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ABSTRACT 

With the increasing expansion of data science into various 

fields, the application of deep neural networks in the fault 

diagnosis of rotating machines has attracted significant 

attention from researchers. However, in the methods 

available in the literature, the physical characteristics of the 

problem are not incorporated into the structure of deep 

networks. In most existing methods, fault diagnosis is 

performed solely based on features extracted by 

convolutional layers, with no additional layers utilized to 

enhance or refine these features. This work introduces a novel 

physics-based neural network for bearing fault diagnosis, in 

which specific layers are designed based on signal processing 

methods to extract the physical features of faults. These 

layers, referred to as physics-based layers, are constructed 

using adaptive analytical wavelet filterbanks. The features 

extracted by these layers are then classified using 

convolutional layers, enabling the diagnosis of bearing faults. 

A key advantage of this physics-based network is that it does 

not rely on a fixed architecture for feature extraction and 

classification. Instead, the characteristics of the network 

layers adapt to the fault characteristics present in the bearing 

vibration signals. The classification accuracy of the proposed 

method has been evaluated using experimental data from two 

studied cases. The results demonstrate that the newly 

introduced network achieves higher accuracy in classifying 

bearing signals with different faults compared to similar 

methods. 

Keywords: Filterbank, CNN, Physics-based Neural 

Networks, Ball Bearing, Wavelet Transform, Fault 

Diagnosis. 

 

 

1. INTRODUCTION  

Bearings are among the most widely used mechanical 

components in rotating machines. Fault diagnosis of bearings 

is crucial to prevent irreparable damage (Mohanty, 2014). 

Vibration signal processing has emerged as a prominent 

method in the field of condition monitoring for rotating 

machinery, garnering significant attention from researchers 

(Ahmed & Nandi, 2020; Randall, 2021). Existing methods 

for bearing fault detection often rely on signal processing 

techniques such as wavelet transform, empirical and 

variational mode decomposition, and time-frequency 

analysis(Dibaj et al., 2020; Feldman, 2009; Maruthi & 

Hegde, 2015; Rai & Upadhyay, 2016). Among these, wavelet 

transform stands out as one of the most widely used methods 

for time-frequency analysis of vibration signals, including 

bearing signals, due to its high frequency-time 

resolution(Chen et al., 2016; Sharma et al., 2021). 

In recent years, with the growing application of artificial 

intelligence across various fields, intelligent fault diagnosis 

of rotating machines using machine learning methods and 

neural networks has garnered significant attention from 

researchers (Asr et al., 2017; Lei et al., 2020; Yang & Delpha, 

_____________________ 

Reza Hassannejad et al. This is an open-access article distributed under the 

terms of the Creative Commons Attribution 3.0 United States License, which 

permits unrestricted use, distribution, and reproduction in any medium, 

provided the original author and source are credited. 

https://doi.org/10.36001/IJPHM.2025.v16i1.4234 

mailto:hassannejhad@tabrizu.ac.ir
mailto:ettefagh@tabrizu.ac.ir


INTERNATIONAL JOURNAL OF PROGNOSTICS AND HEALTH MANAGEMENT 

2 

2022a). One of the main challenges in fault diagnosis for 

rotating machines is the design of artificial neural networks 

capable of extracting the physical features of vibration 

signals and classifying faults accurately (Qian et al., 2022; 

Zhang et al., 2019). In most existing methods, neural 

networks are fed with physical features extracted using signal 

processing techniques (Cheng et al., 2021; Shen et al., 2015). 

Meanwhile, other researchers have attempted to integrate the 

physical characteristics of the problem directly into the 

structure of neural networks (Sun et al., 2019; Yang et al., 

2019). Given that each problem has its unique characteristics, 

incorporating physical properties into the design of artificial 

neural networks can significantly enhance their efficiency 

(Pestana-Viana et al., 2016). For instance, a key feature of 

vibration signals from faulty bearings is the presence of 

harmonic impulsive peaks in the frequency domain (Randall, 

2021). Consequently, a neural network that is more sensitive 

to this feature will be more effective for bearing fault 

diagnosis. Below, some of the studies that have explored the 

integration of physical knowledge with neural networks for 

bearing fault diagnosis are briefly summarized. 

Tian et al. (Tian et al., 2015) utilized the K-Nearest Neighbor 

(KNN) algorithm to classify healthy and faulty bearing 

vibration signals. They employed Spectral Kurtosis (SK) to 

extract features from the analyzed signals of a filterbank. 

These extracted features were then fed into the KNN 

classifier to classify the input signals. In another study, 

Sadoughi and Hu (Sadoughi & Hu, 2019) introduced a 

physics-based convolutional neural network for bearing fault 

diagnosis. The network proposed in their research 

incorporates several layers dedicated to physical feature 

extraction prior to the convolutional layers. These feature 

extraction layers include SK analysis, envelope spectrum 

analysis, a convolutional kernel, and fast Fourier transform. 

In another study, Guo et al. (Guo et al., 2018) employed 

transfer learning to classify unlabeled bearing vibration data. 

Unlike other methods, they did not use any signal processing 

techniques for feature extraction and instead utilized raw 

bearing vibration signals as the input for two neural networks. 

In their approach, they first trained a deep neural network 

using bearing data from one rotating machine and then 

applied transfer learning to detect bearing faults in another 

rotating machine. Similarly, Dibaj et al. (Dibaj, Ettefagh, et 

al., 2021) combined Variable Mode Decomposition (VMD) 

with Convolutional Neural Networks (CNNs) for bearing 

fault diagnosis. In their research, they initially analyzed 

bearing vibration signals using a fine-tuned VMD method. 

The time-frequency images of the decomposed modes were 

subsequently fed into a CNN for classification. Additionally, 

Li et al. (Li et al., 2020) proposed a method based on back-

propagation neural networks to classify bearing vibration 

signals. Their approach involved applying Discrete Wavelet 

Transform (DWT) to the vibration signals and extracting 

local features from the resulting sub-signals. These features 

were then input into a back-propagation neural network, and 

the outputs were classified using a Support Vector Machine 

(SVM) classifier. 

In another study conducted by Mao et al. (Mao et al., 2022), 

a deep denoising autoencoder and joint adversarial learning 

were used for bearing fault diagnosis. In their work, fault 

features were first extracted using a deep autoencoder, and 

then convolutional networks with adversarial learning were 

employed to classify the extracted features. Similarly, Yang 

and Delpha (Yang & Delpha, 2022b) utilized the local 

Mahalanobis distance for bearing fault diagnosis. They 

combined the local Mahalanobis index with its anchor 

generation algorithm to isolate faulty variables and classify 

bearing signals. 

Ma et al. (Ma et al., 2022) also employed autoencoders and 

deep networks for bearing fault diagnosis. In their method, 

bearing vibration signals were fed into a deep autoencoder, 

after which the encoder's output was classified using a deep 

neural network. Additionally, a fully connected neural 

network was trained through transfer learning. In another 

study, Shen et al. (Shen et al., 2021) proposed a physics-

informed deep learning method for bearing fault diagnosis. 

Their approach combined a simple threshold model with a 

deep CNN to classify sub-bands obtained from envelope 

spectrum analysis. They also trained the network using a 

novel loss function that incorporated the physical 

characteristics of the bearings. 

In another study, Kim and Kim (Kim & Kim, 2024) 

introduced a noise-robust fault diagnosis method specifically 

designed for bearings. Their approach utilizes an adversarial 

physics-based neural network that integrates the time-

frequency characteristics of vibration signals. The method 

involves extracting multi-domain features along a complex 

parallel pipeline, which are then processed by a CNN 

incorporating a Squeeze-and-Excitation block. These 

features are ultimately classified to identify the type of the 

bearing fault. Liao et al. (Liao et al., 2025) proposed a 

physics-informed fault diagnosis method for bearings that 

leverages blind deconvolution. Their approach integrates 

deep classifier neural networks with blind deconvolution to 

develop a supervised deep network tailored for fault 

diagnosis. In their method, time-frequency features of 

vibration signals are first extracted using blind 

deconvolution. These features are then fed into a deep neural 

network, which employs a physics-informed loss function 

specifically designed for the bearing fault diagnosis problem.  

Ma et al. (Ma et al., 2025) proposed a method for bearing 

fault diagnosis in few-shot conditions by combining physics-

based sample generation with CNNs. Their method uses 

dynamic modeling to create additional synthetic samples of 

vibration signals from faulty bearings. These generated 

samples are merged with experimental data and input into a 

CNN, which classifies the type of fault in the bearing. 

To advance and expand upon prior research, this study 

introduces a novel adaptive filterbank based on wavelet 
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transforms. The parameters of this filterbank are optimized 

for each input signal through two separate optimization 

processes. This adaptive filterbank is then integrated with the 

Hilbert envelope spectrum and a kernel designed based on the 

physical characteristics of bearing faults to form the physics-

based component of the proposed neural network. Finally, by 

combining this component with a CNN-based module, an 

adaptive physics-based neural network is developed for 

bearing fault diagnosis. The proposed network is designed 

such that the primary features of bearing faults —specifically, 

the presence of impulsive peaks in the frequency spectrum of 

vibration signals—are directly embedded in its structure. The 

initial layers of the network are tailored to the physical 

characteristics of bearing faults and adapt to the input signal. 

These are followed by convolutional layers, a fully connected 

layer, and a classifier. The proposed method can be 

summarized as follows: 

1) Feeding the bearing signals into an adaptive layer (a 

new analytical filterbank).  

2) Entering the outputs of the filterbank into a mode 

selection layer. 

3) Feeding the selected mode into a convolution layer, 

whose kernel is designed based on the ballpass 

frequency of the bearing faults. 

4) Calculating the Hilbert envelope spectrum of the 

input. 

5) Feeding the calculated spectra into several 

convolution layers. 

6) Entering the output of the convolutional layers into 

the fully connected layer and then the classification 

layer. 

Figure (1) provides an illustration of the proposed method’s 

flowchart. The rest of the paper is organized as follows: 

Section 2 provides an explanation of the adaptive analytical 

filterbank. Section 3 offers a basic description of designing 

the physics-based layers, and Section 4 discusses the theory 

of convolutional neural networks. The experimental 

evaluation of the proposed bearing fault diagnosis method is 

presented in Section 5. Finally, the conclusion is drawn in 

Section 6. Additionally, Section 7 discusses the limitations of 

the proposed method and similar methods, along with 

suggestions for improving these methods in future work. 

 

2. ADAPTIVE ANALYTICAL FILTERBANK  

In this chapter, the principles of the proposed filterbank 

theory are presented, followed by an explanation of the 

optimization process for its parameters. 

2.1. Proposed filterbank  

Flexible Analytical Wavelet Transform (FAWT) is a flexible 

filterbank, introduced by Byram (Bayram, 2012). Some of its 

key characteristics are as follows: 

 

1- The coefficients of the up/down samplers are chosen 

as arbitrary rational values.  

2- For the definition of filters, Hilbert bases, and 

Daubechies wavelets are employed. 

3- Filters are defined in the frequency domain 

(Bayram, 2012; Zhang et al., 2015).  

 

 

 

Figure 1. Flowchart of the proposed method. 
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Due to the aforementioned characteristics, FAWT has 

flexible time-frequency coverage. The first application of 

the mentioned wavelet transform was to analyze oscillatory 

signals, particularly audio signals (Bayram, 2012). The aim 

of this study is to develop a filterbank capable of effectively 

extracting bearing fault features from vibration signals. To 

achieve this, an optimized filterbank for bearing signal 

analysis has been designed by implementing the following 

modifications: 

1- implementing the Morlet wavelet to define filters 

of the filterbank.  

2- removing filters that extract the negative 

frequency of the input (in the primary filter bank, 

two filters are employed to analyze the high-

frequency channel. One for positive frequencies 

and the other for negative frequencies).  

These modifications were made due to the absence of 

negative frequencies in mechanical signals and the 

effectiveness of the Morlet wavelet in diagnosing faults in 

rotating machines, such as bearings (Albezzawy et al., 

2019; Qin et al., 2016). 

Figure (2) illustrates the ideal frequency response of the 

low-pass (H(ω)) and high-pass (G(ω)) filters within the 

described filterbank (Zhang et al., 2015). 

 

 

Figure 2. frequency response of FAWT filters. 

 

The high-pass (G(ω)) and low-pass (H(ω)) filters of the 

proposed filterbank are mathematically defined in the 

frequency domain as follows (Bayram, 2012): 
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, where β < 1 is a nonnegative constant and  , fb, and fc are 

frequency response, bandwidth parameter, and center 

frequency of Morlet wavelet, respectively. In Figure (3), 

two levels of filterbank decomposition are shown. 

 

Figure 3. Two levels of the introduced filterbank. 

2.2. Parameter optimization  

To make the filterbank adaptable, the optimal parameters 

of the filterbank should be determined based on any 

arbitrary input signal x(t). There are seven adjustable 

parameters in the proposed filterbank: the Morlet wavelet 

transform parameters ( , )b cf f , which form the core of the 

filters, and the filterbank sampling parameters (p, q, r, s, β). 

These parameters must be optimized to ensure the 

filterbank has a high capability for extracting bearing fault 

features. Given that bearing faults are characterized by the 

presence of harmonic impulsive peaks in the frequency 

spectrum of vibration signals, a two-stage optimization 

process is proposed: 

The first stage involves determining the optimal parameters 

of the Morlet wavelet ( , )b cf f . The Gini index (GI) is 

selected as the objective function for this purpose due to its 
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high sensitivity to repetitive impulses in signals (Wang, 

2018). The Gini index ranges between zero and one, with 

higher values indicating a greater number of repetitive 

impulse peaks in a signal. The effectiveness of the Gini 

index in optimizing the coefficients of the complex Morlet 

wavelet has been demonstrated in prior research, such as in 

(Albezzawy et al., 2020). To solve the optimization 

problem for the Morlet wavelet parameters, the particle 

swarm optimization (PSO) algorithm is employed. PSO is 

a metaheuristic algorithm designed to find the global 

minimum efficiently. 

The second stage of the filterbank optimization process 

involves determining the optimal sampling coefficients (p, 

q, r, s, β). To optimize these coefficients, the weighted 

Kurtosis index (WKI) is chosen as the objective function. 

The WKI, an enhanced version of the Kurtosis index, 

exhibits high sensitivity to impact peaks in the frequency 

spectrum of signals (Dibaj, Hassannejad, et al., 2021). Its 

effectiveness in extracting bearing fault features and 

diagnosing bearing faults has been demonstrated in prior 

research, such as in (Zhang et al., 2021). Since the 

filterbank output is non-differentiable with respect to its 

sampling coefficients, metaheuristic algorithms are 

employed to optimize these coefficients. In this work, the 

Genetic Algorithm (GA) is utilized. Additionally, the 

parameters of the optimization algorithms (PSO and GA) 

are determined using a grid search approach. The 

formulation of each stage in the optimization process is 

outlined below. 

The first stage of the parameter optimization process is 

Morlet wavelet parameters ( ),
b c

f f  optimization. The GI 

is employed as the objective function to optimize these 

parameters. For a vector like  [ ] (1), (2), ..., ( )y n y y y N=  

with its elements re-ordered and represented by: ( )Ky  for

1,2,...,K N= , where (1) (2) ( )... Ny y y   , the GI is 

defined as follows (Albezzawy et al., 2020; Hurley & 

Rickard, 2009): 
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, where yL1 is the l1 norm of y[n]. 

 To optimize the parameters of the Morlet wavelet, first, the 

wavelet coefficients are calculated from the equation of 

wavelet transform which is as follows: 
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, where bf , and cf are bandwidth parameter, and center 

frequency of Morlet wavelet, respectively. Then, the GI 

value is calculated for the squared envelope of the complex 

Morlet Wavelet coefficients. 

 The constraints used in (Albezzawy et al., 2019) are the 

constraints of the problem. Finally, the optimization 

problem of Morlet wavelet parameters is as follows: 
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, where fs and fr are sampling frequency and rotational 

frequency, respectively.  

The second stage of the optimization process involves 

finding the parameters p, q, r, s, and β. To achieve this, a 

fault mode selection index is defined. Specifically, the 

index value is calculated for each decomposed mode, and 

the mode yielding the highest index value is selected as the 

fault mode. Given that the primary feature of vibration 

signals from a faulty bearing is associated with impulsive 

peaks in the frequency domain, the WKI is employed for 

fault mode selection. The WKI is defined as follows: 

(Dibaj, Hassannejad, et al., 2021): 

 

 . sWKI C Ku e=  (9) 

 

, where C, es, Ku[.] are correlation between the input signal 

and decomposed mode, Hilbert envelope spectrum, and 

kurtosis index, respectively.  The Kurtosis index of a signal 

( )x t  is as follows: 
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, where u and σ are the mean and standard deviation of the 

input signal, respectively. E[.] also represents the expected 

value. 

Now, to optimize the parameters p, q, r, s, and β the 

objective function is the maximum WKI value among the 

calculated WKIs for decomposed modes and the 

constraints extracted in (Zhang et al., 2015) are used.  So, 

the optimization problem after M decomposition level of 

the filterbank will be as follows: 
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, Where
iD ’s are decomposed modes.  

The number of decomposition levels, M is also determined 

for each input signal as follows (Zhang et al., 2020): 
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, where N is the length of the input signal and *l   is the 

length of Mth decomposed mode, which in the present 

study, is a number greater than 4. 

3. PHYSICS-BASED NEURAL NETWORK 

The network, introduced in the present work consists of 

two main parts: a physics-based part and a convolutional 

part. The physics-based part relies on physical equations 

and the extraction of the input signal features. In this part, 

firstly, vibration signals of the bearing are decomposed to 

sub-signals (modes) with the adaptive analytical filterbank, 

introduced in section 2. Secondly, the WKI is calculated 

for all decomposed modes, and the mode with the greatest 

index value is selected as the fault-sensitive mode. In the 

third step, the preprocessing kernel described in (Sadoughi 

& Hu, 2019) is convolved with the selected mode. This 

kernel is defined as follows: 

 

0
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  (13) 

 

, where A0 is a constant amplitude related to radial load and 

fault severity. ,U  and fd are unit step function, damping 

coefficient, and fault ballpass frequency, respectively. The 

ballpass frequencies of the bearing faults can be calculated 

from the relations, mentioned in (Randall, 2021). Also 𝜏 is 

the time index 𝜏 = 1,2, 3, …, 𝜏W, which 𝜏W is the kernel 

width and is much less than the length of the input signal. 

The upper limit of sigma, denoted as V, is assumed to be 

20 in this study. The kernel diagram corresponding to the 

values 0 1A = , 105df = , 200W = , and 1500 = is 

illustrated in Figure (4) 

 

 

Figure 4. A sample of the physics-based kernel. 

 

As shown in Figure (4), Eq. (13) generates harmonic 

impulsive peaks corresponding to the ball-pass frequencies 

of the bearing faults. Consequently, the convolution of the 

kernel with the fault-sensitive mode effectively extracts the 

physical features associated with the bearing faults. Thus, 

this kernel is employed to further expand and amplify the 

frequency characteristics of faulty bearings, which have 

been initially extracted by the optimal filterbank.  

 In the fourth step of the physics-based part of the proposed 

method, Hilbert envelope spectrum analysis is employed.  

The Hilbert transform has effective capabilities for 

frequency demodulation, which makes the fault’s ballpass 

frequencies in the spectrum domain more prominent 

(Dibaj, Hassannejad, et al., 2021). As the final step, the 

output of the physics-based part is fed into the 

convolutional part, where the signals are classified 

according to the type of fault occurring in the bearing. 

It should be noted that there are no learnable parameters in 

the physics-based component. Therefore, this part does not 

participate in network training and does not add any new 
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weights to the neural network. As a result, the physics-

based component enhances the efficiency of the CNNs 

without increasing the learning time. 

4. CONVOLUTIONAL NEURAL NETWORK  

The convolutional part of the network is used to extract 

additional features and classify the input signals. In each 

convolutional layer (CL), the weights of the layer, known 

as the "kernel," are convolved with the input to calculate 

the output of the layer. Compared to fully connected layers, 

convolutional layers (CL) have fewer learnable weights, 

yet they are more effective at feature extraction (Sadoughi 

& Hu, 2019). Additionally, each CL has an activation 

function, which is applied to the layer's output. The output 

of a CL for the input PL is as follows: 

 

( )
L

out F P W B=  +      (14) 

 

, where W, B, and F are layer weights(kernel), layer bias, 

and activation function, respectively. The Rectified Linear 

Unit (ReLU) function is typically employed as a CL’s 

activation function in classification tasks. The ReLU 

function is defined as follows: 

 

Re ( ) max(0, )LU x x=  (15) 

                                     

The structure of the CNN also includes additional layers. 

Input features are extracted through several convolutional 

layers (CLs) and pooling layers. Pooling layers are used to 

reduce the number of learnable weights between CLs. The 

output from these layers is then fed into the fully connected 

layers and classifier layer(s), producing the final output of 

the network. The classifier layer is responsible for 

classifying the network inputs into the desired categories. 

Layer Normalization Layers (LNLs) are also employed 

when the neural network inputs are vectors, helping to 

decrease training time and the sensitivity of the CNN to the 

initialization of the weights. LNLs are placed after the 

learnable layers, and by applying learnable scale and shift 

factors to the input, these layers normalize the input to the 

subsequent layer. Additionally, Residual Networks, a 

widely used deep neural network architecture, incorporate 

shortcut connections between CLs (He et al., 2016). 

In this study, the bearing fault diagnosis performance of 

CNN and Residual architectures will be examined. Briefly, 

the output of the physics-based component is first 

normalized and then fed into the convolutional part for 

classification. The normalization of the physics-based 

output is performed using the z-score method as 

preprocessing for the convolutional part's inputs. The z-

score method measures the distance of the data from the 

mean in terms of standard deviation ( (Fei et al., 2021). 

Therefore, the input of the convolutional part will have a 

mean of zero and a standard deviation of 1. Since the inputs 

are vibration signals, LNLs are employed in place of 

middle pooling layers in this study, and a global average 

pooling layer will be applied after the last LNL.  Also, the 

SoftMax classifier is used for the classification layer. 

Additionally, the He initialization method (He et al., 2015) 

was used for the weight’s initialization, and the activation 

function of CLs will be the ReLU function. The two 

architectures used in the present research can be seen in 

Figure (5).  

 

Figure 5. Architectures used for the convolution part. 

 

The backpropagation algorithm is used to train the 

convolutional neural network. In brief, the algorithm works 

as follows: the input data is fed into the neural network, 

whose weights are initialized beforehand, and the 

network's final output is computed. Next, the loss value is 

calculated by comparing the predicted output with the 

expected output. This loss is then backpropagated through 

the network, and the gradient of each layer is computed 

with respect to its weights. Finally, gradient-based 

optimization algorithms are employed to update the 

weights of each layer to their optimal values. 
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In this work, the cross-entropy loss function and the Adam 

optimization algorithm were used for the backpropagation 

process. Training deep neural networks involves tuning 

several hyperparameters, such as the learning rate, 

regularization rate, batch size, and others, which must be 

carefully determined. In this study, a grid search was 

utilized to identify the optimal values for these 

hyperparameters. 

5. Experimental RESULTS 

In this section, the proposed fault diagnosis method is 

evaluated by two experimental bearing datasets. Case 

Western Reserve University (CWRU) bearing data (Lou & 

Loparo, 2004) and Paderborn University bearing dataset 

(Lessmeier et al., 2016).  

5.1 Case Study #1: CWRU bearing dataset 

The CWRU dataset comprises data from bearings under 

various conditions. For this study, healthy bearing data (H) 

and a subset of Drive End Bearing Fault Data, sampled at 

12 kHz, were utilized. The dataset includes three fault 

states for faulty bearings: inner ring fault (IR), ball fault 

(B), and outer ring fault (OR). Additionally, three modes 

of signal collection are defined for outer ring faults based 

on the fault position relative to the load zone: 'centered' 

(6.00 o’clock position), 'orthogonal' (3.00 o’clock), and 

'opposite' (12.00 o’clock). This work focuses exclusively 

on data from the 'centered' mode. Since the CWRU dataset 

uses numerical file names to denote different tests, the 

specifications of the data employed in this study are 

detailed in Table (1). For each test, acceleration was 

recorded in the vertical direction on the housings of the 

drive-end bearing (DE) and fan-end bearing (FE), as well 

as on the motor supporting base plate (BA). The bearing 

model used is also SKF 6205-2RS JEM. Figure (6) shows 

the experimental test equipment. 

It should be noted that Smith and Randall (Smith & 

Randall, 2015) conducted a benchmark study on the 

CWRU dataset, identifying datasets that could not be 

detected using conventional methods. Their work serves as 

a key reference for utilizing the CWRU dataset in 

subsequent research. Table (2) lists the data files where 

Smith and Randall's methods failed to detect bearing faults 

but which were included in the evaluation of the proposed 

method in this study.  

In this case study, the length of the selected signals is 4096 

samples. Additionally, the ballpass frequencies of the 

faults, as reported by CWRU, are provided in Table 3. 

Since the rotational speeds range from 1730 to 1797 RPM 

(28.83 to 29.95 Hz), the average ballpass frequencies for 

all three fault types were used to calculate the kernel  (Eq. 

(13)). Subsequently, vibration signals from bearings with 

varying rotational speeds and fault diameters were utilized 

simultaneously to evaluate the performance of the 

proposed neural network. This way of selecting input 

signals, reflects the real-world operating conditions of 

industrial rotating machinery, where rotational speed can 

vary within small tolerances. faults in such machinery can 

lead to faults of varying severity.  

It should be noted that, based on the number of available 

samples, there are 825 signals from healthy bearings. To 

ensure homogeneity across different classes, the same 

number of signals was selected for bearings with different 

fault conditions. As a result, the total dataset consists of 

3,300 signals. These signals were divided such that 70% 

were used for training, 15% for validation, and 15% for 

testing. Table 4 summarizes the number of signals 

corresponding to each class, while Table 5 provides details 

on the network architecture and the specifications of each 

layer. 

 

Fault 

width 

(mm) 

load 

(hp) 

Shaft 

speed 

(rpm) 

Dataset file name for each 

fault type 
H IR B OR 

- 

0 1797 97 - - - 
1 1772 98 - - - 
2 1750 99 - - - 
3 1730 100 - - - 

0.18 

0 1797 - 105 118 130 
1 1772 - 106 119 131 
2 1750 - 107 120 132 
3 1730 - 108 121 133 

0.36 

0 1797 - 169 185 197 
1 1772 - 170 186 198 
2 1750 - 171 187 199 
3 1730 - 172 188 200 

0.53 

0 1797 - 209 222 234 
1 1772 - 210 223 235 
2 1750 - 211 224 236 
3 1730 - 212 225 237 

Table 1. CWRU dataset specifications used in this study. 

 

Non-diagnosable 

Dataset file name 

Partially diagnosable 

Dataset file name 

118, 119, 120DE, 120BA, 

121BA, 187FE, 224DE, 
224BA, 225DE, 225FE 

197FE, 197BA, 198FE, 

198BA, 199FE, 200 

169BA, 170FE, 170BA, 

171FE, 171BA, 172FE, 

172BA, 120FE, 121FE, 
185FE, 185BA, 186DE, 

186BA, 187BA, 188, 222FE, 

223DE, 224FE, 225BA, 

199BA 

Table 2. Non-diagnosable and partially diagnosable data 

from the CWRU dataset using the benchmark method 

(Smith & Randall, 2015). 
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Figure 6. Experimental test equipment of case study #1 

(Lou & Loparo, 2004). 

 

 
Rolling Element Outer Ring Inner Ring 

4.7135
r

f 3.5848
r

f 5.4152
r

f 

Table 3. The ballpass frequency of bearing model 6205. 

 

 Number of signals 
Train Val Test 

H 577 124 124 
IR 577 124 124 

B 577 124 124 

OR 577 124 124 

Sum 2308 496 496 

Table 4. Number of signals per class in the case study #1. 
 

The first five layers in Table (5) correspond to the physics-

based part of the network. The number of kernels in the 

filterbank represents the number of filters through which 

the input signal passes. Additionally, the length of the 

output signals from the filterbank depends on the 

parameters of the up-sampler and down-sampler, which are 

adaptively determined for each input signal. To standardize 

the output, all signals from the filterbank are zero-padded 

on the right side to achieve a uniform length of 4096 

samples. 

To calculate ϕ (layer No. 4), the ballpass frequencies of 

bearing faults, as provided in Table (3), were utilized. This 

layer generates three output vectors of identical length for 

each input vector of a given length. Following the Hilbert 

envelope spectrum layer (layer No. 5), the primary features 

are concentrated at the beginning of the output signals, 

while the remaining values are close to zero. As a result, 

only the first 500 samples of the output vectors are retained, 

and the subsequent samples are disregarded. 

 In the convolutional part of the network, the size of all 

kernels is set to one, except for the fully connected layer. 

The kernel size in the fully connected layer (layer No. 17) 

is designed to produce an output vector with a length equal 

to the number of classes. In this case study, there are four 

classes: healthy, outer race fault, inner race fault, and ball 

fault. For training the network, mini-batches of size 105 

were used, along with the Adam optimization algorithm, a 

learning rate of 0.001, and a regularization rate of 0.01.  

The proposed physics-based network was evaluated for 

fault diagnosis in Case Study #1, and the classification 

results are presented in Table (6). For comparison, the 

classification results using CNN and Residual networks 

without the physics-based part were also evaluated and are 

included in Table (6). Additionally, several fault diagnosis 

methods proposed by researchers in recent years were 

evaluated using the CWRU dataset under the same 

conditions outlined in this paper, and their results are also 

summarized in Table (6). The compared methods include: 

 

1) A CNN structure introduced by (Ji et al., 2022), 

(we call it JI CNN) 

2) A Multiscale Local Feature Learning method 

based on Back-Propagation Neural Network 

(MLFL + BPNN) proposed by (Li et al., 2020) 

3) A Physics-based Convolutional Neural Network 

(PCNN) presented by (Sadoughi & Hu, 2019). 

 

As evident from the results in Table (6), the inclusion of 

physics-based layers has significantly improved the 

accuracy of deep neural networks for bearing fault 

classification. Furthermore, the physics-based CNN 

network demonstrates slightly higher accuracy for both 

training and test data compared to the physics-based 

Residual network. In addition, the accuracy of other similar 

methods for bearing fault diagnosis is considerably lower 

than that of the proposed method. These comparable 

methods only address fault diagnosis for bearings with a 

specific rotational speed. As a result, they perform poorly 

in classifying bearing signals with multiple rotational 

speeds. The confusion matrix for the best-performing 

proposed neural network is illustrated in Figure (7). 

Upon careful examination of Figure (7), it is evident that 

the data related to the bearing's outer race fault are 

accurately classified during both the training and testing 

stages. This outcome suggests that the outer race fault data 

contain less noise, which aligns with practical 

observations, as the proximity of the outer race to the data 

acquisition sensor typically results in clearer signals. 

Additionally, the healthy bearing data are well-classified 

during the training stage, though some misclassification 

occurs during the testing stage. This discrepancy may arise 

because the network's physics-based foundation is 

primarily designed using features from unhealthy bearings 

rather than healthy ones. 
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No. Layer type 
Number of 

kernels 
stride 

Output shape 

 (width × depth) 
padding 

Learnable 

parameters 

1 Input - - 4096×1 False - 

Physics-based Part 

2 
Adaptive 

Filterbank 
2M 1 4096×(M+1) True - 

3 
Mode 

selection 
- - 4096×1 False - 

4   3 1 4096×3 False - 

5 
Envelope 

spectrum  
- - 500×3 False - 

Convolutional Part 

- - 

C
N

N
 

R
esid

u
al 

C
N

N
 

R
esid

u
al 

C
N

N
 

R
esid

u
al 

- 

C
N

N
 

R
esid

u
al 

6 CL1 300 300 3 3 167×300 167×300 True 
3×300 

+300 

3×300 

+300 

7 LNL1 300 300 1 1 167×300 167×300 False 300+300 300+300 

8 CL2 250 250 3 1 56×250 167×250 True 
300×250 

+250 

300×250 

+250 

9 LNL2 250 250 1 1 56×250 167×250 False 250+250 250+250 

10 CL3 125 300 1 1 56×125 167×300 True 
250×125 

+125 

250×300 

+300 

11 LNL3 125 300 1 1 56×125 167×300 False 125+125 300+300 

12 CL4 100 100 1 1 56×100 167×100 True 
125×100 

+100 

300×100 

+100 

13 LNL4 100 100 1 1 56×100 167×100 False 100+100 100+100 

14 CL5 50 300 1 1 56×50 167×300 True 
100×50 

+50 

100×300 

+300 

15 LNL5 50 300 1 1 56×50 167×300 False 50+50 300+300 

16 GAP* 50 300 1 1 56×1 167×1 False - - 

17 FC* 1 1 1 1 1×4 1×4 False 4×50+4 4×300+4 

18 SoftMax 1 1 - - 1×4 1×4 - - - 

127329=  215854=  

* GAP: global average poling, FC: Fully connected. 

Table 5. Architecture and details of presented physics-based neural networks. 
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test validation Training  

92.53 91.31 99.57 

Proposed Physics-based 

CNN 

92.12 92.32 98.09 

Proposed Physics-based 

Residual Neural 

Network 

85.45 87.07 87.92 CNN  

87.71 88.48 91.52 

Residual Neural 

Network 

53.54 52.93 54.85 JI CNN(Ji et al., 2022) 

51.52 49.90 52.42 
MLFL + BPNN (Li et 

al., 2020) 

57.17 59.39 63.81 
PCNN (Sadoughi & Hu, 

2019) 

Table 6. Classification results of different methods for 

case study#1. 

 

For further investigation, Figure (8) illustrates the initial 

raw data, the outputs of the physics-based part, and the final 

output of the neural network for both the training and test 

data of Case Study #1, presented in three dimensions. To 

achieve this visualization, the t-distributed Stochastic 

Neighbor Embedding (t-SNE) dimensionality reduction 

method was applied to reduce the data dimensions to three 

dimensions. It is important to note that t-SNE is not a part 

of the proposed method; rather, it is solely employed for 

dimensionality reduction to enable the visualization of 

outputs from different layers. 

A careful examination of Figure (8) reveals that the initial 

input data is completely mixed and inseparable (left 

column). However, after applying the physics-based layers, 

the input data appears to be grouped into smaller categories 

with similar characteristics (middle column). Finally, by 

feeding the extracted features from the physics-based 

layers into the convolutional layers, deeper features are 

learned, resulting in a well-separated distribution of data 

for each class (right column). 

Similarly, the final output of other methods for the test data 

is plotted in Figure (9). From Figure (9), it is evident that 

none of the comparable methods achieve proper separation 

of the input data. Additionally, convolutional neural 

networks without the physics-based component fail to 

produce acceptable results and do not achieve good 

separation. These findings highlight the critical role of 

physics-based layers in creating an initial separation of the 

data. Deep neural networks perform significantly better in 

classifying inputs that have undergone multiple stages of 

pre-classification using physics-based layers. 

 
 

Figure 7. Confusion matrix of proposed physics-based 

CNN for case study#1 a) training data b) test data. 

(H: Healthy, IR: Inner Race Fault, B: Ball Fault, OR: 

Outer Race Fault) 

 

 

5.2 Case Study #2: Paderborn University bearing 

dataset 

The Paderborn University bearing dataset includes 

vibration signals obtained from a bearing model 6203. 

When recording vibration signals from the bearing, three 

states—healthy, outer ring fault, and inner ring fault—are 

considered. In this dataset, the signals of faulty bearings are 

measured under two different scenarios. In one scenario, 

the bearing damage is artificially induced, while in the 

other, damage occurs due to an accelerated lifetime test. 

The faulty bearing rotates at 1500 rpm. Additionally, radial 

forces of 400 N and 1000 N are applied with load torques 

of 0.1 N·m and 0.7 N·m. A sampling frequency of 64 kHz 

was used to record vibration data from bearings with 

different fault severities. 

Figure 10 displays the experimental equipment diagram for 

Case Study #2. The geometric specifications of the bearing 

are listed in Table 7. 

 

 



International Journal of Prognostics and Health Management, ISSN 2153-2648, 2025 

  
12 

 
Figure 8. 3D representation of the three main layers of the proposed physics-based CNN for a) training data and b) test data 

of case study#1. 

(Left: raw input data. Middle: output of the physics-based layers. Right: final output of the neural network). 

 

 

 

 

 

Figure 9. 3D representation of the outputs of the compared methods (a) JI CNN(Ji et al., 2022), (b) Multiscale local feature 

learning + BPNN (Li et al., 2020), (c) PCNN (Sadoughi & Hu, 2019), (d) CNN and (e) Residual neural network, after 

applying test data of the case study#1. 
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Figure 10. Experimental equipment of Paderborn 

University bearing dataset.  

 

Diameter of inner raceway 24.0 mm 

Diameter of outer raceway 33.1 mm 

Pitch diameter 28.55 mm 

Number of rolling elements 8 

Rolling element diameter 6.75 

Contact angle 0o 

Table 7. Geometric specifications of bearing model 6203. 

 

Therefore, according to the geometric characteristics of the 

bearing in Table (7) and the ball pass frequency formulas 

provided in (Randall, 2021), the ballpass frequency of the 

outer race fault (
OR

f ) and inner race fault (
IR

f )of the 

bearing used in the case study#2 is: 

76.3573 , 123.6427
OR IR

f Hz f Hz= =  

Due to the absence of a ball fault in Case Study #2, only 

the ball-pass frequencies of the outer race fault and the 

inner race fault will be present in the kernel   calculation 

for this case. Additionally, the length of the input signals 

has been set to 64,000 samples. Therefore, the only 

difference between the neural network used for Case Study 

#2 and Case Study #1 is the size of the first four layers in 

the physics-based part. Specifically, in layers 1 to 4 of 

Table (5), the value of 4096 (input signal length) is 

replaced with 64,000, and the number of kernels in the 

fourth layer is set to 2. According to the number of 

available signals and the selected length for the input 

signals, there will be 1200 signals for each class (healthy, 

outer race fault, and inner race fault) in each scenario 

related to artificial damage and real damage. So, the total 

number of data is 3600 signals for each scenario. Among 

these, 75% of the data are considered for training, 12.5% 

for validation, and 12.5% for the test process. Table (8) 

summarizes the number of signals corresponding to each 

class.  

 

 
Number of signals 

Train Val Test 
H 900 150 150 
IR 900 150 150 

OR 900 150 150 

Sum 2700 450 450 

Table 8. Number of signals per class in the case study #2. 
 

A mini-batch size of 100, a learning rate of 0.001, and a 

regularization rate of 0.01 were used to train the physics-

based neural networks in Case Study #2. After applying the 

proposed method, the classification accuracy of the 

introduced approach, along with the compared methods, is 

listed in Table (9). 

Table (9) demonstrates that the accuracy of the proposed 

physics-based method in diagnosing and classifying faulty 

bearings is significantly higher than that of other methods. 

Notably, the accuracy of the introduced method in 

diagnosing bearings with real damage is higher than its 

accuracy in diagnosing bearings with artificial damage. 

This outcome can be attributed to the fact that faults in real 

applications tend to be more severe than those artificially 

induced under controlled conditions. Regardless, the high 

accuracy of the proposed method in diagnosing and 

classifying bearing faults in real-world scenarios highlights 

its effectiveness for industrial and practical applications. 

The confusion matrix of the introduced physics-based 

neural network for classifying vibration signals of bearings 

with artificial and real damage is shown in Figures (11) and 

(12), respectively. A careful examination of Figures (11) 

and (12) reveals that the proposed method successfully 

distinguishes healthy bearings from faulty ones with an 

accuracy of approximately 100%. The minor classification 

errors in the introduced neural network stem from 

occasional misclassification of signals related to inner race 

faults and outer race faults. In other words, the proposed 

method achieves a fault detection accuracy of 100% and 

fault diagnosis accuracy of 90% and 95% for artificially 

damaged and real damaged bearings, respectively. 

In the following, the 3D representations of the input data, 

the output of the physics-based part, and the final output of 

the introduced neural network for both scenarios in Case 

Study #2 (bearings with artificial damage and bearings 

with real damage) are shown in Figures (13) and (14). 

Additionally, the 3D representations of the final outputs of 

the compared methods on the test data are presented in 

Figures (15) and (16). 
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Bearing fault condition  Test bearings with artificial damage Test bearings with real damages 

 Training Validation Test Training Validation Test 

Proposed Physics-based CNN 96.41 85.56 83.11 100 100 95.56 

Proposed Physics-based Residual 

Neural Network 

92.89 92.71 90.44 100 100 95.56 

CNN  65.63 60.22 61.78 81.63 80.00 80.00 

Residual Neural   Network 84.69 82.67 79.78 84.26 83.78 83.11 

JI CNN(Ji et al., 2022) 69.33 69.11 61.15 48.41 45.78 44.67 

MLFL + BPNN (Li et al., 2020) 49.41 49.33 46.44 55.07 52.22 51.11 

PCNN (Sadoughi & Hu, 2019) 77.93 76.00 74.22 73.56 68.67 64.40 

Table 9. Classification results of different methods for case study#2.

 
 

Figure 11. Confusion matrix of the proposed physics-

based Residual neural network for the artificially 

damaged bearing of case study#2, a) training data b) test 

data  

(H: Healthy, IR: Inner Race Fault, OR: Outer Race Fault). 

 
 

Figure 12. Confusion matrix of the proposed physics-

based CNN for the really damaged bearing of case 

study#2 

a) training data, b) test data   

(H: Healthy, IR: Inner Race Fault, OR: Outer Race Fault). 
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By closely examining the middle columns of Figures (13) 

and (14), it is evident that the introduced physics-based part 

has effectively separated the initially mixed-up input data 

(left columns of Figures (13) and (14)) through a pre-

classification process. Subsequently, the CNN further 

classifies this pre-classified data, with the final output 

shown in the right columns of Figures (13) and (14). This 

pre-classification process is the key advantage of the 

introduced physics-based part, significantly enhancing the 

proposed method compared to other approaches. 

Comparing Figure (13.b, right) with Figure (15) and Figure 

(14.b, right) with Figure (16) clearly demonstrates that the 

proposed method achieves superior classification of the 

desired fault classes compared to other similar methods. 

 

 

Figure 13. 3D representation of the three main layers of the proposed physics-based CNN for a) training data and b) test data 

of the artificially damaged bearing of case study#2. 

(Left: raw input data. Middle: output of the physics-based layers. Right: final output of the neural network) 
 

 
Figure 14. 3D representation of the three main layers of the proposed physics-based CNN for a) training data and b) test data 

of the really damaged bearing of the case study#2. 

(Left: raw input data. Middle: output of the physics-based layers. Right: final output of the neural network) 
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Figure 15. 3D representation of the outputs of the compared methods (a) JI CNN (Ji et al., 2022), (b) Multiscale local feature 

learning + BPNN (Li et al., 2020), (c) PCNN (Sadoughi & Hu, 2019), (d) CNN and (f) Residual neural network, after 

applying test data of the artificially damaged bearing of case study#2. 

 

 

 

 
 

 

Figure 16. 3D representation of the outputs of the compared methods (a) JI CNN (Ji et al., 2022), (b) Multiscale local feature 

learning + BPNN (Li et al., 2020), (c) PCNN (Sadoughi & Hu, 2019), (d) CNN and (f) Residual neural network, after 

applying test data of the really damaged bearing of case study#2. 
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6. CONCLUSION 

This research proposes a physics-based neural network 

architecture for bearing fault diagnosis. In the proposed 

method, vibration signals are first fed into the physics-

based layers, which include an adaptive analytical 

filterbank, a proper mode selector, a convolution layer with 

a physics-based kernel, and Hilbert envelope spectrum 

analysis. In this stage, the main physical features of bearing 

faults are extracted from the vibration signals. Next, the 

outputs of the physics-based part are passed to the 

convolutional part, which consists of convolutional layers, 

layer normalization layers, average pooling, a fully 

connected layer, and a SoftMax classifier. This part further 

extracts features and classifies the signals into four 

categories: healthy bearings, bearings with inner race 

faults, bearings with outer race faults, and bearings with 

ball faults. The proposed physics-based neural network is 

evaluated using two experimental datasets. 

The results indicate that the proposed network achieves 

high accuracy in diagnosing and classifying bearing faults. 

Additionally, the physics-based part performs a pre-

classification process on the raw input data, leading to 

higher classification accuracy compared to similar methods 

that rely solely on deep neural networks. The results of 

Case Study #1 (bearing data with different fault severities 

and rotational speeds) demonstrate the effectiveness of the 

proposed method in industrial and experimental fault 

diagnosis. Moreover, the network’s sensitivity to key 

bearing fault features, such as impulsive peaks in the 

frequency domain, is evident. The results from Case Study 

#2 confirm that the proposed method achieves higher 

classification accuracy than other similar approaches, both 

for artificially induced faults and faults caused by lifetime 

testing. Furthermore, the method exhibits near-perfect fault 

detection performance, with minor errors arising only in 

distinguishing between different faulty bearing conditions. 

Additionally, the use of one-dimensional convolutional 

layers instead of two-dimensional convolutions 

significantly reduces computational costs compared to 

networks that process images. Overall, the findings 

confirm that the introduced method is highly accurate and 

efficient for the experimental diagnosis of bearing faults.  

7. LIMITATIONS AND FUTURE WORK 

Although the proposed method achieves acceptable results 

in bearing fault diagnosis, it is not without limitations. The 

first limitation, common to all physics-based fault 

diagnosis methods, is their generalizability. Since physics-

based fault diagnosis methods are designed based on the 

physics of a specific component, they cannot be directly 

applied to diagnose faults in other components. The second 

limitation is that implementing physics-based methods for 

complex mechanical systems can be challenging. In 

complex systems, the physical properties of mechanical 

faults may depend on many factors, and fault 

characteristics may not always be well-defined. As a result, 

incorporating the physical features of the problem into the 

fault diagnosis method introduces significant complexity. 

The third limitation is that the proposed fault diagnosis 

method in this work is designed based on the ball-pass 

frequency of bearing faults, which is directly related to the 

rotational speed of the bearing. This poses a challenge for 

the effectiveness of the proposed method under variable 

speed conditions. 

In this regard, potential areas for future work include 

generalizing physics-based models to different rotating 

machinery and components, extending these models for 

diagnosing combined faults in rotating machinery, and 

developing the proposed model for variable-speed and low-

speed conditions. 
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