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ABSTRACT 

Recent developments in condition-based maintenance 

(CBM) have helped make it a promising approach to 

maintenance cost avoidance in engineering systems. By 

performing maintenance based on conditions of the 

component with regards to failure or time, there is potential 

to avoid the large costs of system shutdown and maintenance 

delays. However, CBM requires a large investment cost 

compared to other available maintenance strategies. The 

investment cost is required for research, development, and 

implementation. Despite the potential to avoid significant 

maintenance costs, the large investment cost of CBM makes 

decision makers hesitant to implement.  

This study is the first in the literature that attempts to address 

the problem of conducting a cost-benefit analysis (CBA) for 

implementing CBM concepts for unmanned systems. This 

paper proposes a method for conducting a CBA to determine 

the return on investment (ROI) of potential CBM strategies. 

The CBA seeks to compare different CBM strategies based 

on the differences in the various maintenance requirements 

associated with maintaining a multi-component, unmanned 

system. The proposed method uses modular dynamic fault 

tree analysis (MDFTA) with Monte Carlo simulations (MCS) 

to assess the various maintenance requirements. The 

proposed method is demonstrated on an unmanned surface 

vessel (USV) example taken from the literature that consists 

of 5 subsystems and 71 components. Following this USV 

example, it is found that selecting different combinations of 

components for a CBM strategy can have a significant impact 

on maintenance requirements and ROI by impacting cost 

avoidances and investment costs. 

1. INTRODUCTION 

CBM is a strategy for improving maintenance practices and 

ultimately reducing maintenance costs in engineering 

systems. CBM concepts use prognostics and health 

management (PHM) systems, structural health monitoring 

(SHM) systems or condition monitoring systems (CMS) to 

conduct maintenance based on the component’s conditions 

prior to failure. Unmanned systems, with no personnel 

onboard or available during operations, can utilize CMS to 

trigger maintenance for the periods when personnel are 

available to conduct maintenance. Many asset-intensive 

organizations already incorporate some degree of CBM in the 

maintenance schemes of their engineering systems, including 

manufacturing (Prajapati, Bechtel, and Ganesan, 2012; 

Rastegari & Bengtsson, 2014; Berdinyazov, Camci, Baskan, 

Sevkli, and Eldemir, 2011; Singh & Verma, 2020), 

automotive and aerospace (Prajapati et al. 2012; Berdinyazov 

et al. 2011), military (Prajapati et al. 2012), and power plant 

industry (Berdinyazov et al. 2011).  

Despite many possible benefits from CBM, organizations 

remain hesitant in adopting it because of high initial 

investment and development costs (Prajapati et al. 2012; 

Rastegari & Bengtsson, 2014; Berdinyazov et al. 2011). 

Berdinyazov et al. (2011) state that: “An analysis tool that 

will evaluate the possible value of CBM by comparing 

corrective maintenance (CM) and preventative maintenance 

(PM) considering its investment, setup and management 

costs…is now a great need for industry.” Yoon, Youn, Yoo, 

Kim, and Kim (2019) state that: “...maintenance cost analysis 

based on fault diagnosis has not been well investigated.” Our 

paper is motivated by the need to develop an analysis tool to 

enable decision makers to have a better understanding of how 

CBM will impact the lifetime costs associated with 

maintaining their system and thus decide whether CBM is a 

cost-effective investment, especially when considering 

unique maintenance challenges of unmanned systems. 

Deciding if CBM is a good investment can be accomplished 

through several CBA techniques. Examples of CBA 
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techniques used in the literature include cost avoidance (CA), 

ROI (Sandborn & Lucyshyn, 2023), life cycle costs (LCC) 

(Sandborn & Lucyshyn, 2023; Torti, Venanzi, Laflamme, 

and Ubertini, 2022), economic analysis (Berdinyazov et al. 

2011), cost-effectiveness analysis (CEA) (De Carlo & Arleo, 

2013; Rastegari & Bengtsson, 2015). When considering 

CBM, such techniques involve performing some form of 

comparison between the maintenance costs of adding and 

using CBM and the maintenance costs without CBM. The 

comparison typically involves comparing the number of 

failures and CM activities to the number of PM actions of one 

maintenance strategy against the number of CM and PM 

activities of another. CBM seeks to identify failures early and 

conduct PM before the failure occurs (Prajapati et al. 2012; 

Teixeira, Lopes, and Braga, 2020). However, regardless of 

the cost analysis technique used, CBA studies do not consider 

several challenges facing unmanned systems, such as lack of 

personnel during operation periods to conduct maintenance 

(Komianos, 2018; Chang, Kontovas, Yu, and Yang, 2021; 

Dreyer & Oltedal, 2019). These periods where maintenance 

is unavailable raise the system’s dependency on non-critical 

components and the probability of system failure (Chang et 

al. 2021; Dreyer & Oltedal, 2019). Whether or not a 

components failure results in system failure has significant 

implications for costs and must be considered in a CBA. 

In this paper, an approach for CBA of a CBM strategy for an 

unmanned system is proposed. The approach consists of a 

MDFTA using MCS (Sandborn, & Lucyshyn, 2023; Gascard 

& Simeu-Abazi, 2018; Rao, Gopika, Rao, Kushwaha, Verma, 

and Srividya, 2009; Gulati & Dugan, 1997; Aslansefat, 

Kabir, Gheraibia, and Papadopoulos, 2020) to approximate 

the system’s maintenance requirements under different 

maintenance strategies over a predetermined operating 

period. Using this approach, the system’s maintenance 

requirements are established based on several factors which 

are evaluated by the MDFTA. The maintenance requirements 

of the system and the investment costs of the CMS are then 

used to determine the CA and ROI of the new maintenance 

strategy and compared to the system’s current maintenance 

strategy. These comparisons allow for decision makers to 

identify the better CBM strategies among potential options. 

There are varying levels of autonomy in the literature, but this 

study will focus on fully autonomous or unmanned systems 

(Komianos, 2018). The proposed approach has been 

demonstrated with an application to a USV case study (Gao, 

Guo, Zhong, Liang, Wang, and Yi, 2021). 

The main contributions of this paper in view of previous 

related works are as follows: 

• The proposed approach considers unique maintenance 

challenges facing unmanned systems which may affect 

cost. The challenges considered in this study are lack of 

maintenance personnel while operating, high costs of 

system failure, and no production value (Komianos, 

2018; Chang et al. 2021; Dreyer & Oltedal, 2019; Yang, 

Vatn, and Utne, 2023). These challenges must be 

considered when determining the impact of a 

maintenance strategy on maintenance costs which are 

not considered in the current studies on CBA of CBM. 

Specifically, this paper provides a more tailored 

approach to assess the maintenance needs of this class of 

engineering systems, i.e., unmanned systems. 

• The proposed approach considers the system’s degraded 

operations and how that impacts maintenance costs. 

Multi-component systems with a mixture of critical and 

non-critical components can have some component 

failures which may not result in system failure and the 

system continues to operate in a third state, the degraded 

state (De Jonge & Scarf, 2020). Unmanned systems 

could experience long periods of degraded operations 

and thus that time needs to be considered, as done in this 

study, in a cost analysis (Chang et al. 2021; Dreyer & 

Oltedal, 2019). 

• Finally, the proposed approach for CBA of CBM 

considers the entire system, its individual components, 

and the impact its component level maintenance can 

have on other components in the system. Poppe, Boute, 

& Lambrecht (2018) discuss system-wide consideration 

by stating how single component CBM studies are 

useful, but most practical applications will involve 

multi-component systems. Poppe et al. (2018) further 

elaborate on how bundling CBM strategies has the 

potential to reap additional benefits. This study will 

show how adding CBM to a single component will 

propagate through the system and alter maintenance 

requirements of other components in the system.  

The remainder of this paper is organized as follows. Section 

2 provides a more detailed background and literature review 

material including types of unmanned systems and their 

maintenance challenges, type of maintenance and their 

associated costs, CBM investment costs, CBA models, and 

MDFTA. Section 3 details the proposed methodology 

including problem aim, assumptions, and details of the 

approach used. Section 4 demonstrates the methodology on a 

USV example from the literature. Section 5 provides 

discussion and insights into the results of Section 4. Section 

6 is the conclusion and highlights areas for improvement in 

future works. 

2. BACKGROUND AND ADDITIONAL LITERATURE SURVEY 

This section will provide background information on topics 

related to this study. The provided information will aid in 

better understanding of the approach and its implications. 

2.1. Unmanned Systems and Maintenance Challenges 

Zhang, Zhang, Liang, Li, Wang, Li, Zhu, & Wu (2017) 

describe unmanned systems as: “…systems that are man-

made and capable of carrying out operations or management 
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by means of advanced technologies without human 

intervention.” Unmanned systems include but are not limited 

to unmanned vehicles (UV) (Zhang et al. 2017), unmanned 

ariel vehicles (UAV) (Zhang et al. 2017), drones (Zhang et 

al. 2017), USV (Gao et al. 2021), maritime autonomous 

surface ships/systems (MASS) (Chang et al. 2021; Dreyer & 

Oltedal, 2019; Yang et al. 2023), autonomous marine systems 

(AMS) (Yang et al. 2023), autonomous underwater vehicles 

(AUV) (Yang et al. 2023), & robotics (Zhang et al. 2017). 

Using the description of unmanned systems by Zhang et al. 

(2017), the system operates “without human intervention.” 

However, when the system is not operating, human 

intervention is required. 

Regardless of the title or area of operation of the unmanned 

system, reliability during operations is essential. During 

operations, any component failures cannot be repaired until 

the mission is completed and the system is available to 

maintenance personnel. Therefore, appropriate maintenance 

plans for components in the system are required to maintain 

acceptable levels of reliability. Yang et al. (2023) highlight 

some difficulties with maintaining unmanned systems. 

Specifically, Yang et al. (2023) identify high consequences 

of system failure and limited maintenance opportunities. 

Limited maintenance opportunities for USVs, MASS, AMS, 

and AUVs could refer to times when the vehicles are in-port 

and maintenance personnel are present. With limited 

opportunities, when maintenance of the system is available, 

any failed components must be corrected in addition to 

rigorous PM actions which will serve to ensure the system is 

prepared for the next operation. The final consideration for 

unmanned systems in this study is that the system completes 

repeat missions and does not have an hourly production 

value. This is unique as most CBA study include the impact 

of lengthy maintenance actions on lost production value. 

2.2. Types of Maintenance and Associated Costs 

Proper maintenance is necessary to maintain high reliability 

and safe operations and makes up a significant contribution 

to the organization’s expenses (Zhao, Xu, Liang, Zhang, and 

Song, 2019). Maintenance actions are classified in one of two 

types: corrective and preventative (Rausand & Hoyland, 

2003). CM or breakdown maintenance is performed after a 

component or system failure and seeks to bring back the 

failed unit to an operational state again. PM can be further 

subdivided into age-based, clock-based, and condition-based. 

Age-based and clock-based maintenance, also known as 

time-based maintenance (TBM), are two of three 

subcategories of PM. This study will focus on CM and PM 

from CBM. Maintenance costs over a system’s life can most 

simply be described as cost per maintenance activity times 

the number of activities. This simple calculation can provide 

the total costs of maintaining the system over a desired 

period. However, the cost per maintenance activity can be 

broken down into many parts. The literature provides many 

descriptions of how the cost per maintenance activity can be 

broken up. 

Rastegari and Bengtsson (2015) categorize maintenance 

costs as either direct or indirect sources. Reducing system 

damage and expenses from maintenance is a direct cost 

saving while avoiding losses in production is an example of 

indirect cost savings. This study will only consider the direct 

costs for component maintenance. The direct cost considers 

the cost to cover parts and labor to conduct the required 

repairs. Indirect costs such as lost production are not 

considered because this study is focused on unmanned 

system completing missions and there is no set value for 

completing the mission or lost costs for lengthy repairs. 

Studies by: Berdinyazov et al. (2011), De Carlo and Arleo 

(2013), Rastegari and Bengtsson (2015), Verma, Khatravath, 

and Salour (2013) and Verma and Subramanian (2012) all 

conduct CBA of CBM but include cost associated with lost 

production time. In all the listed studies, the system being 

repaired has an associated cost. However, this study focuses 

on the direct cost of component repairs and system failure. 

2.3. CBM and Investment Costs 

CBM is not triggered by time like TBM or failure like CM. 

Instead, CBM strategies use condition monitoring technology 

and perform maintenance when the component’s conditions 

degrade and pass a threshold value prior to failure (Zhao et al 

2019; Rausand & Hoyland, 2003). This has been called “just-

in time” maintenance (Compare, Antonello, Pinciroli, and 

Zio, 2022). However, CMS are not perfect and there is often 

some probability of detection. By performing maintenance 

based on the component’s conditions, maintenance personnel 

seek to avoid unnecessary maintenance actions (Peng, Dong, 

and Zuo, 2010), avoid compounded failure effects and 

associated costs, and reduce downtime (Prajapati et al. 2012). 

By creating a system that allows maintenance to be 

performed only when required, the systems can operate with 

lower maintenance costs and higher overall equipment 

availability (OEA) (Rastegari, & Bengtsson, 2014). Márquez, 

Lewis, Tobias, and Roberts (2008) describe CBM benefits as 

the improvement in reliability, availability, maintainability, 

and safety (RAMS). However, despite growing research and 

all the possible advantages, the primary disadvantages are the 

requirement to develop potentially complex processes for 

diagnosis and prognosis of failure as well as the associated 

high initial setup cost (Prajapati et al. 2012; Rastegari, & 

Bengtsson, 2014; Berdinyazov et al. 2011). 

Applying CBM to an engineering system requires both 

hardware and software units to produce the necessary data to 

adequately plan maintenance actions. However, achieving a 

successful CBM system is a complex and expensive endeavor 

(Rastegari & Bengtsson, 2015). Some of the primary 

expenses are the stated hardware and software units in 

addition to training, particular knowledge, and measuring 

devices (Teixeira et al. 2020; Ahmad & Kamaruddin, 2012). 
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According to Rastegari and Bengtsson (2015) and Teixeira et 

al. (2020), implementing CBM requires the “selection of the 

components to be monitored, identification of monitoring 

techniques and technologies, installation of the required 

technological means and definition of appropriate data 

analysis methods.” Prior to researching and implementing 

CBM strategies on a technical system the “organizational, 

financial, and technical perspective” should be assessed, 

considered, and used to justify the investment into CBM 

(Rastegari & Bengtsson, 2014). These complexities and 

expenses make organizations hesitant to expend the time, 

money, and resources required to research and implement all 

the various elements of CBM into their systems. In industry, 

the vast complexity of CBM has limited its application (Dui, 

Xu, Zhang, and Wang, 2023). 

2.4. CBA Modeling 

Sandborn and Lucyshyn (2023) state that: “CBA provides a 

framework to assess the combination of costs and benefits 

associated with a particular decision or course of action.” An 

ideal CBA performs an extensive analysis of both costs and 

benefits and considers long-term and indirect effects. Some 

examples of CBA approaches are CA, ROI, LCC (Sandborn 

& Lucyshyn, 2023), economic analysis (Berdinyazov et al. 

2011), and cost-effectiveness analysis (De Carlo & Arleo, 

2013; Rastegari & Bengtsson, 2015). These approaches are 

methods decision makers can use to evaluate potential 

options and examine the potential gains. 

Sandborn and Lucyshyn (2023) provide an example of 

combining CBA techniques. Equation 1 from Sandborn and 

Lucyshyn (2023) shows how CA can be calculated by 

comparing the difference in the original LCC, 𝐿𝑐𝑐𝑜 , from the 

new LCC, 𝐿𝐶𝐶𝑛 , as shown in Equation 1 . The calculated 

CA can then be added to an ROI calculation that includes the 

investment costs of implementing the new strategy, as shown 

in Equation 2 (Sandborn & Lucyshyn, 2023). The greater the 

CA or the less the investment in CBM, the greater the ROI. 

𝐶𝐴 = 𝐿𝐶𝐶𝑜 − 𝐿𝐶𝐶𝑛 (1) 

𝑅𝑂𝐼 =
𝐶𝐴

𝐼𝑛𝑣𝑒𝑠𝑡𝑚𝑒𝑛𝑡 𝑖𝑛 𝐶𝐵𝑀
 (2) 

A simple example of determining CA can be found by 

looking at the difference between a single CM event and PM 

event from De Carlo and Arleo (2013) who provide a 

description and breakdown of the cost of a single CM and PM 

event. The cost of both CM and PM according to De Carlo 

and Arleo (2023) is made of labor costs, material costs, and 

the costs of lost production. However, the cost of lost 

production is greater for CM because there is additional time 

needed to activate maintenance personnel, diagnose the 

failure, and retrain the system. These three sources of 

additional time do not occur with a PM event. Therefore, 

every failure that is preventatively repaired saves money by 

not paying for unnecessary additional lost production time 

that comes with failure. This example is the comparison of 

costs between a single CM and PM event. Systems comprised 

of multiple, repairable components will have a far more 

complicated CBA process. 

2.5. MDFTA and MCS 

Fault trees are logic models that are used to represent the 

system’s logic and represent the various combinations and 

means in which the top event, system failure, can occur 

(Modarres, Kaminskiy, and Krivtsov, 2016). A fault tree does 

not model every failure event in a system, only those that 

contribute to system failure. A fault tree is comprised of 

events and gates which demonstrate the system’s logic. There 

exists many forms of events and gates. Descriptions of 

various static and dynamic gates can be found in many places 

in the literature. By constructing a system’s fault tree, both 

qualitative and quantitative analyses can be performed to 

determine a variety of aspects about the system such as 

identifying the system’s minimal cut sets and a reliability 

analysis (Rausand & Hoyland, 2003). A minimal cut set is 

the smallest set of units whose failure will result in the top 

event, system failure, occurring (Rausand & Hoyland, 2003). 

Traditional fault trees fail to capture the failure behavior of 

some systems with dynamic behavior when operating. 

Dynamic fault trees (DFT) capture the dynamic system 

behavior by adding additional gates. Those additional gates 

are priority AND (PAND), sequence enforcing (SEQ), 

standby or spare (SPARE), and functional dependency 

(FDEP) gates (Gascard & Simeu-Abazi, 2018; Rao et al. 

2009). Dynamic fault tree analysis (DFTA) can be used to 

evaluate dynamic, multi-component engineering systems for 

determining aspects about the system reliability such as 

frequency of system failure, system availability, and 

unreliability (Gascard & Simeu-Abazi, 2018; Rao et al. 

2009). 

Gascard and Simeu-Abazi (2018) and Rao et al. (2009) both 

use MCS to conduct a DFTA. MCS is a valuable tool when 

solving real world engineering problems, particularly when 

dealing with complex systems and monetary values of 

maintenance and operations. MCS is also useful when 

available life-cycle data is limited (Ruan, Ma, Yang, Yan, & 

Gühmann, 2024). MCS can be used to simulate the system’s 

actual processes, something analytical methods struggle with 

or are incapable of doing. Gascard and Simeu-Abazi (2018) 

and Rao et al. (2009) use MCS to generate failure times of 

the DFT basic events and then evaluate if the system, based 

on the basic event failure times completes a desired operating 

period or mission time. The process is repeated for many 

iterations and the number of successful missions is counted 

and used to assess reliability information about the entire 

systems. However, both articles analyze the success of a 

single mission. Their authors don’t consider the effect of 

multiple missions performed in sequential order. Single 

mission analysis doesn’t consider maintenance impacts over 
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a long period of operations. By assessing the system over 

many missions, the impact of maintenance would become 

more apparent. 

However, fault trees and their analysis are not without 

challenges. According to Gulati and Dugan (1997): “fault 

trees lack the modeling power and its solution time increases 

exponentially with the size of the system being modeled.” 

Aslansefat et al. (2020) provide a summary of both 

qualitative and quantitative analysis techniques for DFTs. 

Aslansefat et al. (2020) discuss the various pros and cons 

associated which the different analysis methods. However, 

when dealing with the impact of CBM, only a few techniques 

support repair modeling. Those techniques that support repair 

modeling are Bayesian Networks (BNs), Generalized 

stochastic Petri nets (GSPNs), and MCS. Both BNs and 

GSPN have the potential for state-space explosion. MCS is 

also a time-consuming operation but improvements such as 

modulization have helped to improve computational 

performance (Aslansefat et al. 2020). 

A general description of the process of conducting MCS for 

DFT quantitative analysis is given by Aslansefat et al. (2020). 

The process involves completing a series of iterations of the 

system over a desired mission time. During the iterations, 

failure of components and the system are counted. Once all 

iterations have been simulated, the system’s reliability can be 

evaluated. 

2.6. Background Summary 

The background presented in this section shows that the use 

of unmanned systems is rapidly growing while these systems 

are facing unique maintenance challenges, when conducting 

CBA for new maintenance approaches, such as CBM. 

Limited maintenance opportunities are an example of one of 

these maintenance challenges. However, by considering 

system-wide impact of maintenance, and degraded 

operations a CBA can be tailored to provide better analysis 

of which maintenance strategies will be the most cost 

effective. 

MDFTA and MCS are analysis tools that can be used to 

model and provide potential solutions to maintenance 

problems. This study uses these tools due to their abilities to 

handle systems with multiple components and with unknown 

impacts from repeated component level maintenances. 

3. METHODOLOGY 

This section will present the aim of the problem to be solved, 

assumptions made and the proposed approach. The approach 

contains two portions, one on the CBA and the other on the 

MDFTA. 

3.1. Aim and Assumptions 

The problem that this study aims to solve is selecting the best 

CBM strategy for a multi-component, unmanned system. The 

problem is solved by determining which potential 

maintenance strategy has the best ROI when compared to the 

current maintenance strategy. 

The assumptions used in this study for solving the problem 

are as follows: 

1. Component failure rates are known. 

2. All components are operating, aging, and wearing unless 

the component has failed, or the entire system has failed. 

If a component’s subsystem fails but the component is 

working, it will continue to operate even though the 

subsystem is no longer capable of performing its 

intended function. 

3. Maintenance is only conducted when the system has 

completed the mission, or the system has failed and been 

recovered. All maintenance actions only address a single 

component at a time. No maintenance is conducted 

during operations (Komianos, 2018; Chang et al. 2021; 

Dreyer & Oltedal, 2019). 

4. PM through CBM is conducted just before the mission 

where failure would occur (Compare et al. 2022). 

5. System failure cost and the cost of degraded operations 

are independent of the component causing failure or 

degradation (Yang et al. 2023). 

6. Both CM and PM are conducted for a maximum number 

of minimum repairs. After the maximum number of 

minimum repairs has been exceeded the component is 

replaced. This captures the impacts of repeated 

maintenance actions but does not allow potential failure 

interarrival times to become so small the system is 

unable to complete remaining missions.  

7. Investment and maintenance costs are assumed based off 

similar values from other unmanned system maintenance 

studies (Yang et al. 2023; Dui et al. 2023). All PM costs 

are less expensive than CM costs and there are no setup 

costs. Investment costs of CMS are inversely 

proportional to the components mean time to failure 

(MTTF) (Kim, An, and Choi, 2017). 

8. Supply and storage costs for spare parts are not 

considered assuming CA is computed for replacing the 

same components in the original and new life cycle costs. 

9. Maintenance costs are constant and do not change over 

time. 

10. Component failures that do occur are assumed sudden. 

3.2. Process: Cost-Benefit Analysis (CBA) 

The CBA considered in this study is a combination of CA and 

ROI (Sandborn & Lucyshyn, 2023). First, we will start with 

LCC determination. The LCC of system maintenance will be 

based on the number of maintenance activities 𝑁𝑐𝑚 and 𝑁𝑝𝑚 
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multiplied by the cost per activity 𝐶𝑐𝑚 and 𝐶𝑝𝑚. For a multi-

component system, different components will have different 

costs associated with their maintenance activities. This is 

shown in Equation 3 where subscript 𝑖 is for the component 

number and 𝑁𝑐𝑜𝑚𝑝 is the total number of components. 

Multi-component systems have both critical and non-critical 

components. Over the operating lifetime of the system, it will 

have system failures due to critical component failures and 

failures due to the failure of combinations of non-critical 

components. If the system does fail, there will be a cost for 

recovering and restoring the system. The cost of system 

failure is 𝐶𝑓,𝑠𝑦𝑠 and 𝑁𝑓,𝑠𝑦𝑠 is the number of system failures. 

The next piece to consider are the costs associated with lost 

operational time and time degraded. Lost operational time 

comes from any difference between the amount of time the 

system was desired to operate and the time the system 

operated. Degraded operational time is the portion of time 

where the system was operating with failed non-critical 

components or subsystems. Lost operational time costs all the 

operational value whereas degraded time costs only a portion 

of the value. The operational time lost is 𝑇𝐿  and is the 

different between the systems desired operating life,𝑇𝑙𝑖𝑓𝑒 , and 

the system’s actual operational time, 𝑇𝑜𝑝,𝑠𝑦𝑠. The degraded 

time is 𝑇𝑑. The cost per unit time of time lost is 𝐶𝑂𝑃 and the 

cost per unit time of operating degraded: 𝑑 × 𝐶𝑂𝑃 . 

The above-listed sources of costs can be used to form the 

LCC for maintenance of an unmanned system, Equation 3.  

𝐿𝐶𝐶 = (𝐶𝑓,𝑠𝑦𝑠)(𝑁𝑓,𝑠𝑦𝑠) +

∑ [(𝐶𝑐𝑚,𝑖)(𝑁𝑐𝑚,𝑖) + (𝐶𝑝𝑚,𝑖)(𝑁𝑝𝑚,𝑖)]

𝑁𝑐𝑜𝑚𝑝

𝑖

+

(𝐶𝑂𝑃)(𝑇𝐿) + (𝑑 × 𝐶𝑂𝑃)(𝑇𝑑)

 

 

(3) 

However, to get the CA when comparing two strategies, we 

must determine the difference in LCCs from each 

maintenance strategy, as provided in Equation 1. The final 

piece to add is the investment cost. Investment cost is needed 

to evaluate the ROI of implementing the new maintenance 

strategy. If a component has a CMS implemented then there 

will be some investment cost, 𝐶𝑖𝑛𝑣,𝑖 .  However, if a 

component does not receive a CMS, then 𝐶𝑖𝑛𝑣,𝑖 is zero. The 

sum of investment costs is the total CMS investment cost for 

the system for the new strategy. Adding the investment costs 

yields Equation 4 for determining ROI of the new strategy 

compared to the current one. If the addition of a CMS to the 

system has general costs not associated with a specific 

component, then those costs would be accounted for in 

Equation 4’s denominator. 

𝑅𝑂𝐼 =  
𝐶𝐴

∑ 𝐶𝑖𝑛𝑣,𝑖
𝑁𝑐𝑜𝑚𝑝

𝑖

 (4) 

Equation 4 is the CBA formulation for determining ROI. 

Based on Equations 1, 3 and 4, the values needed from the 

Lifetime Simulator (next subsection) for both the old and new 

maintenance strategies to determine the ROI are: 

𝑁𝑐𝑚,𝑖 , 𝑁𝑝𝑚,𝑖 , 𝑁𝑓,𝑠𝑦𝑠, 𝑇𝑑 , 𝑎𝑛𝑑 𝑇𝑜𝑝,𝑠𝑦𝑠 . 

3.3. Process: Lifetime Simulator 

The general layout of the proposed approach, the Lifetime 

Simulator, is shown in Figure 1. The approach requires two 

loops. The inner loop, or the Mission Loop, which evaluates 

the system over its predetermined operating lifetime, 𝑇𝑙𝑖𝑓𝑒 , 

for several missions. The system is expected to complete 

several missions over 𝑇𝑙𝑖𝑓𝑒  with a mission length of 𝑇𝑚. The 

number of missions the system must perform, 𝑁𝑚 , is 

determined by 𝑇𝑙𝑖𝑓𝑒  divided by 𝑇𝑚. The number of missions, 

𝑁𝑚, is the number of iterations of the Missions Loop. The 

outer loop, or the Iterations Loop, evaluates, after many 

iterations, the mean and standard deviation of various aspects 

of the system’s maintenance requirements. The number of 

iterations of the outside loop is 𝑁 . The current iteration 

number of the Mission Loop and Iteration Loops is 

designated as 𝑔 and ℎ, respectively.  

The next several paragraphs will describe the steps and sub-

steps of the process simulating the system’s operational life 

and estimating the resulting maintenance requirements. The 

simulation is done using MDFTA with MCS. 

Step 0: Setup and Decompose the DFT to Determine Modules 

In this step the entire system DFT will be setup, analyzed and 

decomposed into modules. A module is a portion of the DFT 

that can lead to the occurrence of the top event, system 

failure. Module sizes can range from a single component to 

several components. A critical component is an example of a 

single component module. The decomposition analysis in this 

step seeks to identify the components and subtrees of the 

entire DFT that will lead to system failure. 𝑀𝑗 is the set of 

components, i, contained in module j, and 𝑁𝑚𝑜𝑑  is the total 

number of modules for the system. Every component in the 

system’s DFT will belong to a module. 

Step 1: Initialize Iteration Counters (Time-based): Set g = h= 

0 

Step 2: Start Iteration Loop (Outer Loop) 

 The outer loop is to conduct several iterations of the 

inner loop to provide a better estimation of the system’s 

maintenance requirements. The inner loop conducts MCS to 

estimate the uncertainty and impact of repeated maintenance 

events over many repeated missions. The outer loop repeats 

the process of the inner loop many times to find the mean and 

standard deviation of the maintenance requirements for the 

system. To begin the outer loop, the following parameters are 

initialized by setting them all equal to zero: 𝑇𝑜𝑝,𝑠𝑦𝑠, 𝑇𝑑, 𝑇𝑜𝑝,𝑖, 

𝑡𝑓,𝑖, 𝑡𝑜𝑝,𝑖, 𝑁𝑓,𝑠𝑦𝑠, 𝑁𝑚,𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑒, 𝑁𝑐𝑚,𝑖, 𝑁𝑝𝑚,𝑖, 𝑁𝑓,𝑗, 𝑁𝑟,𝑖, and 𝑅𝑖. 
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Step 3: Generate Initial Failure Interarrival Times: Set h = 

h+1 

This step is to generate the first failure interarrival time, 𝑡𝑓,𝑖, 

for all components. Generating the failure interarrival times 

is accomplished with MCS. Each failure interarrival time is 

generated using a new random number, 𝑈. 𝑅𝑖 is the repair age 

of the component. Every minimum repair conducted adds to 

the component’s repair age until the component is replaced at 

which time the component’s repair age is set back to zero. 

Considering the growing repair age for subsequent repairs, 

the failure time is expected to follow a non-homogenous 

Poisson process (NHPP). 

𝑡𝑓,𝑖 = 𝐹𝑖
−1(1 − 𝑈 × [1 − 𝐹𝑖

−1(𝑅𝑖)]) − 𝑅𝑖 (5) 

Since 𝑅𝑖 is zero for all components initially, Equation 5 can 

be simplified for generating the first failure interarrival times: 

𝑡𝑓,𝑖 = 𝐹𝑖
−1(1 − 𝑈) (6) 

𝐹𝑖
−1  is the inverse cumulative distribution function (CDF) 

and is unique to each component based on their unique 

distribution parameters, 𝛼𝑖 and 𝛽𝑖. 

Step 4: Start Missions Loop (Inner Loop): Set g = g+1 

 The aim of the inner loop is to simulate the lifetime 

operations of a single system, attempting to complete several 

missions, 𝑁𝑚. The missions are performed one after another, 

regardless of the prior mission’s failure or success. During 

the inner loop, components will continue to age until they 

fail, and that is when the maintenance is conducted between 

the missions. The inner loop captures the impact of repeated 

operations and component level maintenance for a single 

system and estimates the resulting maintenance 

requirements. To being the inner loop, initialize the following 

parameters by setting them to zero: 𝑡𝑚,𝑖, 𝑡𝑘,𝑗, 𝑡𝑑,𝑠𝑦𝑠, and 𝑆𝑖. 

Step 5: Assess for CBM 

In Step 5 every component with prior operational time, 

𝑡𝑜𝑝,𝑖 ≠ 0 , is evaluated for PM based on the condition 

monitoring of the component on previous missions and CBM 

strategy applied. If a component has a CMS, then the CMS 

evaluates the conditions of the component and determines if 

the component can complete the next mission. If the 

component is not capable of completing the next mission, 

then the CMS will alarm, and maintenance personnel will 

conduct a PM activity for that component. However, the 

CMS is not perfect and there is a chance that the component 

will fail the next mission but not be detected by the CMS. The 

process of assessment for PM through CBM is explained in 

the following sub-steps:  

𝑇𝑚 + 𝑡𝑜𝑝,𝑖 < 𝑡𝑓,𝑖 (7) 

Sub-step 5.1: Assess CMS if component can complete next 

mission 

𝑇𝑚 is the time of mission and 𝑡𝑜𝑝,𝑖 is the current operational 

time on component 𝑖 . If 𝑇𝑚 + 𝑡𝑜𝑝,𝑖  is less than the failure 

interarrival time, as shown in Equation 7, then the component 

can complete the next mission and the CMS does not alert 

maintenance personnel. If this is the case, no further sub-steps 

are needed for component 𝑖. However, if 𝑇𝑚 + 𝑡𝑜𝑝,𝑖 is greater 

than or equal to 𝑡𝑓,𝑖  then component will fail on the next 

mission. If this is case move on to sub-step 2. 

Sub-step 5.2: Assess if CMS alarms 

If the component fails the next mission, the next step 

determines if the CMS detects this. Determining if detection 

occurs is done by generating a random number, 𝑈 , and 

comparing it to the CMS detection probability, 𝑃𝐶𝑀𝑆,𝑖. If the 

random number is less than 𝑃𝐶𝑀𝑆,𝑖 then the CMS detected the 

pending failure, move on to sub-step 3. However, if 𝑈  is 

greater than 𝑃𝐶𝑀𝑆,𝑖, then the CMS did not detect the failure, 

and PM does not occur. 

Sub-step 5.3: Account for PM 

If the CMS detected failure, then PM was performed. The 

following values are updated: 𝑇𝑜𝑝,𝑖 = 𝑇𝑜𝑝,𝑖 + 𝑡𝑜𝑝,𝑖 , 𝑅𝑖 =

𝑅𝑖 + 𝑡𝑜𝑝,𝑖 , 𝑁𝑝𝑚,𝑖 = 𝑁𝑝𝑚,𝑖 + 1 , and 𝑡𝑜𝑝,𝑖 = 0 . Accumulated 

operational time, 𝑇𝑜𝑝,𝑖 , and the repair age, 𝑅𝑖 , are updated 

based on the components operational time, 𝑡𝑜𝑝,𝑖 . The number 

of PM events on component 𝑖 is increased by one. Finally, the 

component’s operational time is reset. 

Sub-step 5.4: Generate Next Failure Interarrival Time 

The final sub-step when assessing for PM is to generate a new 

failure interarrival time for the repair component using 

Equation 5. 

Step 6: Assess Starting Components 

For Step 6, all starting components attempt to complete the 

mission. Starting components are all components active at the 

start of the mission, this excludes components such as cold 

spares. Like the PM evaluation discussion in Step 5, every 

staring component is evaluated for completing the mission 

using Equation 7. For spare components, the dormancy 

factor, 𝑞𝑖, must be considered as shown in Equation 8. 

𝑞𝑖 × 𝑇𝑚 + 𝑡𝑜𝑝,𝑖 < 𝑡𝑓,𝑖 (8) 

If the adding the mission time, 𝑇𝑚, to the components current 

operational time, 𝑡𝑜𝑝,𝑖 , is less than the failure interarrival 

time, 𝑡𝑓,𝑖 , then the component completes the mission. 

However, if not then the component will fail the mission and 

its status is updated to zero, 𝑆𝑖 = 0. If all starting component 

statuses are working, 𝑆𝑖 = 1, continue to Step 7. Otherwise 

go to Step 8. 

Step 7: Complete Mission 

All starting components are working, 𝑆𝑖 = 1 , then the 

mission was successfully completed. Equations 9-12 are used 
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to update system and component data. Equation 9 updates the 

system’s accumulated operational time. Equation 10 updates 

the operational time for starting components. Equation 11 

updates the operational time for starting components with 

dormancy factors greater than 0, like warm spares. Equation 

12 accounts for the system completing the mission. 

𝑇𝑜𝑝,𝑠𝑦𝑠 = 𝑇𝑜𝑝,𝑠𝑦𝑠 + 𝑇𝑚 (9) 

𝑡𝑜𝑝,𝑖 = 𝑡𝑜𝑝,𝑖 + 𝑇𝑚 (10) 

𝑡𝑜𝑝,𝑖 = 𝑡𝑜𝑝,𝑖 + 𝑞𝑖 × 𝑇𝑚 (11) 

𝑁𝑚,𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑒 = 𝑁𝑚,𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑒 + 1. (12) 

If 𝑔 < 𝑁𝑚 , meaning there are more missions to complete, 

return to Step 4. If 𝑔 = 𝑁𝑚 go to Step 11.  

Step 8: Assess Modules 

If some of the starting components failed to complete the 

entire mission, then the consequences to the system must be 

evaluated. The MDFTA assesses system success based on 

whether all the modules continued working throughout the 

mission time. If all modules continued working, then the 

system continued working. If any modules failed, then the 

system failed. In this step, any module, 𝑀𝑗 ,  with a failed 

component is assessed to determine if the entire module 

failed. The assessment for module failure looks at the 

components of each individual module’s subtree. If the 

subtree is determined to have failed, the module failure time, 

𝑡𝑘,𝑗,  is updated with when during the mission the module 

failed. A module’s subtree can contain multiple gates, basic 

events, and intermediate events.  

For static gates, such as AND, OR, and VOTING gates, 

assessment of whether the gate failed is straightforward. For 

an OR gate, if any events occurred, the gate failed. For an 

AND gate, if all events have occurred, then the gate has 

failed. For a VOTING gate, if the required number of events 

have occurred, then gate has failed. Figure 1 contains a 

description of all static gates. 

However, for dynamic gates, determining failure is more of a 

challenge. For example, for a SPARE gate, the gate only has 

a chance of failing if the primary component, A, has failed. If 

component A has failed, then the spare component, 

component B, must complete the remainder of the mission 

time, or the gate fails. For a FDEP gate, both components 

must continue working for the gate to work. Failure of 

component B and the gate fails. Failure of component A and 

component B can no longer complete its intended task, and 

the gate fails.  

It is possible during this step that multiple modules have been 

identified to have failed and thus multiple 𝑡𝑘,𝑗  values have 

been determined. However, only module one can fail for each 

mission and thus the system failure time, 𝑡𝑓,𝑠𝑦𝑠, is equal to the 

minimum of all 𝑡𝑘,𝑗 that are not zero during this step. If one 

or modules did fail, and 𝑡𝑓,𝑠𝑦𝑠 has been identified, then the 

number of module failures is updated using Equation 13. If 

one or more modules failed, continue to Step 9. If no modules 

failed, go to Step 10. 

𝑁𝑓,𝑗 = 𝑁𝑓,𝑗 + 1 (13) 

 

 

Figure 1: Proposed Approach for the Lifetime Simulator 

Step 9: Verify Component Failures 

If system failure has occurred and 𝑡𝑓,𝑠𝑦𝑠 has been identified, 

then all failed components, 𝑆𝑖 = 0, must be checked to verify 

they truly did fail during the mission. What this step assesses 

is since the system failed the mission, did component level 

failures occur before or after the system failure time, 𝑡𝑓,𝑠𝑦𝑠. If 

the failure occurred before the system failure time, 𝑡𝑓,𝑠𝑦𝑠 , 

then component failed this mission. However, if the 

component failed after the system failed then component 

incorrectly failed the mission, and its status must be 

corrected. The following sub-steps outline this verification of 

failure process. 
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Sub-step 9.1: For all failed components, determine the 

components time of failure 

Determining the failure time starting and dormant warm 

components, 𝑡𝑚,𝑖 , is based on the difference between their 

respective failure interarrival time, 𝑡𝑓,𝑖 ,  and the current 

operating time, 𝑡𝑜𝑝,𝑖 . Equation 14 shows how starting 

component mission failure times are determined and 

Equation 15 shows how the mission failure time of spare 

components with a dormancy factor that do not become 

active. 

𝑡𝑚,𝑖 = 𝑡𝑓,𝑖 − 𝑡𝑜𝑝,𝑖 (14) 

𝑡𝑚,𝑖 = (𝑡𝑓,𝑖 − 𝑡𝑜𝑝,𝑖) ×
1

𝑞𝑖

 (15) 

However, for both warm and cold spare who become active 

and operate, the time of failure is more complex. The time to 

failure requires the failure time of the primary component, 

𝑡𝑚,𝑖
∗ . Equation 16 shows how the mission failure time of 

active spares occurs after the failure time of the primary 

component. 

𝑡𝑚,𝑖 = 𝑡𝑚,𝑖
∗ + (𝑡𝑓,𝑖 − 𝑡𝑜𝑝,𝑖) (16) 

Once a time of failure has been determined for all failed 

components, continue to the next sub-step. 

Sub-step 9.2: Evaluate components for failure 

Following sub-step 1, a mission failure time, 𝑡𝑚,𝑖, has been 

generated for all failed components. This sub-step evaluates 

if components failed before or after the system failure time 

𝑡𝑓,𝑠𝑦𝑠. If the component failed after the system failure time, 

𝑡𝑚,𝑖 > 𝑡𝑓,𝑠𝑦𝑠, then the component’s status is updated back to 

working, 𝑆𝑖 = 1 , because the components failure did not 

occur. If the components failure time is equal to less than the 

system failure time, 𝑡𝑚,𝑖 ≤ 𝑡𝑓,𝑠𝑦𝑠, no action is required. 

Step 10: Determine Degraded Time, Restore Components, 

and Track System and Component Data 

At this point in the mission simulation, whether system 

failure has occurred, the time of system failure (if applicable), 

and which components failed and when failure occurred 

during the mission have all been evaluated and determined. 

Hours of degraded operations must now be calculated as well 

as accounting for repairs and restoration of failed 

components. 

Sub-step 10.1: Determine system degraded time 

This calculation is done by finding the failure time of the first 

non-critical component, 𝑡𝑚,𝑖. The time the first non-critical 

component failed is equal to 𝑡𝑑,𝑠𝑦𝑠 , which is the time on the 

current mission the system began operating degraded. The 

time on the current mission the system operated degraded is 

added to the accumulated time operating degraded. If the 

mission was completed, the accumulated system degraded 

time is calculated using Equation 17. However, if system 

failure occurred, then Equation 18 is used to determine 

additional degraded time. 

𝑇𝑑 = 𝑇𝑑 + 𝑇𝑚 − 𝑡𝑑,𝑠𝑦𝑠 (17) 

𝑇𝑑 = 𝑇𝑑 + 𝑡𝑓,𝑠𝑦𝑠 − 𝑡𝑑,𝑠𝑦𝑠 (18) 

Sub-step 10.2: Restore components and track data 

This is the final step of the mission loop when component 

failures occurred. In this step, operational time and 

maintenance data will be updated for the system and all 

components. Correct accounting of operational time ensures 

that the impact of repeat missions and prolonged operations 

are properly accounted for. However, the updates are 

dependent on whether the system completed the mission and 

whether the component is working. For the system data, if the 

mission was completed, system data can be updated using 

Equations 9 and 12. However, if the system failed use 

Equations 19 and 20 to account for accumulated operating 

time and the number of system failures. 

𝑇𝑜𝑝,𝑠𝑦𝑠 = 𝑇𝑜𝑝,𝑠𝑦𝑠 + 𝑡𝑓,𝑠𝑦𝑠 (19) 

𝑁𝑓,𝑠𝑦𝑠 = 𝑁𝑓,𝑠𝑦𝑠 + 1 (20) 

The following subsections describe how updates are done 

based on three possible scenarios for the components: (1) 

Mission completed, working components. (2) System failure, 

working components. (3) Failed components. 

Mission Completed, Working Components 

The first subsection deals with components that are still 

working and the system completed the mission. Component 

data for working, starting components can be updated using 

Equation 10. However, spare component updates are 

dependent on whether the spares became active. If a spare 

component did not become active, Equation 11 can be 

utilized. However, if a spare component did become active 

during the mission, then Equation 21 is to be used. 

𝑡𝑜𝑝,𝑖 = 𝑡𝑜𝑝,𝑖 + 𝑞𝑖 × 𝑡𝑚,𝑖
∗ + (𝑇𝑚 − 𝑡𝑚,𝑖

∗ ) (21) 

System Failure, Working Components 

The next subsection deals with components that are still 

working but the system failed the mission. Component data 

for working, starting components can be updated using 

Equation 22. However, spare component updates are 

dependent on whether the spares became active. If a spare 

component did not become active, Equation 23 can be 

utilized. However, if a spare component did become active 

during the mission, then Equation 24 is to be used. 

𝑡𝑜𝑝,𝑖 = 𝑡𝑜𝑝,𝑖 + 𝑡𝑓,𝑠𝑦𝑠 (22) 

𝑡𝑜𝑝,𝑖 = 𝑡𝑜𝑝,𝑖 + 𝑞𝑖 × 𝑡𝑓,𝑠𝑦𝑠 (23) 
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𝑡𝑜𝑝,𝑖 = 𝑡𝑜𝑝,𝑖 + 𝑞𝑖 × 𝑡𝑚,𝑖
∗ + (𝑡𝑓,𝑠𝑦𝑠 − 𝑡𝑚,𝑖

∗ ) (24) 

Failed Components 

The final subsection covers the updates for failed 

components. Unlike the previous subsections which only 

account for the additional operational time of the 

components, this subsection must also account for the repairs 

necessary to restore components. For all failed components, 

the time of failure during the mission, 𝑡𝑚,𝑖, has already been 

determined. Therefore, the first step is accounting for the 

additional accumulated operational time prior to failure. For 

starting components this is accomplished with Equation 25 

and for spares this is done with Equations 26 and 27 with 

Equation 27 used if the spare became active. The time spent 

operating prior to failure must also be considered for repair 

age, 𝑅𝑖 , as shown in Equations 28-30 for starting 

components, dormant spares, and active spares, respectively. 

𝑇𝑜𝑝,𝑖 = 𝑇𝑜𝑝,𝑖 + 𝑡𝑜𝑝,𝑖 + 𝑡𝑚,𝑖 (25) 

𝑇𝑜𝑝,𝑖 = 𝑇𝑜𝑝,𝑖 + 𝑡𝑜𝑝,𝑖 + 𝑞𝑖 × 𝑡𝑚,𝑖 (26) 

𝑇𝑜𝑝,𝑖 = 𝑇𝑜𝑝,𝑖 + 𝑡𝑜𝑝,𝑖 + 𝑞𝑖 × 𝑡𝑚,𝑖
∗ + (𝑡𝑚,𝑖 − 𝑡𝑚,𝑖

∗ ) (27) 

𝑅𝑖 = 𝑅𝑖 + 𝑡𝑜𝑝,𝑖 + 𝑡𝑚,𝑖  (28) 

𝑅𝑖 = 𝑅𝑖 + 𝑡𝑜𝑝,𝑖 + 𝑞𝑖 × 𝑡𝑚,𝑖 (29) 

𝑅𝑖 = 𝑅𝑖 + 𝑡𝑜𝑝,𝑖 + 𝑞𝑖 × 𝑡𝑚,𝑖
∗ + (𝑡𝑚,𝑖 − 𝑡𝑚,𝑖

∗ ) (30) 

Once the operational time has been added for accumulated 

operational time and repair ages, all failed components 

undergo repairs. The number of repair events and minimum 

repairs are accounted for using Equations 31 and 32. The 

operational time is set back to zero, 𝑡𝑜𝑝,𝑖 = 0  following 

repairs. 

𝑁𝑐𝑚,𝑖 = 𝑁𝑐𝑚,𝑖 + 1 (31) 

𝑁𝑟,𝑖 = 𝑁𝑟,𝑖 + 1 (32) 

If 𝑁𝑟,𝑖 > 𝑁𝑟,𝑚𝑎𝑥,𝑖, then the repair age is reset back zero. After 

𝑁𝑟,𝑚𝑎𝑥,𝑖  minimum repairs the component is replaced, vice 

repaired. This resets the repair age as a new component is 

installed. This process of conducting several minimum 

repairs and an eventual replacement allows the methodology 

to capture the impacts of repeat minimum repairs but does not 

allow the next failure interarrival time to become so small 

that mission completion becomes unlikely. The final step is 

generating a new failure interarrival time, 𝑡𝑓,𝑖 . This is done 

using Equation 5. 

If 𝑔 < 𝑁𝑚 return to Step 4. If 𝑔 = 𝑁𝑚 continue to Step 11. 

Step 11: Storing Iteration Data 

To account for any operational time on component still 

functioning on the final mission, the current operational time 

must be added to the accumulated time, as shown in Equation 

33. 

𝑇𝑜𝑝,𝑖 = 𝑇𝑜𝑝,𝑖 + 𝑡𝑜𝑝,𝑖 (33) 

After executing the final mission, a single iteration of the 

Iteration Loop has been completed. The data from the 

Mission Loop is stored in a database for future use and 

assessment. The data stored in the data base is the following 

variables:

𝑇𝑜𝑝,𝑠𝑦𝑠,ℎ, 𝑇𝑜𝑝,𝑖,ℎ,𝑇𝑑,ℎ, 𝑇𝑑,ℎ, 𝑁𝑓,𝑠𝑦𝑠,ℎ, 𝑁𝑐𝑚,𝑖,ℎ, 𝑁𝑝𝑚,𝑖,ℎ, 𝑁𝑚,𝑐,ℎ , and 

𝑁𝑓,𝑗,ℎ. 

If ℎ < 𝑁 return to Step 2. If ℎ = 𝑁 continue to Step 12. 

Step 12: Evaluating Iteration Data 

Once the Iteration Loop has been completed, the database of 

stored information is evaluated. The evaluation is done by 

determining mean and standard deviation of the values stored 

in the database as shown in Figure 1. A sample mean and 

standard deviation determination is shown with Equations 34 

and 35. 

�̅�𝑜𝑝,𝑠𝑦𝑠 =
∑ 𝑇𝑜𝑝,𝑠𝑦𝑠,ℎ

𝑁
ℎ

𝑁
 (34) 

𝑆(𝑇𝑜𝑝,𝑠𝑦𝑠) = [
∑ (𝑇𝑜𝑝,𝑠𝑦𝑠,ℎ − �̅�𝑜𝑝,𝑠𝑦𝑠)2𝑁

ℎ=1

𝑁
]

1
2⁄

 (35) 

4. CASE STUDY AND RESULTS 

This section will demonstrate the application of the proposed 

methodology to a USV case study from the literature (Gao et 

al. 2021). 

4.1. Case Study Setup 

The USV is comprised of 5 subsystems and 71 total 

components. The five subsystems are: power, 

communication, navigation, navigation control, and 

environment data acquisition. The USV’s DFTs contain OR, 

AND, FDEP, SPARE, and VOTING gates. The DFTs also 

contain cold spare (CSP) and warm spare (WSP) 

components. The USV DFTs are shown in Figures 2 to 7. 

Figure 2 shows how the 5 subsystems connect to the overall 

USV system while Figures 3-7 detail the DFTs of each of the 

subsystems. These figures are adapted from Gao et al. (2021) 

and maintain the same ordering of component numbers. 

Additionally, the acronyms in the subsystem specific DFTs 

shown in Figures 3-7 can be found in the article by Gao et al. 

(2021). The module breakdown is from Step 0 of the 

methodology discussed in Section 3 and is summarized in 

Table 1. The following paragraphs will detail all the 

information needed for the methodology. 
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Figure 2: System DFT (adapted from Gao et al. (2021)). PS: 

power subsystem. CS: communication subsystem. NS: 

navigation subsystem. NCS: navigation control subsystem. 

EDAS: environment data acquisition subsystem. 

 

Figure 3: Power Subsystem (PS) DFT (adapted from Gao et 

al. (2021)). PGD: power generation device. PSD: power 

storage device. PDD: power distribution device. LBPS: 

lithium battery pack subsystem. TS: transformer set. 

 

Figure 4: Communication Subsystem (CS) DFT (adapted 

from Gao et al. (2021)). ICD: industrial communication 

device. 

 

Figure 5: Navigation Subsystem (NS) DFT (adapted from 

Gao et al. (2021)). IPD: information processing device. 

END: external navigation device. RNS: radio navigation 

subsystem. INS: inertial navigation subsystem. GPS: global 

positioning subsystem.  

 

Figure 6: Navigation Control Subsystem (NCS) DFT 

(adapted from Gao et al. (2021)). TCD: track control device. 

SAD: situational awareness device. PRS propulsion 

subsystem. PD: propulsion device. FS: fuel subsystem. 

CWS: cooling water subsystem. LPD: left propulsion 

device. RPD: right propulsion device. LOS: lubricating oil 

subsystem. PTS: power transmission shafting. 

 

Figure 7: Environment Data Acquisition Subsystem (EDAS) 

DFT (adapted from Gao et al. (2021)) 

Module # Comp. # Module # Comp. # 

1 9 15 40 

2 10 16 41 

3 11 17 42 

4 1,2 18 43 

5 12,13 19 44 

6 3, 4, 7 20 59, 60 

7 5, 6, 8 21 61, 62 

8 14 22 45-58 

9 15-24 23 67 

10 25 24 68 

11 26 25 69 

12 27-37 26 70 

13 38 27 71 

14 39 28 63-66 

Table 1: USV Module Breakdown 

System operating life, mission lengths, and iteration data are: 

𝑇𝑙𝑖𝑓𝑒 = 200,000 ℎ𝑜𝑢𝑟𝑠 , 𝑇𝑚 = 200 ℎ𝑜𝑢𝑟𝑠,  and 𝑁 = 1000 . 

The number of missions, 𝑁𝑚, is 1000. The dormancy factor, 

𝑞𝑖, for cold spares is zero and 0.5 for warm spares. Failure 

data is contained in Tables 2 and 3. The failure data is from 

EPRD2014 and NPRD2016. However, the failure data from 

EPRD2014 and NPRD2016 is for an exponential distribution. 

To utilize a NHPP and model impacts of minimum repairs, 

the failure data was converted for use with a Weibull 

distribution with a shape parameter slightly greater than one. 

A shape parameter slightly greater than one will keep the 

model close to an exponential distribution (𝛽 = 1) but add 
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the element of an increasing failure rate with time and repairs. 

Therefore, all components have the same shape parameter, 

𝛽 = 1.2, and a scale parameter that gives the same MTTF as 

the exponential failure data. Minimum repairs will be 

conducted for the first 5 repairs, then the component will be 

replaced. 

For investment and maintenance costs, no specific values are 

given in the study by Gao et al. (2021) However, other studies 

by Yang et al. (2023) and Dui et al. (2023) for unmanned 

system provide cost data for components in comparable 

systems. Using the values for CM and PM, values are 

approximated for this study and given in Tables 2 and 3. 

System failure costs and costs per hour of operation are also 

not given. The study by Yang et al. (2023) considers the costs 

for recovery of an AMS following failure and thus provides 

comparable values for this study of a USV. For hourly 

operations costs, unlike a production system, the system is 

not generating profit during its operations. Instead, the value 

of each hour is based on the total cost of the system and its 

operating life. O’Rourke (2019) provides information on the 

United States Navy’s USV program. In the study by 

O’Rourke (2019), the value of a medium sized USV is listed 

at $35,000,000. Using this value and the operating life of 

200,000 hours, an hour of operations can be valued at $175. 

System costs are summarized in Table 4. Finally, since this 

study is the first of its kind, there was no specific data given 

for investment cost for research, development, and

Component 

Number 

Failure Rate  

(𝒉𝒓𝒔−𝟏) 

Scale Parameter 

 (𝒉𝒓𝒔−𝟏)  

CM Cost 

 ($) 

PM Cost  

($) 

CM Investment Cost  

($)  

1 1.150×10-5 92,440 12,000 8,000 15,300 

2 1.150×10-5 92,440 12,000 8,000 15,300 

3 3.773×10-3 280 1,000 500 100,000 

4 3.773×10-3 280 1000 500 100,000 

5 1.680×10-4 6330 800 600 75,500 

6 1.680×10-4 6330 800 600 75,500 

7 8.707×10-7 1,220,960 1,500 500 13,700 

8 8.707×10-7 1,220,960 1,500 500 13,700 

9 4.515×10-6 235,460 4,000 1,000 14,300 

10 4.515×10-6 235,460 4,000 1,000 14,300 

11 2.131×10-5 49,890 2,500 1,200 16,900 

12 4.672×10-5 22,750 5,000 3,000 21,900 

13 4.672×10-5 22,750 5,000 3,000 21,900 

14 8.456×10-7 1,257,200 10,000 2,000 13,700 

15 5.629×10-7 1,888,590 7,500 5,000 13,700 

16 5.793×10-5 18,350 3,000 1,800 24,600 

17 5.793×10-5 18,350 3,000 1,800 24,600 

18 5.629×10-7 1,888,590 7,500 5,000 13,700 

19 3.482×10-7 3,053,100 8,000 7,000 13,700 

20 3.482×10-7 3,053,100 8,000 7,000 13,700 

21 5.629×10-7 1,888,590 7,500 5,000 13,700 

22 5.793×10-5 18,350 3,000 1,800 24,600 

23 5.793×10-5 18,350 3,000 1,800 24,600 

24 5.629× 10-7 1,888,590 7,500 5,000 13,700 

25 2.606×10-5 40,790 2,200 2,000 17,800 

26 5.497×10-6 193,390 2,000 1,000 14,400 

27 1.872×10-5 56,790 1,000 800 16,500 

28 1.250×10-4 8,500 9,000 6,000 48,700 

29 1.407×10-4 7,560 5,000 2,000 57,200 

30 1.888×10-6 563,080 8,500 6,500 13,900 

31 5.629×10-7 1,888,590 7,500 5,000 13,700 

32 1.888×10-6 563,080 8,500 6,500 13,900 

33 5.629×10-7 1,888,590 7,500 5,000 13,700 

34 4.672×10-5 22,750 2,500 1,000 21,900 

35 1.243×10-5 85,530 7,500 3,000 15,400 

Table 2: Data for Components 1-35 
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installment of a component’s CMS. For this study, the 

investment cost of a CMS is assumed but is inversely 

correlated with the components shape parameter. The smaller 

the shape parameter, the smaller the MTTF, the greater the 

costs of a CMS. 

4.2. Proposed CBM Strategy #1 

The first potential CBM strategy will be to monitor all critical 

components. The critical components are: 9, 10, 11, 14, 25, 

26, 38-44, and 67-71 to a 𝑃𝐶𝑀𝑆,𝑖 value of 0.5. This CBM 

strategy will be evaluated against the current CM only 

strategy. The results are shown in Figure 8. Only components 

with greater than 10 failures are shown. Figure 8 shows the 

results of comparing the two strategies.  

Figure 8 contains the mean value of the number CM and PM 

activities performed for each component for each strategy 

and the associated 95% confidence interval error bars. Using 

the complete results and mean values of maintenance 

requirements, the results of Strategy #1 indicate that adding 

CMS to critical components reduces maintenance costs by 

$806,200 for an investment cost of $420,700. Additionally, 

the system operated for 5,610 more hours but 3,022 more 

hours degraded. The costs of maintenance, lost operational 

time, and degrade compared to the investment costs results in 

an ROI of Strategy #1 of 4.53. 

Component 

Number 

Failure Rate 

(𝒉𝒓𝒔−𝟏) 

Scale Parameter 

(𝒉𝒓𝒔−𝟏)  

CM Cost 

($) 

PM Cost 

($) 

CM Investment Cost 

($)  

36 1.171×10-5 90,780 1,200 800 15,300 

37 1.452×10-6 732,150 8,000 7,000 13,800 

38 3.120×10-6 342,710 2,000 1,800 14,000 

39 4.753×10-6 223,670 2,000 1,800 14,300 

40 6.239×10-6 170,390 800 150 14,500 

41 1.248×10-5 85,180 800 150 15,500 

42 1.095×10-5 97,090 1,000 600 15,200 

43 1.738×10-4 6,120 1,500 800 80,100 

44 1.738×10-4 6,120 1,500 800 80,100 

45 1.537×10-4 6,920 12,000 8,000 65,300 

46 1.961×10-5 54,210 6,000 2,000 16,600 

47 1.961×10-5 54,210 6,000 2,000 16,600 

48 1.086×10-6 978,900 8,000 3,500 13,800 

49 1.268×10-6 838,400 4,500 4,000 13,800 

50 1.248×10-5 85,180 4,500 4,000 15,500 

51 8.933×10-4 1,190 6,000 2,000 90,000 

52 1.537×10-4 6,920 12,000 8,000 65,300 

53 1.961×10-5 54,210 6,000 2,000 16,600 

54 1.961×10-5 54,210 6,000 2,000 16,600 

55 1.086×10-6 978,900 8,000 3,500 13,800 

56 1.268×10-6 838,400 4,500 4,000 13,800 

57 1.248×10-5 85,180 4,500 4,000 15,500 

58 8.933×10-4 1,190 6,000 2,000 90,000 

59 1.429×10-4 7,440 6,000 2,000 58,500 

60 1.429×10-4 7,440 6,000 2,000 58,500 

61 1.545×10-4 6,880 6,000 2,000 65,800 

62 1.545×10-4 6,880 6,000 2,000 65,800 

63 1.166×10-5 91,170 5,000 4,500 15,300 

64 1.243×10-5 85,530 5,000 4,500 15,400 

65 6.075×10-5 17,500 4,000 2,500 25,300 

66 3.801×10-5 27,970 3,000 2,200 20,100 

67 1.854×10-5 57,340 1,500 800 16,400 

68 1.854×10-5 57,340 1,500 800 16,400 

69 8.456×10-7 1,257,200 10,000 2,000 13,700 

70 3.740×10-6 284,250 2,200 2,000 14,100 

71 9.268×10-5 11,470 3,500 1,500 35,000 

Table 3: Data for Components 36-71 
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However, looking at Figure 8, it can be observed that some 

critical components such as 9, 10, 14, 26, 38-42, 69, and 70 

had an insignificant number of failures compared to other 

non-critical components such as 3, 4, 51, and 58. Therefore, 

the next strategy will remove the CMS from the listed critical 

components with minimal failures and add a CMS to the 

listed non-critical components. 

4.3. Proposed CBM Strategy #2 

The second strategy adjusts the components being monitored. 

As previously stated, the results from Strategy #1 highlight 

that some components did not need a CMS while others did. 

The results of the new strategy compared to the current one 

of CM only are shown in Figure 9.  

 

Figure 8: Bar graph with 95% confidence interval error bars 

comparing the CM and PM activities between the base 

strategy and Strategy #1 

Once again, using the mean values of maintenance 

requirements, the results of Strategy #2 show that adding 

CMS to components 3, 4, 11, 25, 43, 44, 51, 58, 67, 68, 70, 

and 71 reduces maintenance costs by $3,151,500 for an 

investment cost of $642,700. Additionally, the system 

operated for 16,490 more hours but for 2,001 more hours 

degraded. The costs of maintenance, lost operational time, 

and degraded time compared to the investment costs results 

in an ROI of Strategy #2 of 9.72. 

5. DISCUSSION 

The case study demonstrates the effectiveness of the CBA for 

CBM decisions. The CBA showed that Strategy #2 would be 

preferred based on a better ROI. Even though less 

components were monitored, the components selected for 

Strategy #2 had a higher investment cost. Yet, the investment 

was worth it by having a twice as good ROI. However, there 

are other factors besides the final ROI worth noting. 

The first item worth discussing is the connection between 

components based on maintenance strategies. When 

comparing the current strategy to Strategy # 1, there is an 

increase in the number of CM events for some components, 

such as components 3 and 4. This is because, as CBM was 

implemented the system operated longer and thus 

experienced more component level failures in some 

components. These additional failures would be 

counterproductive to efforts to avoid unnecessary 

maintenance costs and thus their impact cannot be ignored. 

The impact of component level maintenance is captured by 

MCS and the MDFTA. These tools allowed us to simulate the 

impacts of maintenance and capture the changes across 

components and the system. 

 

Figure 9: Bar graph with 95% confidence interval error bars 

comparing the CM and PM activities between the base 

strategy and Strategy #2 

The next item worth mentioning is noticing how CBM 

impacts some components differently. Components 43 and 

44 had a 0.5 𝑃𝑐𝑚𝑠  value under both strategies. In both 

strategies, the number of component failures for components 

43 and 44 were reduced by about 50%. However, observing 

component 3 we can observe the change in failures due to the 

addition of a 0.5 𝑃𝐶𝑀𝑆 CMS was not a 50% reduction. This is 

likely due to component 3 having very small MTTFs 

compared to other components in the system. Therefore, even 

if maintenance is conducted on component 3, there is a 

considerable probability it may fail the next trip regardless of 

recent repairs. 

System lifetime 𝑇𝑙𝑖𝑓𝑒  200,000 hours 

Mission time 𝑇𝑚 200 hours 

Number of missions 𝑁𝑚 1,000 

Number of iterations 𝑁 1,000 

Cost of system failure 𝐶𝑠𝑦𝑠,𝑓 $20,000 

Cost of an operational hour 𝐶𝑂𝑃 $175 

Degraded factor 𝑑 0.2 

Table 4: System and Mission Data 
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The next item to discuss is how the final ROI values could be 

impacted by other topics mentioned in maintenance 

literature, such as storage or holding costs and discounting. 

The storage of spare parts can have a cost associated with it 

and this cost, if included, could change the impact of a new 

maintenance strategy. The storage costs could be potentially 

added to the cost avoidance calculations as shown in 

Equations 3 and 4. For this study, storage costs were assumed 

to be negligible. However, if storage costs had been included 

in this study, they likely would have made the ROI larger as 

the proposed maintenance strategies resulted in the system 

experiencing less failures and thus less spare parts would 

have been needed and stored. The result would have been 

maintenance costs, including the cost of storage being smaller 

for the new strategy and thus a larger ROI. 

Another maintenance impact could be discounting. 

Discounting is where conducting maintenance on one 

component is done in tandem with maintenance on a different 

component since combining the activities would be cheaper 

than performing each item separately. Discounting was not 

included in this study. However, including discounting if a 

system does receive a discount when combining maintenance 

items would obviously change the results and make them 

more accurate for that system. Consider this example for 

combining discounting and CBM and maximizing the 

impact. Say that components A and B in a system undergo 

maintenance together, hence are subject to discounting. By 

using the methodology discussed in this paper, the 

organization could attempt to add a CMS to only component 

A or only component B or to both and compare the results. 

There is a good chance that if the components work together, 

monitoring one may be sufficient and cost effective 

compared to monitoring both or none. Discounting and 

storage costs could be added to the methodology as discussed 

and improve the results if the organization deems them 

necessary. 

Finally, for verification of the results of the case study, the 

article by Gao et al. (2021) is used. In the article, the 

probability of failure from each of the 5 subsystems that 

comprise the USV are provided. The results are that if system 

failure occurred, the probability of each subsystem causing 

failure are 0.612, 0.372, 0.090, 0.024, and 0.0005 for the 

power, navigation control, environment data acquisition, 

navigation, and communication subsystems, respectively. In 

our results, using the same failure rates at Gao et al. (2021) 

and a replacement only strategy, we obtain the following 

subsystem failure probabilities: 0.595, 0.319, 0.069, 0.0164, 

and 0.0005. These values correlate with Gao et al. (2021) and 

allow us to verify the results generated by the MDFTA for 

later CBA calculations.  

6. CONCLUSION 

In this paper for the first time a CBA is conducted for adding 

CMS to an unmanned system while considering unmanned 

system maintenance challenges, the impact CMSs at the 

component level has on the entire system, and the cost of 

degraded system operations. The study combines MDFTA 

and MCS to estimate the maintenance requirements for an 

unmanned system, both with and without CBM. The 

differences in maintenance requirements due to CBM and the 

associated investment costs are then used to determine the 

ROI of the new CBM strategy. This study shows how the 

value of the ROI of various proposed CBM strategies can be 

determined and used to identify the better strategy. While 

conducting the CBA to determine the ROI of a new strategy, 

the approach considered challenges of unmanned systems, 

accounted for degraded operations, and took a system-wide 

approach to maintenance impacts. 

The presented methodology was applied to a USV case study 

and determined the ROI for two different CBM strategies 

when compared to a CM only policy. The results showed that 

due to limited maintenance opportunities and high costs of 

system failure, monitoring less components and non-critical 

components led to a greater ROI. The results of the approach 

were verified against the previously completed failure results 

for the USV (Gao et al. 2021). 

This study can be implemented by organizations operating 

unmanned systems and contemplating implementing CMS 

and CBM to their systems The study gives organizations an 

analysis tool for evaluating the possible value of CBM, which 

is of great need in industry, according to Berdinyazov et al. 

(2011). However, CMS and PHM techniques can also extend 

beyond maintenance and improve operations of unmanned 

systems as well. In a study by Hazra, Chatterjee, Southgate, 

Weiner, Growth, and Azarm (2024), the authors present a 

novel framework for optimizing operational profiles of a 

USV using PHM techniques. This shows how CMS and PHM 

can have value outside of just maintenance. 

This study is unique by incorporating unmanned system 

challenges like high system failure costs and no maintenance 

personnel present during operations in system simulations 

and overall CBA. Additionally, the presented study is very 

flexible and allows for extensive sensitivity analysis. The 

flexibility would enable users to include variations in cost 

data, maintenance strategies, and cost grouping factors which 

would improve the accuracy of the study and make it more 

practical. 

Future works on this topic can include exploration into many 

areas covered by the study. Optimization is one area that 

could be further explored. Optimization could occur for the 

CBA if there was some way to demonstrate the cost of 

different levels of performance of the CMS for different 

components. There are many factors which could impact the 

CMS accuracy. One such factor could be if the failure occurs 

suddenly or if a condition progresses to failure over some 

period. A sudden failure may be more difficult to detect and 

prevent where a condition that worsen over time may be 

easier to monitor and lead to higher accuracy for prevention. 
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The investment costs for the various CMSs would then not 

only depend on the component but the detection accuracy as 

well. Optimization techniques could then identify which 

components to monitor and to what degree of accuracy to 

achieve the greatest return. 

Another area for potential future work could be the 

incorporation of prognostics and its associated benefits. 

These benefits could be added into the CBA and make the 

analysis more thorough, possibly revealing additional cost 

saving areas of using CMS. The addition of CMS to a system 

can have more benefits than just completing more 

preventative maintenance and lowering maintenance costs. 

Having monitoring systems providing operational data about 

critical areas of the overall system can be used to improve 

operations, both now and in the future. 
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ACRONYMS 

AMS Autonomous marine systems 

AUV Autonomous underwater vehicles 

BN Bayesian network 

CA Cost avoidance 

CBA Cost-benefit analysis 

CBM Condition-based maintenance 

CDF Cumulative distribution function 

CEA Cost-effectiveness analysis 

CM Corrective maintenance 

CMS Condition monitoring system 

DFT Dynamic fault tree 

DFTA Dynamic fault tree analysis 

FDEP Functional dependency 

GSPN Generalized stochastic Petri nets 

LCC Life cycle cost 

MASS Maritime autonomous surface ships/systems 

MCS Monte Carlo simulation 

MDFTA Modular dynamic fault tree analysis 

MTTF Mean time to failure 

NHPP Non-homogenous Poisson process 

PAND Priority AND 

PHM Prognostics and health management 

PM Preventative maintenance 

ROI Return on investment 

SEQ Sequence enforcing 

SHM Structural health monitoring 

TBM Time-based maintenance 

UAV Unmanned aerial vehicle 

USV Unmanned surface vessel 

UV Unmanned vehicle 

NOMENCLATURE 

𝐶𝑐𝑚,𝑖  Cost of a corrective maintenance event for 

component 𝑖 ($) 

𝐶𝑝𝑚,𝑖  Cost of a preventative maintenance event for 

component 𝑖 ($) 

𝐶𝑖𝑛𝑣,𝑖  Investment cost for a condition monitoring system 

for component 𝑖 ($) 

𝐶𝑂𝑃 Cost per hour of operations ($) 

𝐶𝑓,𝑠𝑦𝑠 Cost of system failure ($) 

𝑑 Degraded factor, portion of lost hourly value due to 

degraded operations 

𝑔 Missions loop iteration counter 

ℎ Iterations loop iteration counter 

𝑖 Subscript for component number 

𝑗 Subscript for module number 

𝑀𝑗  Sets of components 𝑖 contained in module 𝑗 

(Array) 

𝑁𝑐𝑜𝑚𝑝 Number of components 

𝑁𝑚𝑜𝑑  Number of modules 

𝑁𝑓,𝑠𝑦𝑠 Number of system failures 

𝑁𝑓,𝑠𝑦𝑠,ℎ  Number of system failures for iteration ℎ 

𝑁𝑓,𝑗  Number of failures for module 𝑗 (Array) 

𝑁𝑓,𝑗,ℎ Number of failures for module 𝑗 for iteration ℎ 

𝑁𝑚 Number of missions for the system to attempt 

𝑁𝑚,𝑐 Number of missions completed successfully 

𝑁𝑚,𝑐,ℎ Number of missions completed successfully for 

iteration ℎ 

𝑁𝑐𝑚,𝑖  Number of CM for component 𝑖 (equivalent to the 

number of failures) (Array) 

𝑁𝑐𝑚,𝑖,ℎ Number of CM for component 𝑖 for iteration ℎ 

𝑁𝑝𝑚,𝑖  Number of PM for component 𝑖 (Array) 

𝑁𝑝𝑚,𝑖,ℎ Number of PM for component 𝑖 for iteration ℎ 

𝑁𝑟,𝑖  Number of minimum repairs conducted on 

component i 

𝑁𝑟,𝑚𝑎𝑥,,𝑖  Maximum number of minimum repairs for 

component i 

𝑃𝐶𝑀𝑆,𝑖  Probability of detection for the CMS of component 

𝑖 
𝑞𝑖  Dormancy factor of component 𝑖 
𝑅𝑖  Repair age of component i 

𝑆𝑖  Status of component 𝑖 (1=working, 0=failed) 

(Array) 

𝑡𝑑,𝑠𝑦𝑠 Time on the current mission the system begins 

operating degraded 

𝑡𝑓,𝑖  Failure interarrival time of component 𝑖 (Array) 

𝑡𝑓,𝑠𝑦𝑠 Time on the current mission the system failed 

𝑡𝑘,𝑗 Time on the current mission failure of module 𝑗 

occurs (Array) 

𝑡𝑚,𝑖  Time on the current mission component 𝑖 fails 

(Array) 

𝑡𝑚,𝑖
∗  Failure time of a primary component in a spare 

gate 
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𝑡𝑜𝑝,𝑖  Accumulated operating time of the current 

component 𝑖 (Array) 

𝑇𝑑  Accumulated time the system spent degraded 

𝑇𝑑,ℎ Accumulated time the system spent degraded for 

iteration ℎ 

𝑇𝑙𝑖𝑓𝑒  Desired operating lifetime of the system 

𝑇𝐿  Lost operational time for the system 

𝑇𝑚 Length of individual missions 

𝑇𝑜𝑝,𝑖  Accumulated operating time of component, 𝑖 

(Array) 

𝑇𝑜𝑝,𝑖,ℎ Accumulated operating time of component 𝑖 for 

iteration ℎ 

𝑇𝑜𝑝,𝑠𝑦𝑠 Accumulated operating time of system 

𝑇𝑜𝑝,𝑠𝑦𝑠,ℎ Accumulated operating time of the system for 

iteration ℎ 

𝑈 Random number generated for MCS and CMS 

[0,1] 

𝛼𝑖  Scale parameter of component 𝑖 
𝛽𝑖  Shape parameter of component 𝑖 

REFERENCES 

Ahmad, R., & Kamaruddin, S. (2012). An overview of time-

based and condition-based maintenance in industrial 

application. Computers and Industrial 

Engineering, 63(1), 135-149. 

Aslansefat, K., Kabir, S., Gheraibia, Y., & Papadopoulos, Y. 

(2020). Dynamic fault tree analysis: state-of-the-art in 

modeling, analysis, and tools. Reliability Management 

and Engineering, 73-112. 

Berdinyazov, A., Camci, F., Baskan, S., Sevkli, M., & 

Eldemir, F. (2011). Economic Analysis of Condition 

Based Maintenance. International Journal of Industrial 

Engineering, 18(8). 

Chang, C. H., Kontovas, C., Yu, Q., & Yang, Z. (2021). Risk 

assessment of the operations of maritime autonomous 

surface ships. Reliability Engineering and System 

Safety, 207, 107324. 

Compare, M., Antonello, F., Pinciroli, L., & Zio, E. (2022). 

A general model for life-cycle cost analysis of 

Condition-Based Maintenance enabled by PHM 

capabilities. Reliability Engineering and System 

Safety, 224, 108499. 

David, M., William, F., & John, R. (2014). Electronic Parts 

Reliability Data (EPRD2014). Reliability Information 

Analysis Center, Utica, NY. 

David, M., William, F., & John, R. (2016). Non-electronic 

Parts Reliability Data (NPRD2016). Reliability 

Information Analysis Center, Utica, NY. 

De Carlo, F., & Arleo, M. A. (2013). Maintenance cost 

optimization in condition based maintenance: a case 

study for critical facilities. International Journal of 

Engineering and Technology, 5(5), 4296-4302. 

De Jonge, B., & Scarf, P. A. (2020). A review on 

maintenance optimization. European journal of 

Operational Research, 285(3), 805-824. 

Dreyer, L. O., & Oltedal, H. A. (2019). Safety challenges for 

maritime autonomous surface ships: a systematic review. 

In The Third Conference on Maritime Human Factors. 

Haugesund. 

Dui, H., Xu, H., Zhang, L., & Wang, J. (2023). Cost-based 

preventive maintenance of industrial robot 

system. Reliability Engineering and System Safety, 240, 

109595. 

Gao, C., Guo, Y., Zhong, M., Liang, X., Wang, H., & Yi, H. 

(2021). Reliability analysis based on dynamic Bayesian 

networks: a case study of an unmanned surface 

vessel. Ocean Engineering, 240, 109970. 

Gascard, E., & Simeu-Abazi, Z. (2018). Quantitative analysis 

of dynamic fault trees by means of Monte Carlo 

simulations: Event-driven simulation 

approach. Reliability Engineering and System 

Safety, 180, 487-504. 

Guillén, A. J., Crespo, A., Gómez, J. F., & Sanz, M. D. 

(2016). A framework for effective management of 

condition based maintenance programs in the context of 

industrial development of E-Maintenance 

strategies. Computers in Industry, 82, 170-185. 

Gulati, R., & Dugan, J. B. (1997). A modular approach for 

analyzing static and dynamic fault trees. In Annual 

Reliability and Maintainability Symposium (pp. 57-63). 

IEEE. 

Hazra, I., Chatterjee, A., Southgate, J., Weiner, M. J., Groth, 

K. M., & Azarm, S. (2024). A Reliability-Based 

Optimization Framework for Planning Operational 

Profiles for Unmanned Systems. Journal of Mechanical 

Design, 146(5), 051704. 

Kim, N. H., An, D., & Choi, J. H. (2017). Prognostics and 

health management of engineering 

systems. Switzerland: Springer International 

Publishing. 

Komianos, A. (2018). The autonomous shipping era. 

operational, regulatory, and quality 

challenges. TransNav: International Journal on Marine 

Navigation and Safety of Sea Transportation, 12(2). 

Márquez, F. P. G., Lewis, R. W., Tobias, A. M., & Roberts, 

C. (2008). Life cycle costs for railway condition 

monitoring. Transportation Research Part E: Logistics 

and Transportation Review, 44(6), 1175-1187. 

Modarres, M., Kaminskiy, M. P., & Krivtsov, V. 

(2016). Reliability engineering and risk analysis: a 

practical guide. CRC Press. 

O'Rourke, R. (2019). Navy large unmanned surface and 

undersea vehicles: Background and issues for congress. 

Congressional Research Service. 

Peng, Y., Dong, M., & Zuo, M. J. (2010). Current status of 

machine prognostics in condition-based maintenance: a 

review. The International Journal of Advanced 

Manufacturing Technology, 50, 297-313. 



INTERNATIONAL JOURNAL OF PROGNOSTICS AND HEALTH MANAGEMENT 

18 

Poppe, J., Boute, R. N., & Lambrecht, M. R. (2018). A hybrid 

condition-based maintenance policy for continuously 

monitored components with two degradation 

thresholds. European Journal of Operational 

Research, 268(2), 515-532. 

Prajapati, A., Bechtel, J., & Ganesan, S. (2012). Condition 

based maintenance: a survey. Journal of Quality in 

Maintenance Engineering, 18(4), 384-400. 

Rao, K. D., Gopika, V., Rao, V. S., Kushwaha, H. S., Verma, 

A. K., & Srividya, A. (2009). Dynamic fault tree analysis 

using Monte Carlo simulation in probabilistic safety 

assessment. Reliability Engineering and System 

Safety, 94(4), 872-883. 

Rastegari, A., & Bengtsson, M. (2014, June). Implementation 

of Condition Based Maintenance in manufacturing 

industry-A pilot case study. In 2014 International 

Conference on Prognostics and Health 

Management (pp. 1-8). IEEE. 

Rastegari, A., & Bengtsson, M. (2015). Cost effectiveness of 

condition based maintenance in manufacturing. In 2015 

Annual Reliability and Maintainability Symposium 

(RAMS) (pp. 1-6). IEEE. 

Rausand, M., & Hoyland, A. (2003). System reliability 

theory: models, statistical methods, & applications (Vol. 

396). John Wiley & Sons. 

Ruan, D., Ma, L., Yang, Y., Yan, J., & Gühmann, C. (2024). 

Improvement by Monte Carlo for Trajectory Similarity-

based RUL Prediction. IEEE Transactions on 

Instrumentation and Measurement. 

Sandborn, P., & Lucyshyn, W. (2023). System Sustainment: 

Acquisition and Engineering Processes for the 

Sustainment of Critical and Legacy Systems. 

Singh, V., & Verma, N. K. (2020). Intelligent condition-

based monitoring techniques for bearing fault 

diagnosis. IEEE Sensors Journal, 21(14), 15448-15457. 

Teixeira, H. N., Lopes, I., & Braga, A. C. (2020). Condition-

based maintenance implementation: a literature 

review. Procedia Manufacturing, 51, 228-235.Torti, M., 

Venanzi, I., Laflamme, S., & Ubertini, F. (2022). Life-

cycle management cost analysis of transportation 

bridges equipped with seismic structural health 

monitoring systems. Structural Health 

Monitoring, 21(1), 100-117. 

Torti, M., Venanzi, I., Laflamme, S., & Ubertini, F. (2022). 

Life-cycle management cost analysis of transportation 

bridges equipped with seismic structural health 

monitoring systems. Structural Health 

Monitoring, 21(1), 100-117. 

Verma, N. K., & Subramanian, T. S. S. (2012). Cost benefit 

analysis of intelligent condition based maintenance of 

rotating machinery. In 2012 7th IEEE Conference on 

Industrial Electronics and Applications (ICIEA) (pp. 

1390-1394). IEEE. 

Verma, N. K., Khatravath, S., & Salour, A. (2013). Cost 

benefit analysis for condition based maintenance. 

In 2013 IEEE Conference on Prognostics and Health 

Management (PHM) (pp. 1-6). IEEE. 

Yang, R., Vatn, J., & Utne, I. B. (2023). Dynamic 

maintenance planning for autonomous marine systems 

(AMS) and operations. Ocean Engineering, 278, 

114492. 

Yoon, J. T., Youn, B. D., Yoo, M., Kim, Y., & Kim, S. 

(2019). Life-cycle maintenance cost analysis framework 

considering time-dependent false and missed alarms for 

fault diagnosis. Reliability Engineering and System 

Safety, 184, 181-192. 

Zhang, T., Li, Q., Zhang, C. S., Liang, H. W., Li, P., Wang, 

T. M., & Wu, C. (2017). Current trends in the 

development of intelligent unmanned autonomous 

systems. Frontiers of Information Technology and 

Electronic Engineering, 18, 68-85. 

Zhao, H., Xu, F., Liang, B., Zhang, J., & Song, P. (2019). A 

condition-based opportunistic maintenance strategy for 

multi-component system. Structural Health 

Monitoring, 18(1), 270-283. 


