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ABSTRACT 

It is well known among practitioner, majority collected data 

from industrial process plant are unlabeled. The collected 

historical data if utilize, able to provide vital information of 

process plant condition. Learning from unlabeled dataset, this 

study proposed Unsupervised LSTM-KDE approach as a 

measure to predict fault in industrial process plant. The 

residual based fault detection approach framework is utilized 

with long short-term memory (LSTM) as the main pattern 

learner for nonlinear and multimode condition that usually 

appear in process plant. Furthermore, kernel density 

approach (KDE) is used to determine the threshold value in 

non-parametric condition of unlabeled data. The LSTM-KDE 

approach later is evaluated with numerical data as well as 

Tennessee Eastman process plant dataset. The performance 

also was compared to Principal Component Analysis (PCA), 

Local outlier factor (LOF) and Auto-associative Kernel 

Regression (AAKR) to further examine the LSTM-KDE 

performance. The experimental results indicate that the 

LSTM-KDE fault detection approach has better learning 

performance and accuracy compared to other approaches. 

1. INTRODUCTION 

Process monitoring has become a crucial stage in the 

manufacturing industry. One of the motivations is to ensure 

personnel safety and optimum output by monitoring the 

entire engineering system. The current manufacturing plant, 

equipped with up-to-date data acquisition tools such as the 

Internet of Things (IoT), supervisory control and data 

acquisition (SCADA), cloud computing, and networks, 

collects an abundance of informative datasets. Hence, 

massive, collected signals are available in order to provide 

vital indications of the current plant condition. Consequently, 

draw more attention towards data-driven fault detection in 

monitoring industrial processes. With this, high-volume and 

multivariate datasets are inevitable, given the multiple 

components and sensory network in the manufacturing 

system. Multivariate statistical process monitoring (MSPM) 

approaches such as principal component analysis (PCA) and 

partial least squares (PLS) were seen as prominent 

approaches to cater to the multivariate condition, but the 

limitation relies on linear and gaussian assumptions, which 

are unfit for today’s industrial system(K. Wang, Zhou, and 

Wang 2020). Since the collected signal relies heavily on time 

series conditions, adding in the temporal relation would 

increase the reliability of the fault detection approach 

(Ammann, Michau, and Fink 2020). In addition, time series 

analysis will also enable the future prediction of faulty cases 

in process monitoring rather than present-day time analysis. 

This extends condition monitoring to preventive measures. 

Other than that, high numbers of pieces of evidence presented 

by researchers focus on supervised and semi-supervised 

approaches in fault detection cases (Alrifaey, Lim, and Ang 

2021; Belagoune et al. 2021; Dong, Ma, and Liu 2019; Jin et 

al. 2020; Li et al. 2020; Monostori et al. 2016; Shadi, Ameli, 

and Azad 2022; Wang et al. 2018) . However, less study was 

found for the unsupervised approach, despite the majority of 

industrial monitoring data being unlabeled. Therefore, a non-

parametric time-series unsupervised fault detection approach 

will be beneficial considering the current industrial process 

plant environment. 
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Practically, the observation signal in process monitoring 

usually comes with a time series, an unknown distribution 

model, and parameter values. At the same time, 

determination threshold parameters such as the upper control 

limit, 𝑢𝐶𝐿 and the lower control limit, 𝑙𝐶𝐿  are important to 

distinguish the nominal signal condition from the faulty 

occurrences. Therefore, two (2) main factors that affect the 

efficiency of the non-parametric time series fault detection 

approach will be the time series model, which is based upon 

the choice of model, 𝑓 and the unknown data distribution, 

which heavily impacts the determination of the threshold 

value.  

Data-driven fault detection model, 𝑓  selection has been 

divided into three parts: MSPM, shallow artificial 

intelligence (shallow AI), and deep learning approaches. The 

limitation on MSPM was already discussed at the first 

paragraph. The shallow AI approach, which is usually more 

towards application-specific problem-solving and hand-

crafted feature extraction, shows satisfactory implementation 

in (Nagarajan, Kayalvizhi, and Karthikeyan 2016; Ren et al. 

2018; Shao et al. 2023; Tang et al. 2018). However, 

considering the massive dataset, nonlinear, and temporal 

relations that come together in engineering systems, deep 

learning approaches that provide more abstraction learning 

are found suitable as fault detection models. Recently, among 

many deep learning approaches, the authors found three (3) 

main architectures that were selected as unsupervised 

approaches to fault detection: deep belief network (DBN), 

autoencoder (AE), and long short-term memory (LSTM).  

The DBN architecture consists of multiple restricted 

Boltzmann machine (RBM) models. In fault detection, DBN 

was used as model, 𝑓 in (Ren et al. 2018) and (Anaissi and 

Zandavi 2019) due to its capability to capture nonlinear 

patterns in process plants. Implicitly, DBN was seen as a 

good feature extractor considering the complex signal 

analysis in engineering systems. However, less discussion 

was seen on temporal relations in both studies, but similar 

results of unsupervised AE fault detection were seen in (K. 

Wang et al. 2020) and (Xiang et al. 2020). (K. Wang et al. 

2020)   argued that the accuracy of AE fault detection is 

affected by noise in the dataset, and the selection of the 

activation function influences the detection margin. After 

that, the study proposed a deviation degree penalty to 

overcome this. Improvements in terms of fault alarm rate 

were seen, but this result does not reflect the time series 

analysis that is needed in the fault detection monitoring 

system. On the other hand, (Chen et al. 2020) innovated a 

new AE architecture with a Gated Recurrent Unit (GRU) 

neural network. The notion is to combine both feature 

extraction and correlation analysis in AE with a time series 

GRU model in order to improve the reconstruction loss in the 

normal state so that there is an obvious difference between a 

normal and faulty signal. However, the AE-GRU output 

distribution was assumed to be normal. Likewise 

(Amarbayasgalan et al. 2020) in, which chooses multivariate 

normal distribution for prior data distribution in training the 

sliding window variational autoencoder fault detection 

approach. Another perspective was in (Calabrese et al. 2020), 

which explained that the optimal subsequent time series 

window was generated by using autoregressive (AR), model 

learning with an autoencoder, and determining the threshold 

value using density-based spatial clustering of applications 

with noise (DBSCAN). However, using the clustering 

approach will require a detailed analysis of whether the 

grouped boundary is considered ‘normal’ or ‘faulty’. 

Experienced personnel with the data domain are needed in 

this stage (Jiang et al. 2018). Furthermore, a study in (Jiang 

et al. 2018) proposed another fault detection framework 

based on sliding window AE and Kernel Density Estimation 

(KDE) as methods for determining threshold values.  

Focusing on temporal relations or time series analysis, more 

attention is given to the recurrent neural network (RNN) 

family. Recently, LSTM, Bidirectional LSTM (BiLSTM), 

and GRU were among the selected architectures for the 

unsupervised fault detection approach (UFD). (Machado et 

al. 2022) proposed LSTM-AE for detecting multiple types of 

faulty signals at oil wells, whereas (J. Zhao et al. 2020) used 

BiLSTM with the same intention but in slow and fast 

dynamic system conditions. The same goes in (Kukkala, 

Thiruloga, and Pasricha 2020) using GRU to detect multiple 

intrusion attacks that are suitable for embedded systems. But 

the threshold determination for (Machado et al. 2022),(J. 

Zhao et al. 2020) and (Kukkala et al. 2020) is under gaussian 

assumption with the F1 score, Gaussian segment model, and 

maximum reconstruction score, respectively. Other than that, 

(Yu and Yan 2021) modified the LSTM architecture to 

capture better dynamicity in complex systems and KDE for 

fault detection. Furthermore, (Yu, Liu, and Ye 2021)studied 

lower-dimensional features representative of nonlinear 

complex systems using convolutional LSTM autoencoders 

(CLSTM-AEs) and KDE. In the perspective of early fault 

detection, (B. Zhao et al. 2020) solved the weak nonlinear 

system problem using CNN-LSTM, whereas the decision 

boundary nonlinear output frequency response functions 

(NOFRFs) indicator is specific to the application of the study 

area. On the other hand, (Liu et al. 2020) proposed multilayer 

LSTM and isolation forest (iForest) for detecting early 

warnings. However, the study did not mention how the 

selection of the iForest threshold value was made. 

Furthermore, (B. Wang, Liu, et al. 2020) developed a sliding 

window LSTM with a low-pass infinite impulse response 

(IIR) filter approach for large noise results, smoothing 

residuals for threshold determination with mean and standard 

deviation. The same concern was raised in (Ellefsen et al. 

2019) where uncertainty in maritime components resulted in 

a noise dataset, and LSTM was proposed as one of the 

methods for learning this type of dataset. However, in the 

study, the threshold determination is specifically based on the 

velocity and acceleration of the dataset. The real-time 

efficiency of LSTM was proven in (B. Wang, Peng, et al. 
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2020)and the scalability issue with small applications was 

studied in (Silva et al. 2022). Other than that, the GRU-

gaussian mixture VAE approach was developed to cover 

multimodal systems (Guo et al. 2020). In addition, LSTM 

was also used in the vibration analysis of a motor, but the 

threshold determination is specific to the application itself 

(Principi et al. 2019).  

From the literature, it is found that the LSTM family gives 

satisfactory performance as an UFD approach but less focus 

on the threshold determination. The study in (Guo et al. 2020, 

2020; Kukkala et al. 2020, 2020; Yu and Yan 2021; J. Zhao 

et al. 2020) decided the decision boundary for ‘normal’ and 

‘faulty’ under gaussian assumption, which in practice, under 

an unsupervised approach, no distribution conditions were 

known, whereas (Kourti and MacGregor 1995; B. Wang, Liu, 

et al. 2020; B. Wang, Peng, et al. 2020; B. Zhao et al. 2020) 

proposed application-specific threshold determination. It is 

also found that studies in (B. Zhao et al. 2020), and (Yu et al. 

2021) use a non-parametric kernel density estimation 

statistical approach, but evaluation not cover different modes 

dataset. Thus, this study will contribute to this area of study, 

which includes: 

1. Unsupervised non-parametric time series fault detection 

framework for a nonparametric distribution dataset in a 

complex engineering system using the LSTM model. 

2. Threshold determination via Kernel Density Estimation 

for non-parametric residual distribution in complex 

engineering systems.  

3. Comparison of several models with the proposed 

unsupervised fault estimation framework.  

2. PRELIMINARIES 

2.1. Statistical Process Control Chart Fault Detection  

In a multivariable process control system, 𝒏 × 𝒑 data matrix, 

𝑿 consists of 𝒏 number of observations and 𝒑 variables are 

usually statistically monitored using the 𝑇2  and 𝑄  or 𝑆𝑃𝐸 

statistical process control chart. The threshold limit of the 

control chart upper and lower bound are calculated as follows 

(Cacciarelli and Kulahci 2022; Gajjar and Palazoglu 2016; 

Kourti and MacGregor 1995; Reinartz, Kulahci, and Ravn 

2021): 

                    𝐿 =
𝑝(𝑚+1)(𝑛−1)

𝑚𝑛−𝑚−𝑝+1
𝐹𝑝,𝑚𝑛−𝑚−𝑝+1(𝛼)                    (1) 

Where 𝑭𝒋,𝒌(𝜶)  is 𝑭  distribution with 𝑗  and 𝑘  degree of 

freedom. The value of 𝑇2 > 𝐿 (𝑇2)  and 𝑄 > 𝐿(𝑄)  are 

considered as out of bounds. In Section 1, we discussed the 

assumption that the 𝑇2 and 𝑄 distribution in earlier studies 

was usually for supervised manners but in unsupervised 

conditions, an unknown distribution comes to attention.  

The 𝑇2  and 𝑄  are, on the other hand, calculated based on 

Equations (2) and (3) (Cacciarelli and Kulahci 2022; Gajjar 

and Palazoglu 2016; Reinartz et al. 2021) respectively. The 

representation of 𝑇2  and 𝑄  relies on the reconstruction 

error, 𝒆𝒊 between the learned model, 𝑓 from the data 𝑿 and 

the estimated value of 𝒙�̅� where 𝑺 is the estimated covariance 

matrix of 𝒑 variables. Thus, the selection of model, 𝑓 reflect 

the ability of the model to learn the signal pattern and best 

representation of data 𝑋 in normal conditions. 

                        𝑇2 = (𝑋𝑖 − 𝑥�̅�)
𝑇𝑆−1(𝑋𝑖 −  𝑥�̅�)                   (2) 

                     𝑄 = 𝑒𝑖𝑒𝑖
𝑇 = (𝑋𝑖 −  𝑥�̅�)

𝑇(𝑋𝑖 −  𝑥�̅�)                (3) 

The criteria that affect the selection of model, 𝑓 also already 

been discussed in Section 1, but in summary, they are listed 

below: 

1. A multivariable signal with various types of signals does 

not limit itself to a steady-state signal only. Some of the 

variables are in highly noisy, random, or sinusoidal 

conditions with an unknown distribution.  

2. The faulty type covers steps, random variation, slow 

drift, sticking, constant position, and an unknown type of 

source. 

3. Not only spatial relations but also temporal relations in 

the signal in the system.  

 

2.2. Long Short-Term Memory (LSTM)  

LSTM is considered part of the recurrent neural network 

(RNN) family that overcomes the vanishing gradient problem 

in the long-term dependency of temporal signals. The 

architecture of LSTM, as shown in Fig. 1, consists of four (4) 

elements which are an input gate, a cell, an output gate, and 

a forget gate [47]. The main aim of the listed components is 

to control the memory state, 𝑐  either to keep the previous 

information or let it pass to the next state while accepting new 

information.  

 

Fig. 1. The diagram of an LSTM cell of the lth layer at time 

t. 

Initially, the normal data matrix, 𝑋𝑡  and the previous state 

𝑠𝑡−1 will pass through the forget gate, 𝑓𝑡. At the forget gate, 

the information flow will be controlled by an element-wise 

sigmoid function as described in Equation (4). The 𝑊𝑓 and 
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𝑈𝑓 represent the weight of 𝑥𝑡 and 𝑠𝑡−1, whereas 𝑏𝑓 is the bias 

weight vector.  

                         𝑓𝑡 = 𝜎(𝑊𝑓𝑥𝑡 + 𝑈𝑓𝑠𝑡−1 + 𝑏𝑓)                    (4) 

At the input gate, two steps of learning appear. The normal 

data matrix, 𝑋𝑡 and the previous state 𝑠𝑡−1 to be fed into the 

sigmoid function of 𝐼𝑡 (see Equation (5)) for input learning as 

well as to 𝑔𝑡 (see Equation (6)) to new possible cell state with 

the tanh activation function. After that, the new cell state 𝑐𝑡 

was updated by using Equation (7).  

                           𝐼𝑡 = 𝜎(𝑊𝑖𝑥𝑡 + 𝑈𝑖𝑠𝑡−1 + 𝑏𝑖)                   (5) 

                      𝑔𝑡 = tanh(𝑊𝑔𝑥𝑡 + 𝑈𝑔𝑠𝑡−1 + 𝑏𝑔)                (6) 

                              𝑐𝑡 = 𝑓𝑡 × 𝑐𝑡−1 + 𝐼𝑡 × 𝑔𝑡                       (7) 

From Equation (7) above, the “memory” that will be held by 

𝑐𝑡 affected the forget gate function, 𝑓𝑡. The value of 𝑓𝑡 either 

1 or 0 indicates whether the previous 𝑐𝑡−1 will be forgotten 

or not. If yes, only current memory 𝐼𝑡𝑔𝑡 will be considered 

for the next LSTM cell, and vice versa. Lastly, at the output 

gate, the output, 𝑜𝑡  is determined by the previous state of 

𝑐𝑡−1 , input data matrix, 𝑋𝑡  and previous output state, 𝑠𝑡−1 , 

and later, the hidden state, 𝑠𝑡 is updated accordingly. 

                          𝑜𝑡 =  𝜎(𝑊𝑜𝑥𝑡 + 𝑈𝑜𝑠𝑡−1 + 𝑏𝑜)                 (8)                                                                              

                                      𝑠𝑡 = 𝑜𝑡 × tanh(𝑐𝑡)                       (9)                                                                                            

The 𝑊𝑖 , 𝑊𝑔 ,  𝑊𝑜  , 𝑈𝑖 , 𝑈𝑔 , 𝑈𝑜  represent the weight and 

𝑏𝑖, 𝑏𝑔, 𝑏𝑜 are the bias vectors at respective input, output, and 

cell states.  

2.3. Kernel Density Estimation for non-parametric 

threshold determination 

Kernel density estimation (KDE) is a non-parametric 

approach to estimating an unknown distribution of dataset, 

𝐴 = {𝑎1, 𝑎2, 𝑎3, … , 𝑎𝑖}. The probability of a given point 𝑎𝑖 in 

the KDE distribution is calculated by: 

                        𝑓ℎ̂(𝑎𝑖) =  
1

𝑛ℎ
∑ 𝐾 (

𝑎−𝑎𝑖

ℎ
)𝑛

𝑖=1                        (10) 

The kernel function 𝐾(∙) represents the shape of distributed 

data. Various types of kernel functions are used in the KDE 

approach, such as the Epanechnikov kernel function (Hwang, 

Lay, and Lippman 1994) the Gaussian kernel function 

(Stępień 2016; Węglarczyk 2018), the Radial Basis function 

(Stępień 2016) and etc (Jaya et al. 2021). In this study, the 

Gaussian kernel function is used as follows:  

                            𝐾(𝑎) =
1

√2𝜋
𝑒𝑥𝑝 (−

𝑎2

2
)                        (11) 

In selecting the optimum value of ℎ , in this study, the 

Silverman [42] bandwidth Equation is used (see Equation 

(12)), where IQR is the interquartile range value. 

                        ℎ = 0.9 min
⬚

(𝜎,
𝐼𝑄𝑅

1.34
) . 𝑛−1/5                    (12) 

Referring to Equation (1), the threshold value was initially 

determined based on the percentile of the 𝐹𝑗,𝑘(𝛼) 

distribution. Due to the non-parametric distribution of KDE, 

the upper and lower limit, 𝐿 is calculated from the confidence 

interval of the KDE distribution (Węglarczyk 2018). The 

confidence interval for the upper and lower limits of KDE is 

given in Equation (13) below. 

             𝑝(𝑎𝑙 ≤ �̂� ≤ 𝑎𝑢) = ∫ 𝑓(𝑎𝑖)𝑑𝑎 =
𝑎𝑢

𝑎𝑙
 1 − 𝛼         (13) 

Where 𝑎𝑙  and 𝑎𝑢  are the lower and upper limits of the 

confidence interval within the probability of 1 − 𝛼 . In 

realising the integral under the curve of 𝑓(𝑎𝑖), a numerical 

approach trapezoid rule method (Yu et al. 2018) is used as 

stated below. 

𝐹ℎ̂(𝐴) = ∫ 𝑓(𝑎𝑖)𝑑𝑎 =  ∑
∆𝑥

2
(𝑓(𝑎𝑖) + 𝑓(𝑎𝑖−1))𝑛

𝑖=1
𝑎𝑢

𝑎𝑙
= 1 − 𝛼 (14)                      

The numerical approach of the trapezoid rule in 

computational implementation is influenced by the selection 

of trapezoid size. In this study, the trapezoid size was tuned 

heuristically since each situation creates a different KDE 

distribution and a different trapezoid size for 1 − 𝛼 

condition. 

3. NON-PARAMETRIC LSTM FAULT DETECTION 

FRAMEWORK 

A data-driven fault detection approach usually has two stages 

of process flow. The first one is the training phase, which 

relates to normal dataset learning. Considering the criteria in 

Section 2.1, this study proposed the LSTM network as the 

learning model, 𝑓. The accuracy of the stage is important, as 

the reconstruction error will reflect the final distribution of 

the system. Initially, a normal data matrix, 𝑋 goes through 

normalisation pre-processing. After that, the dataset will be 

rearranged between input and target output in a time-series 

manner by looking back at a certain period of time, 𝑙. Later, 

the arranged dataset will be trained using a stacked LSTM 

network, and 𝑄  parameters of the control chart will be 

determined. The distribution of 𝑄 is modelled using the KDE 

distribution, and the trapezoid rule is used to determine upper 

and lower boundaries to complete the normal control chart, 

as shown in Fig. 2.  

At the second stage, faulty data is fed into the trained LSTM 

network after going through pre-processing and lookback 

functions similar to the first stage. The 𝑄 for faulty dataset 

are determined, checking whether at a certain time, the 

condition is ‘faulty’ or not based on the upper and lower 

limits from the analysis at the 1st stage. Fig. 3. illustrates the 

fault detection phase. Table 1. and Table 2. represent the flow 

chart in term of algorithm for the LSTM-KDE fault detection 

framework.  
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3.1. Performance Measure 

In determining the ability of model, 𝑓  in learning the 

structure or pattern in a normal condition, mean squared 

errors are used since they represent the reconstruction error 

of the normal condition of the system. A lower MSE means 

a more accurate learning model.  

                        𝑀𝑆𝐸 =
1

𝑛
 ∑ (𝑋𝑖 − �̂�𝑖)

2𝑛
𝑖=1                         (15) 

Another performance measure that closely relates to fault 

detection is fault detection accuracy, false positive rate 

(FPR), and false negative rate (FNR) based on the confusion 

matrix. Fault detection accuracy is based on the number of 

accurate fault detections, whereas FPR calculates the 

condition where there is a ‘faulty’ condition but estimated as 

a ‘non-faulty’, type I error. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2. Training phase 

On the other hand, FNR calculates the ‘non-faulty’ condition 

as a ‘faulty’, type II error. FPR values are important to keep 

as low as possible where a high misdetection rate is open to 

equipment damage in the process plant.  

                                  𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑇𝑃+𝑇𝑁

𝑃+𝑁
                           (16)                                                                                                                     

                                                  𝐹𝑃𝑅 =  
𝐹𝑃

𝑁
                                 (17)                                                                                                             

                                            𝐹𝑁𝑅 =  
𝐹𝑁

𝑃
                             (18)                                                                                                          

The TP and TN represent true positive and true negative, 

whereas FP and FN indicate false positive and false negative. 

In addition, P and N are the number of positive and negative 

value.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3. Fault detection phase 

LSTM-KDE Train algorithm 

Input:  Normal Dataset, 𝑋 =  𝑥1
1, 𝑥2

1,…𝑥𝑖
𝑗
 

Output: Upper and Lower Threshold 

1. Normalization pre-processing 

2. Create lookback dataset for train normal dataset and test 

normal dataset 

3. Train normal dataset: 

LSTM model: 

   Stack LSTM (train normal dataset, layer,  

   epoch = 100,  

   optimizer = Root mean square propagation (RMSPropp)), 

   validation split = 0.2) 

   �̅�𝑖 = predict(Stack LSTM(test normal set)) 

   𝑄𝑖 =  (𝑋𝑖 − 𝑥�̅�)
𝑇(𝑋𝑖 −  𝑥�̅�)   

Normal data, 𝑋 
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KDE distribution: 

    𝑞𝑖 = random choice (𝑄𝑖, n = number of sample)  

     // n are heuristically select between 37 to 200 depends on 

     Modes in TE process. 

     ℎ = 0.9 min
⬚

(𝜎,
𝐼𝑄𝑅

1.34
) . 𝑛−1/5  

    KDE distribution =  
1

𝑛ℎ
∑ 𝐾 (

𝑞𝑖

ℎ
)𝑛

𝑖=1  

    Upper Threshold, Lower Threshold =  

    Trapezoid rule (KDE distribution, 𝛼=0.05)     

Table 1. LSTM-KDE Train algorithm 

LSTM-KDE Fault detection algorithm 

Input:  Faulty Dataset, 𝑋 =  𝑥1
1, 𝑥2

1,…𝑥𝑖
𝑗
 

Output: faulty or non-faulty 

1. Normalization pre-processing 

2. Create lookback dataset for train and testing 

3. Faulty dataset: 

LSTM model: 

�̅�𝑓𝑖 = predict(Stack LSTM(test normal set,…) 

𝑄𝑖 =  (𝑋𝑓𝑖 − 𝑥𝑓𝑖̅̅ ̅̅ )
𝑇

(𝑋𝑓𝑖 − 𝑥𝑓𝑖̅̅ ̅̅ )   

        Faulty condition determination: 

for i = 1,…,n: 

    If 𝑄𝑖 > Upper Threshold and  𝑄𝑖 < Lower Threshold 

        faulty  

else:  

    non-faulty  

end for 

Table 2. LSTM-KDE Fault detection algorithm 

3.2. Experimental setup 

NUMERICAL EXAMPLE 

The common responses that usually occur inside engineering 

systems are a) nonlinear conditions and b) varying operating 

system.  In this section, these two common responses were 

produced and illustrated using a numerical example (Yu et al. 

2018). The multivariate nonlinear process signal for normal 

conditions was generated based on mathematical expression 

(19) where 𝑡 were set within the boundary [0.01,2] and 𝑒1, 𝑒2 

and 𝑒3 are noise of each condition with a normal distribution 

of mean 0 and variance 0.01. As for faulty signal, two types 

of faulty signal were produced: a linearly increasing 

condition was injected into the generated data of 𝑥1  from 

sample 101-270 by adding 0.01(𝑘 − 100)  to 𝑥1  value of 

each sample in this range, where 𝑘 is the sample number and 

a step (as faulty 1). In addition, another type of faulty signal, 

which is a step response, was inputted to 𝑥2  by 1.5 from 

sample 101 onwards as faulty 2. 

                              𝑥 = {

𝑡 +  𝑒1

𝑡2 − 3𝑡 + 𝑒2

−𝑡3 + 3𝑡2 + 𝑒3

                                 (19)                                                                     

As for the varying operating system condition, the system 

was described using the mathematical expression in Equation 

(20), where 𝑠1 and 𝑠2 follow normal distribution with a given 

mean and variance value as stated in Equations (21), (22), and 

(23). The data was generated from 100 samples for each 

mode, resulting in 300 samples of normal data for the training 

phase. Otherwise, 200 test samples were generated due to the 

faulty condition. At the first faulty condition (faulty 1), the 

system was initially running in mode 2, and a drifting error 

of 0.04 (𝑘 − 100) was applied to 𝑥2 from the 101st through 

the 200th samples, where 𝑘 denotes the serial number of the 

test samples. In addition, for the second faulty condition 

(faulty 2), a step signal of 2 was added to 𝑥1 at Mode 1.  

[

𝑥1

𝑥2

𝑥3

] = [
0.3723 0.6815
0.4890 0.2954
0.9842 0.1793

] [
𝑠1

𝑠2
] + [

𝑒1

𝑒2

𝑒3

]                            (20)                                                  

Mode 1: 𝑠1~𝑁(10,0.8), 𝑠2~𝑁(12,1.3)                            (21)                                                          

Mode 2: 𝑠1~𝑁(5,0.6), 𝑠2~𝑁(20,0.7)                              (22)                                                              

Mode 3: 𝑠1~𝑁(16,1.5), 𝑠2~𝑁(30,2.5)                            (23)  

TENNESSEE EASTMAN PROCESS PLANT(TE) 

The TE benchmark process plant has been considered one of 

the most challenging industrial engineering problems in 

monitoring systems as well as in fault detection (Downs and 

Vogel 1993; Xiao et al. 2022). Many studies have referred to 

the TE process plant as the standard benchmark in the fault 

detection and diagnosis area, such as (Cacciarelli and Kulahci 

2022; Downs and Vogel 1993; Gajjar and Palazoglu 2016). 

Recently, an extended version of the TE process plant has 

been published (Reinartz et al. 2021) and data has been 

shared at https://data.dtu.dk/articles/dataset/Tennessee_ 

Eastman_Reference_Data_for_Fault_Detection_and 

Decision_Support_Systems/13385936/1 which is in line with 

present plant system. Compared to the existing TE process 

plant dataset that focuses only on Mode 1 of the system, the 

extended dataset consists of Mode 1 until Mode 6 of the 

system. At each mode, there will be fifty-four (54) measured 

and manipulated variables. As for this study, only thirty-three 

(33) variables were used, as we referred to (Cacciarelli and 

Kulahci 2022) (see Table 3). Furthermore, each mode also 

contained twenty-eight (28) faulty conditions with steps, 

random variation, sticking, and unknown types of fault, as 

shown in Table 4.  

 
No Description No Description 

pd(2) A Feed (kscmh) pd(19) Stripper Temp (◦ C) 

pd(3) D Feed (kg/h) pd(20) Stripper Steam Flow 
(kg/h) 

pd(4) E Feed (kg/h) pd(21) Compressor Work (kW) 

pd(5) A and C Feed (kscmh) pd(22) Reactor Coolant Temp (◦ 

C) 

pd(6) Recycle Flow (kscmh) pd(23) Separator Coolant Temp 

(◦ C) 

pd(7) Reactor Feed Rate 

(kscmh) 

pd(43) D feed (%) 

pd(8) Reactor Pressure (kPa 

gauge) 

pd(44) E feed (%) 

Pd(9) Reactor Level (%) pd(45) A feed (%) 

pd(10) Reactor Temperature (◦ 
C) 

pd(46) A and C feed (%) 
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pd(11) Purge Rate (kscmh) pd(47) Compressor recycle 

valve (%) 

pd(12) Product Sep Temp (◦ C) pd(48) Purge valve (%) 

pd(13) Product Sep Level (%) pd(49) Separator liquid flow (%) 

pd(14) Product Sep Pressure 

(kPa gauge) 

pd(50) Stripper liquid flow (%) 

pd(15) Product Sep Underflow 

(m3/h) 

pd(51) Stripper steam valve (%) 

pd(16) Stripper Level (%) pd(52) Reactor Coolant (%) 

pd(17) Stripper Pressure (kPa 
gauge) 

pd(53) Condenser Coolant (%) 

pd(18) Stripper Underflow 

(m3/h) 

  

Table 3. Monitoring variables in TE process plant 

Variable Process variable Faulty type 

IDV 1 
A/C feed ratio, B composition 

constant (stream 4) 
Step 

IDV 2 
B composition, A/C ratio constant 
(stream 4) 

Step 

IDV 3 D feed temperature (stream 2) Step 

IDV 4 
Water inlet temperature for reactor 
cooling 

Step 

IDV 5 
Water inlet temperature for condenser 

cooling 
Step 

IDV 6 A feed loss (stream 1) Step 

IDV 7 C header pressure loss (stream 4) Step 

IDV 8 A/B/C composition of stream 4 Random variation 

IDV 9 D feed (stream 2) temperature Random variation 

IDV 10 C feed (stream 4) temperature Random variation 

IDV 11 
Cooling water inlet temperature of 

reactor 
Random variation 

IDV 12 
Cooling water inlet temperature of 

separator 
Random variation 

IDV 13 Reaction kinetics Random variation 

IDV 14 Cooling water outlet valve of reactor Sticking 

IDV 15 
Cooling water outlet valve of 

separator 
Sticking 

IDV 16 
Variation coefficient of the steam 
supply of the heat exchange of the 

stripper 

Random variation 

IDV 17 
Variation coefficient of heat transfer 

in reactor 
Random variation 

IDV 18 
Variation coefficient of heat transfer 
in condenser 

Random variation 

IDV 19 Unknown Unknown 

IDV 20 Unknown Random variation 

IDV 21 A feed (stream 1) temperature Random variation 

IDV 22 E feed (stream 3) temperature Random variation 

IDV 23 A feed flow (stream 1) Random variation 

IDV 24 D feed flow (stream 2) Random variation 

IDV 25 E feed flow (stream 3) Random variation 

IDV 26 A and C feed flow (stream 4) Random variation 

IDV 27 Reactor cooling water flow Random variation 

IDV 28 Condenser cooling water flow Random variation 

Table 4. Faulty condition in TE process plant 

To evaluate the proposed LSTM fault detection framework, 

three other fault detection approaches were used. The details 

of each approach are mentioned below: 

1. The PCA+KDE approach was inspired by (Jaya et al. 

2021) where the study argues that the fault detection of 

multivariable condition control charts is better 

approximated using the KDE approach to reduce high 

false alarms in nonparametric data distribution. 

Furthermore, PCA was considered the most prominent 

approach and is still, to date, being chosen as the fault 

detection approach, making it an appropriate comparison 

model to evaluate the proposed fault detection 

framework.  

2. The LOF approach was referred to in (Benkő, Bábel, and 

Somogyvári 2022) which defines a faulty condition in 

terms of distance instead of distribution. The study also 

emphasises unsupervised as well as nonlinear 

conditions, which is in line with our study. 

3. Another approach chosen as a comparison method in this 

study is auto-associative kernel regression (AAKR) with 

KDE fault detection approach (Yu et al. 2018). This 

study focuses on the multimode approach from a 

regression perspective. The research also explains that 

the non-parametric distribution relies on a multimode 

dataset, which confirms the importance of this study.     

4. RESULTS AND DISCUSSION 

4.1. Evaluation of model, f 

The selection of model, 𝑓 reflects the ability of the model to 

learn the signal. The aim is to analyse the MSE value for 

reconstruction error approach that has been proposed in 

Section 3. Based on Section 2, there are a number of deep 

learning approaches within the scope of this study. However, 

considering the nonlinear and multimode characteristics of 

engineering systems, this section further analyses the impact 

of three types of model, 𝑓, which are our proposed stacked 

LSTM, LSTM-AE (Machado et al. 2022), CNN-LSTM (B. 

Zhao et al. 2020), and BiLSTM (J. Zhao et al. 2020). The 

numerical multimode dataset was used to evaluate the 

performance of each selected model, 𝑓. The dataset was pre-

processed using min-max scaling, which brings the value 

between 0 and 1. After that, the data were split between train 

input and output by the lookback function, using 𝑥𝑡=0 until 

𝑥𝑡=𝑙 to predict the next output 𝑥𝑡. The value 𝑙 in this study 

was set as eight, epoch equal to 100, number of neurons nine 

and the optimizer used in this study is RMSprop using the 

TensorFlow Python library.  

     Table 5 shows the average accuracy and losses for each 

selected model, 𝑓 for 100 epochs. From the observation of 

accurcay at Table 5, CNN-LSTM showed the lowest 

accuracy among all with 0.8913 followed by LSTM-AE with 

0.9289 which leaves the option between BiLSTM and 

stacked LSTM with 0.9513 and 0.9397 respectively. When 

compared to the two-left approach in term of ∆Acc which 

difference between train accuracy and validation accuracy, 

stacked LSTM shows better result with 0.1646 compared to 

BiLSTM. BiLSTM was interpreted as overfit since high 

different between train and validation accuracy results. Thus, 

this experiment concludes that a stacked LSTM architecture 
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will be used as main the model, 𝑓 approach for unsupervised 

fault detection. 

4.2 Evaluation of threshold determination based on KDE 

distribution. 

Fig. 4. KDE distribution for Tennessee Eastman process 

plant mode 1 

This section describes KDE distribution shape of the 

proposed framework for non-parametric fault detection 

LSTM-KDE approach. Fig. 4 shows The Tennessee Eastman 

process plant mode 1 that were selected as visual 

representation of KDE distribution in this study. Refer to the 

algorithm Table. 1, the number of kernels for this distribution 

was set as n = 150 with 𝛼 = 0.05. From the algorithm the upper 

and lower threshold limit are, upper limit = 0.9935 and lower limit 

= 0.2604 that represent in vertical line at Fig.4.  

4.3 Evaluation of LSTM fault detection performance 

based on KDE threshold approach.  

This section describes the performance of the proposed 

framework for non-parametric fault detection LSTM-KDE 

approach. The generated dataset, as mentioned in Section 3.2 

numerical example, was used to evaluate the accuracy of the 

LSTM-KDE approach compared to the selected model in 

Section 3.3. Tables 7. and 6. show the performance indices of 

each method. For both multimode and nonlinear conditions, 

fault 1 illustrates amplitude increment fault, whereas fault 2 

indicates a linear increment fault.  

For multimode fault 1 at Table 7, the lowest accuracy is at 

AAKR+KDE with only 0.395, followed by LSTM+KDE 

with 0.4136, LOF with 0.5 and the highest is PCA+KDE with 

0.605. Similar to the nonlinear condition of fault 1, LOF 

again has the lowest accuracy of 0.33, followed by 

LSTM+KDE at 0.48, PCA+KDE at 0.74, and AAKR+KDE 

at 0.787. 

As for multimode fault 2, PCA+KDE, LOF, and 

AAKR+KDE have nearly the same values of 0.53, 0.5, and 

0.54, whereas LSTM+KDE shows the overall highest value 

with 0.6701. In nonlinear fault 2, the lowest accuracy is 

PCA+KDE with 0.65, AAKR+KDE with 0.747, LOF with 

0.76, and the highest is LSTM+KDE at 0.804. This indicates 

the LSTM+KDE framework is able to detect linear increment 

faults better than other methods. However, different 

performance in terms of multimode and amplitude increment 

faults. The overlapped learning between multimode 

conditions and steady-state increments makes it difficult to 

detect faulty conditions. This will be further discussed based 

on Figure 5. 

Fig. 5. illustrates the Q residual value for the LSTM-KDE 

approach for multimode and nonlinear conditions. The 

figures show a clear detection for a linear increment fault 

(fault 2) starting at 100 and above based on the calculated 

threshold value, whereas not for the fault 1 condition. The 

multimode condition fault 1 Q residual signal response does 

not represent the steady-state increment at all, thus there is no 

faulty signal indication, which is in line with the low 

detection rate. In the nonlinear case, the steady-state was 

observed as seen in the figure fault 1 nonlinear; however, the 

threshold value is not accurate for fault detection in this area. 

Thus, further improvement is needed for the LSTM-KDE 

framework to be able to work for both nonlinear and 

multimode conditions in all fault signals.  

Model, 𝒇 Train 

Acc 

Train 

MSE  

Val 

Acc 

∆Acc 

Stacked LSTM 0.9397 0.0074 0.7751 0.1646 

LSTM-AE 0.9289 0.0065 0.7888 0.1401 

CNN-LSTM 0.8913 0.0109 0.7833 0.1080 

BiLSTM 0.9513 0.0061 0.7622 0.1891 

Table 5. Average accuracy and loss for 100 epochs 

 
Fault  NONLINEAR SIMULATED DATA 

PCA+KDE (upper= 1.355, 

lower= 0.364) 

LOF 

ACC FPR FNR ACC FPR FNR 

1 0.74 0.758 0 0.33 0.0 1.0 

2 0.65 0.758 0.121 0.76 0.0 0.927 

Table 6. Performance indices for nonlinear condition 
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NONLINEAR SIMULATED DATA 

AAKR+KDE (upper = 0.0392, 

lower = 0.00861 

LSTM+KDE (Upper = 

0.99182, Lower = 0.02793 

ACC FPR FNR ACC FPR FNR 

1 0.787 0.63 0.0 0.48 0.162 0.695 

2 0.747 0.59 0.076 0.804 0.161 0.197 

Fault  MULTIMODE SIMULATED DATA 

PCA+KDE 

(upper= 3.696, lower= 0.357) 

LOF 

ACC FPR FNR ACC FPR FN

R 

1 0.605 0.08 0.707 0.5 0.0 1.0 

2 0.53 0.02 0.919 0.5 0.0 1.0 

Fault  MULTIMODE SIMULATED DATA 

AAKR+KDE  

(upper = 0.18, lower = 

0.0115) 

LSTM+KDE  

(Upper = 0.01189, 

Lower = 0.0010) 

ACC FPR FNR ACC FPR FNR 

1 0.395 0.32 0.89 0.4136 0.37 0.8222 

2 0.54 0.53 0.38 0.6701 0.4 0.2 

Upper limit 

Lower limit 
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Table 7. Performance indices for multimode condition 

 

 

 

 

(a) Multimode condition 

 

 

 

 

(b) Nonlinear condition 

Fig. 4. Q residual control chart with faulty condition and 

threshold value obtained from fault detection LSTM 

framework: (a) Multimode condition and (b) Non-linear 

condition. 

 

 

4.4 Evaluation of fault detection performance in large 

scale plant: Tennessee Eastman process plant 

In the training phase, at each mode there are 2001 point of 

data. The normal signal at each faulty data point from time 1 

to time 500 were grouped as normal datasets, and pre-

processing was done using a minimum-maximum scaling of 

0 to 1. After that, the data were fed into a non-parametric 

framework similar to Section 3. However, the number of 

stacked LSTM neurons at each layer was changed to thirty-

three (33) neurons, value 𝑙 in this study was set as twenty (20) 

and other hyperparameters remain the same as in section 4.1. 

The remaining data were used in the testing phase, which is 

data from 501 to 600 that are normal and data from 600 to 

2001 that are faulty. The performance indices of accuracy, 

FPR, and FNR were calculated at the last stage. The indices 

are shown in Table 8. until Table 11. We would like to note 

that in Mode 2, IDV 17, 18, and 28 were unable to be 

extracted, thus implicating the simulation with no results for 

these three types of faults and not included in the average 

calculation.  

In the section 3.2 described the faulty condition consist of 

IDV 1 to IDV 28 with different type of faults. At the initial 

observation of accuracy results, author found two types of 

group appear, which is the detection accuracy between 80% 

until 100% named as Group 1(IDV 1, IDV 2, IDV 4, IDV 6, 

IDV 7, IDV 8, IDV 10, IDV 11, IDV 13, IDV 14, IDV 17, 

IDV 18, IDV 19, IDV 20, IDV 25, IDV 26, and IDV 27)   

whereas outside this interval as Group 2 (IDV 3, IDV 5, IDV 

9, IDV 12, IDV 15, IDV 16, IDV 21, IDV 22, and IDV 23).  

Group 2 was also considered as difficult faulty event to detect 

in past literature of (Cacciarelli and Kulahci 2022; Gajjar and 

Palazoglu 2016; Reinartz et al. 2021).  

Table 8 for faulty condition under Group 1 shows that LSTM 

have the highest accuracy in average with 0.94 follow by 

PCA and AAKR with 0.93 whereas LOF become the lowest 

with 0.54. Similar performance can be seen at Table 9 for 

Group 2 faulty condition, LSTM also shows superior results 

compare to other method but with the percentage of 0.52, 

LOF with 0.51, PCA with 0.35 and the least accuracy is 

AAKR with 0.31. Despite of the results, with LSTM 

performance in Group 2 (0.52) still consider low accuracy for 

fault detection approach.  

Further analysis was made on the performance indices of 

false positive rate (FPR) and false negative rate (FNR). In 

FPR situation, when the signals are supposedly indicated as 

faulty, the real output shows a normal condition. This is 

dangerous when considering interconnected process plants, 

which promote damage to machines. The FNR, on the other 

hand, expected a normal condition but a faulty signal to 

appear, thus wasting resources when the faulty signal does 

not actually appear. Thus, it is the best to keep these indexes 

as low as possible. Table 10 and Table 11 show the results 

for these indices. For FPR index, lowest rate goes to AAKR 

with 0.20, after that PCA with 0.23, next LOF with 0.25 and 
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the highest is on LSTM which is 0.52. As for FNR index, 

LSTM shows the best performance with 0.19, follow by PCA 

is 0.28, AAKR is 0.30 and lowest performance on LOF with 

0.49. 

Refer back to the study of the TE process plant in (Reinartz 

et al. 2021) shows fault detection based on PCA and explains 

that the ARL0 is not always in a nominal state, which impacts 

the 𝑇2  chart. The main reason is that the assumptions of 

observation are uncorrelated in terms of time. At the same 

time, it is also mentioned in (Gajjar and Palazoglu 2016) that 

the 𝑇2  control chart is not reliable and modifies the loss 

function in the study. This study proposes a stacked LSTM 

framework to cover the time-correlated control chart while 

focusing on SPE or Q residual response for fault detection. 

Using SPE measurements LSTM shows significant 

improvement compared to PCA in all modes except mode 5, 

in which PCA shows better performance, whereas AAKR 

always results in the middle between the other two 

approaches. From the 28 faulty conditions labelled as IDV 1-

28, faults 1, 2, 4, 6, 7, 8, 10, 11, 13, 14, 17, 18, 19, 20, 25, 26, 

and 27 show a good result of more than 90%, but concern is 

raised at faults 3, 5, 9, 12, 15, 16, 21, 22, and 23. This is in 

line with the discussion in (Reinartz et al. 2021), which 

imposed that the faults in 3 and 15 are difficult to catch, as 

well as the multiple fault type of random variation and 

sticking in 9, 15, 20, and 23. However, the proposed LSTM 

framework is able to improve the fault in 13 and 18, which in 

(Reinartz et al. 2021) are also labelled as difficult to detect 

faults. Consider the SPE Equation (3), which relates to the 

matrix decomposition of highly correlated and multivariable 

variables might jeopardize the fault detection accuracy. For 

example, IDV 1, in which significant individual variables are 

out of control, shows a highly visible area between faulty and 

non-faulty conditions(Cacciarelli and Kulahci 2022), making 

the determined threshold value ample for fault detection, 

whereas other faulty conditions consist of fewer variables, 

shadowing the boundary between faulty and non-faulty 

detection. This individual signal condition as well as the 

correlation of variables are not included in this study and 

might become the next focus to improve the LSTM 

framework. 

Method PCA LOF AAKR LSTM 

Mode 1 0.94 0.53 0.96 0.96 

Mode 2 0.94 0.55 0.93 0.93 

Mode 3 0.89 0.55 0.93 0.94 

Mode 4 0.97 0.55 0.96 0.96 

Mode 5 0.93 0.54 0.89 0.94 

Mode 6 0.90 0.52 0.89 0.93 

Average 0.93 0.54 0.93 0.94 

  

Table 8. Performance index – accuracy for Group 1 faulty 

condition 

 

Method PCA LOF AAKR LSTM 

Mode 1 0.29 0.51 0.24 0.41 

Mode 2 0.24 0.51 0.23 0.28 

Mode 3 0.57 0.51 0.51 0.64 

Mode 4 0.34 0.50 0.38 0.74 

Mode 5 0.25 0.51 0.15 0.25 

Mode 6 0.39 0.53 0.38 0.80 

Average 0.35 0.51 0.31 0.52 

 

Table 9. Performance index – accuracy for Group 2 faulty 

condition 

 

Mode PCA LOF AAKR LSTM 

FPR FPR FPR FPR 

Mode 1 0.29 0.32 0.12 0.33 

Mode 2 0.09 0.18 0.12 0.22 

Mode 3 0.58 0.19 0.34 0.48 

Mode 4 0.14 0.20 0.32 0.59 

Mode 5 0.16 0.22 0.06 0.13 

Mode 6 0.22 0.26 0.24 0.70 

Average 0.25 0.23 0.20 0.41 

 

Table 10. Performance index – False positive rate  

(Type I error)  

 

Mode PCA LOF AAKR LSTM 

FNR FNR FNR FNR 

Mode 1 0.29 0.49 0.31 0.23 

Mode 2 0.33 0.48 0.34 0.31 

Mode 3 0.20 0.48 0.21 0.14 

Mode 4 0.27 0.49 0.25 0.09 

Mode 5 0.32 0.49 0.40 0.32 

Mode 6 0.28 0.49 0.30 0.07 

Average 0.28 0.49 0.30 0.19 

Table11. Performance index – False negative rate  

(Type II error)  

5. CONCLUSION 

A time-series fault detection study based on the LSTM 

framework was proposed in this section. The main reason is 

to overcome the non-stationary assumption in previous 

studies, such as in (Cacciarelli and Kulahci 2022; Reinartz et 

al. 2021). In the LSTM framework, KDE threshold 
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determination was introduced since the majority of the 

gathered datasets have an unknown distribution and most of 

the studies assume the collected signal is a gaussian 

assumption (Guo et al. 2020; Kukkala et al. 2020; Machado 

et al. 2022; Silva et al. 2022; B. Wang, Liu, et al. 2020; J. 

Zhao et al. 2020). The study compared four types of LSTM 

variants as the main learning model and came up with staked 

LSTM as the best model for fault detection. The study also 

analyses the numerical representation of multimode and 

nonlinear conditions, as well as the real representation of the 

Tennessee Eastman process plant for the proposed LSTM 

fault detection framework in comparison to the PCA+KDE, 

LOF, and AAKR+KDE approaches. The majority of results 

show the dominance of the LSTM approach, but 

improvements must be made to cater to the high correlation 

and individual signal contribution towards the accuracy of 

fault detection as well as the challenge of multimode 

conditions in the LSTM fault detection framework for future 

work. 
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