of active sen-
sors is performed in a three stages. The first stage is to build
the model for the currently available data of the active sensor.
Giving that we are working with a degradation problem, our
failure is when the sensor achieved a size of zero. Then, we
know it is unlikely to have a failure at the beginning of life.
For that reason, we can collect data from the active sensor at
the beginning of life to improve the prediction estimation of
the useful life. The second stage is to assign the parameter es-
timates of stage 1 to a cluster (from Model 1 estimates and the
historical data). The third stage is to repeat estimation for the
active sensors, now including the information from clustering
as prior information.

1st stage. 1. Building the model for the active sensors.
In this stage, active sensors are modelled with the same
likelihood and prior specification as the model for his-
torical sensors (linear BHM with diffuse priors), and pa-
rameter estimates are determined via the same sampling
process. See Section 2.4.1.

2nd stage. Assigning the active sensors parameters to a ‘his-
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torical’ cluster and building Model 1.
The active sensor parameter estimates are standardised
and assigned to a ‘historical’ cluster by taking the mini-
mum Euclidean distance to the exemplars. The intercept
and slope parameters of the exemplar of the cluster to
which the active sensor is assigned are converted back to
the original scale and serve as the fixed parameter val-
ues for a linear regression for Model 1 (the closest re-
lated sensor). This model reciprocates the wear profile
of an exemplar as determined by clustering. Note that,
for Model 1, the inference is made based only on these
parameters. There is no new data added from the active
sensor.

3rd stage. Remodelling the active sensors with results from
clustering as prior information to build Model 2.
For Model 2, the exemplar values of the cluster to which
the active sensor is assigned, are converted back to the
original scale and used as prior information in a Bayesian
linear regression with the same likelihood function spec-
ified in the previous models. The specified priors are
N(�0, 1) and N(�1, 0.001) where �0 and �1 in this case,
are the intercept and slope parameters of the cluster ex-
emplar. With 4 chains, a max sampling length of 2000
iterations and a warm up period of 1000 iterations, utilis-
ing parallel processing and no-u-turn (NUTS) sampling,
the Markov Chain converged and a sample from the pos-
terior distribution of the parameters was obtained for each
active sensor.

2.4.4. Model evaluation

The two Bayesian models and linear regression model are
evaluated using 5 random subsets of historical and active sen-
sors, further evaluated at each 10% interval of observed data.
For each subset and observed/unobserved proportion, mean
absolute prediction error in time at 0mm thickness is used as
the evaluation metric.

3. RESULTS AND DISCUSSION

3.1. Clustering

The results from clustering are shown in Figure 4, This fig-
ure shows that for this chute, the historical sensor data can
be separated into 4 clusters, as determined by the affinity
propagation method. The red cluster contains the faster wear-
ing sensors with slope parameters between -0.055 and -0.065
(mm/day). The green cluster contains the slower wearing
sensors with slope parameters between -0.045 and -0.035
(mm/day). The blue and purple clusters represent sensors that
are wearing at a moderate rate between -0.056 and -0.045
(mm/day) with the purple cluster separated by its intercept
parameter with values less than half of all the other sensors,
identifying an anomaly in the sensor behaviour. Information
about how the sensors are wearing in space can be learned by

Figure 4. Clustering results after active sensors (using 30%
observed data) have been assigned to a cluster. The x-axis
represents the posterior mean of the �1 estimate and the y-
axis represents the posterior mean of the �0 estimate. Each
point represents both of the parameter estimates for a single
sensor, colour-coded by their assigned cluster. All sensors in-
side a single chute are shown on the same figure. The colour
of the outline of each point identifies whether the sensor be-
longs to the historical (black) or active (red) set.

relating these clustering results back to the sensors position
on the chute.

3.2. Data quality/anomaly detection

The clustering results from the linear model using the his-
torical data are mapped to a fold-out schematic diagram of
Hopper 1. The results are presented in Figure 5.

Analysis of Figure 5 suggests a partition between the fast-
wearing sections (cluster 1 slope parameter value = -0.059)
and the comparatively slower wearing sections (clusters 2 and
3 slope parameter values = -0.041 and -0.05) of the asset.
These intermediary results can provide value to plant opera-
tors without having to manually inspect the chute. This ap-
proach can be used to scan many sensors at once and iden-
tify areas of high or low wear and make informed operational
decisions. In this case, using the direction of ore flow as ref-
erence; the faster wearing areas are towards the back of the
chute. In addition to this, operators may be able to identify
failed sensors or anomalies in the data. For example, clus-
ter 4 displays an anomaly in the value of intercept parameter
(11.67). In consultation with subject matter experts, it was re-
vealed that this sensor was installed on a partially worn chute.
Had any sensors recorded a dramatic variation in the slope
parameter, either small or large, this could indicate a failure
mode in the sensor in that it may have stopped recording or
physically broken. These findings directly achieve goal (2)
of the analysis by providing operators a low cognitive load
method for visualisation. Enabling them to quickly inspect all
sensors within the chute for anomalous behaviour and make
informed operational decisions,

These results also confirm that spatial factors have some influ-

6



INTERNATIONAL JOURNAL OF PROGNOSTICS AND HEALTH MANAGEMENT

Figure 5. Clustering results related back to a fold-out schematic diagram of the chute interior (Hopper 1). Each polygon
represents an interior panel of the asset. White icons represent non-RUL-0 sensors while the coloured icons represent sensors
from the historic set with their respective clusters assigned.

ence on the wear rate of liners, as points which wear at similar
rates tend to be clustered together. This finding agrees with
Tobler’s law that nearby things tend to be more similar than
those far apart in both space and time (Tobler, 1970). There-
fore confirming that positional information is important and
should be included in the model.

3.3. Predictions for one sensor

In addressing goal (1) of this analysis, each model is able to
predict a point in time when a specified sensor will reach a
predetermined thickness value. However, only Model 2 is
able to produce an estimate for uncertainty based on a 95%
credible interval. Therefore Model 2 is the only model that
achieves the goals of the analysis. We are unable to con-
struct credible intervals for Model 1 as the parameter val-
ues are considered to be a fixed value, obtained directly from
an exemplar of the historical set of sensors. Whilst potential
methods such as confidence intervals and bootstrap sampling

exist to measure the uncertainties of these models, their in-
terpretation is not probabilistic in the parameter space, and
therefore not as easy to interpret for engineers (Castle, Ham,
Hodkiewicz, & Polpo, 2020).

Each model’s fit to the unseen data and prediction for end of
life can be visualized for each sensor. This is illustrated in
Figure 6. The end of life is based on the point on the x axis
where y = 0. We can see that only the future points at y = 0
lies within the credible intervals for Model 2 (green). The
lines for Model 1 and Model 2 are very close and their esti-
mates for end of life are only 43 days apart. On the other hand
the linear regression sits significantly away from the data and
over-predicts the remaining useful life substantially. For this
sensor the y = 0 error of the linear regression is 97 days,
while the errors for models 1 and 2 are 25 and 18 days re-
spectively. While the data used for all 3 models is the same,
Model 1 and Model 2 include the prior spatial, temporal, and
engineering information from historical sensors. The predic-
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Figure 6. Predictions for all 3 models for a single sensor with 30% observed data of the active sensor. The linear regression
model which is representative of the current industry method is depicted by the yellow line. Model 1 is representative of the
closest related exemplar obtained from clustering and is depicted as the blue line. The green line depicts Model 2, which is
representative of the prior informed model. Its 95% credible interval is shaded in green. The black points indicate the observed
data of the active sensor. The grey points represent the true values that the sensor has recorded after the data was split. The grey
points are not included in the model. The split is indicated by the vertical black line.

Figure 7. 5-subset mean absolute error at each 10% interval of observed data from the active set of Hopper 1. Mean prediction
error is measured in absolute days from the ground truth of six test sensors across 5 different subsets.

tions for Model 1 and Model 2 are a clear improvement to
the industry method for this sensor at this specific stage of
wear, and indicate that the inclusion of prior information is
beneficial. The performance of all models were evaluated in
Section 3.4

3.4. Model evaluation

Figure 7 illustrates model errors across 5 different sets of ‘his-
torical’ and ‘active’ sensors using the mean absolute error of
the prediction at 0mm thickness as the evaluation metric for
all models. We note that with limited access to test data the
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linear model performs poorly. As expected with more ob-
served data, there is a general decrease in the prediction er-
ror. This trend is observed for models built on 10-50% of
observed data. After which, the error stabilises.

Across all levels of observed data, Model 1 closely follows
the trend of Model 2, with slightly improved predictions at
every split of observed data. At 60% of observed data, the
predictive performance of Model 1 intersects with the perfor-
mance of the industry method, and performs slightly worse
thereafter. Model 1 consistently outperforms both of the other
models, for models built on 10-80% of observed active sen-
sor data. At 90% of observed data the difference between the
industry method and Model 2 is as expected, negligible. This
is due to the fact that with more observed data, Model 2 is
able to put more weight on the observed data, eventually con-
verging with the industry model. Overall, Model 2 is the best
performing model due to its ability to incorporate knowledge
from historical sensors as well as the information observed
from the wear from the sensor being modelled.

3.5. Limitations

An initial investigation into the literature and factors that af-
fect wear identified that cumulative throughput (tonnes) is
a much better explanatory variable than time (days). Us-
ing time as a explanatory variable is problematic as it is af-
fected by operational decisions such as shutdowns or change
in throughput. These directly influence the wear rate and can
make a linear function redundant. The broader issue is that
the companies who utilise services from service providers
are unwilling to share their sensitive data with the service
providers, even though they could benefit from an improved
product. This could be solved by establishing a trusted body
that can govern the agreements between companies and ser-
vice providers to ensure that shared data remains safe and
is not used for anything outside the intended purpose of the
agreement.

3.6. Stan model efficiency

Stan uses a C++ compiler to compile the probabilistic writ-
ten code meaning that once code has compiled, it executes
relatively fast, however compilation times can be slow. The
combined warm up and sampling times for the entire mod-
elling process using 14 historical sensors and 6 active sensors
is presented in Figure 8. There is a general increase in the
computation time as more data is observed for the active sen-
sors. The mean difference however, from 10% to 90% is 8.2
seconds and can therefore be considered negligible, Approx-
imately 50% of the computation time is associated with the
modelling of the historical sensors. In the real world, the his-
torical sensor model does not need to be reconstructed each
time we wish to inspect an active sensor/s. It can be saved,
and therefore updated and loaded only when required. This

Figure 8. The mean run time of the entire modelling process
using 14 historical sensors and 6 active sensors across all 9
splits of observed active sensor data. The mean is calculated
across 5 different sets of historical and active sensors.

finding confirms that the modelling process has the potential
to be scaled up across many assets and sensors without im-
peding on the usability of the system in terms of computation
time.

4. CONCLUSION

This paper demonstrates the successful development and test-
ing of a remaining useful life prediction algorithm for chute
liners. The pipeline uses data from historical sensors in a
hierarchical Bayesian framework to capture the spatial, tem-
poral and engineering factors contributing to liner wear and
apply this knowledge to active sensors through clustering.
The pipeline tested the performance of 2 models against the
current method used in industry at different stages of wear.
The results found that utilising information from historical
sensors generally results in improved predictions, especially
when less than 50% of wear has been observed, In addition,
the predictions from Model 2 are given with 95% credible
intervals. This presents an advantage to plant operators as
they gain more oversight for scheduling planned maintenance
activities. The clustering component of the pipeline also pro-
vides a way for plant operators and engineers to automatically
scan a large number of sensors with a low cognitive load to
identify anomalies in sensor behavior and identify sections of
the chute experiencing high or low wear, compared to other
sensors in the chute.

However before this system can be implemented in industry,
when the quantity of data for other chutes becomes sufficient.
Additional testing can be performed to confirm the viability
of this pipeline for modelling wear in other chutes.

4.1. Future work

4.1.1. Including throughput data

On investigation of the profiles of wear for some sensors within
each asset, it appears that at some points in time, many sen-
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sors deviate from a linear trajectory of wear. Possible reasons
for this may be that when the liner reaches a certain thick-
ness, its material properties change, resulting in a change in
wear profile. Or perhaps more likely, operational decisions
on site, such as shutdowns or changes in throughput may be
the reason for the sudden change in wear profile across col-
lections of sensors. For this reason it is proposed that cumula-
tive throughput has higher correlation with the thickness than
time.

4.1.2. Alternative modelling approaches

As the interpretability of the model is important for industry,
the approach used linear functions to estimate wear. More
complex functions could be used which address the non-linear
patterns in the data for some sensors.

An improvement can be made to the clustering approach,
which may influence the accuracy of the models. For Affin-
ity Propagation and calculation of Euclidean distances be-
tween exemplars, only the mean is taken from the parame-
ter distributions. We are therefore losing what is considered
valuable information, contained in the distribution, about that
parameter. To keep this information, hierarchical clustering
with Kullback-Leibler divergences between sensor distribu-
tions can be used with the ‘Ward’ and ‘silhouette’ methods to
determine the optimum number of clusters, and partition the
sensors into their respective clusters. This has the advantage
of incorporating the full posterior of the related historical sen-
sor as prior information when building Model 2, rather than
just the mean of the intercept and slope parameters.
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Guérin, F., Barreau, M., Demri, A., Cloupet, S., Hersant, J., &
Hambli, R. (2010). Bayesian estimation of degradation
model defined by a Wiener Process. In Mathematical

and statistical models and methods in reliability (pp.
345–357). Springer.

Hawk, J., Wilson, R., Tylczak, J., & Doğan, Ö. (1999). Labo-
ratory abrasive wear tests: investigation of test methods
and alloy correlation. Wear, 225, 1031–1042.

Hermann, S., & Ruggeri, F. (2017). Modeling wear in cylin-
der liners. Quality and Reliability Engineering Inter-

national, 33(4), 839–851.
Limon, S. M., & Yadav, O. P. (2021). Remaining useful

life estimation considering prior accelerated degrada-
tion data and bayesian inference for multi-stress operat-
ing conditions. International Journal of Mathematical,

Engineering and Management Sciences, 6(1), 103.
Malone, G., Hu, X., Clinton, D., & Ore, B. B. I. (2013).

Wear property and impact test rig design for comparing
wear liners used in transfer chutes. In CEED Seminar

Proceedings (pp. 1–6).
Micchelli, C. A. (1984). Interpolation of scattered data: dis-

tance matrices and conditionally positive definite func-
tions. In Approximation Theory and Spline Functions

(pp. 143–145). Springer.
Ou, T., & Chen, W. (2022). On accurate prediction of trans-

fer chute wear using a digital wear sensor and discrete
element modelling. Powder Technology, 407, 117680.

Padole, P., Joshi, M., & Engineer, J. (2002). Application and
implementation of residual life assessment techniques
for coal handling plant. In Nde2002 National Seminar

of ISNT (Vol. 5).
Petrica, M., Badisch, E., & Peinsitt, T. (2013). Abrasive wear

mechanisms and their relation to rock properties. Wear,
308(1-2), 86–94.

R Core Team. (2022). R: A language and envi-
ronment for statistical computing [Computer soft-
ware manual]. Vienna, Austria. Retrieved from
https://www.R-project.org/

RStudio Team. (2020). Rstudio: Integrated devel-
opment environment for R [Computer soft-
ware manual]. Boston, MA. Retrieved from

10



INTERNATIONAL JOURNAL OF PROGNOSTICS AND HEALTH MANAGEMENT

http://www.rstudio.com/
Stan Development Team. (2022). RStan: the R interface to

Stan. Retrieved from https://mc-stan.org/ (R
package version 2.21.5)

Thurtell, D. (2022). Australian government resources and

Energy Quarterly: December 2024 overview. Re-
trieved from https://www.industry.gov.au/
(Accessed: 2024-07-22)

Tobler, W. R. (1970). A computer movie simulating urban
growth in the detroit region. Economic Geography,
46(1), 234–240.

van de Schoot, R., Depaoli, S., King, R., Kramer, B.,
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