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ABSTRACT

Data-driven Prognostics and Health Management (PHM) be-
come a crucial layer in the realm of predictive maintenance
(PM), particularly for metal-forming industries. In fact, non-
compliant material characteristics affect badly the manufac-
turing tools leading to high machine breakdown frequency
and poor quality products. To cope with this situation, a new
methodology for breakdown prediction is proposed. In detail,
the methodology starts by implementing an Extract, Trans-
form, Load (ETL) process to create a new dataset from het-
erogeneous sources. Then, a feature selection method is used
for dimensionality reduction and keeps only useful informa-
tion. After that, a Machine Learning (ML) model predicts
system breakdown occurrences using the selected features.
Finally, thanks to these steps above, an auto-labeling algo-
rithm to evaluate the severity impact of the material data is
proposed and makes the originality of this paper. The de-
veloped methodology is applied to a real dataset of a French
company, SCODER, that shows and points out promising per-
spectives in PM.
Keywords: Prognostics and Health Management, Manufac-
turing, Raw Material Data, Extract-Transform-Load, Fea-
tures Selection, Machine Learning, Auto-labeling.

1. INTRODUCTION

Prognostics and health management (PHM) in industries
made significant progress in the management of their data
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pipelines. It contributes to the development of advanced
monitoring algorithms and optimizing production schedul-
ing in their systems. In fact, a monitoring system that en-
ables early detection of potential breakdowns plays a pivotal
role in supporting decision-making, resulting in minimized
breakdowns, reduced repair costs, and cost savings for busi-
nesses. However, the majority of prediction systems exces-
sively focus on sensor data while ignoring the significance of
raw materials. Indeed, the presence of non-compliant mate-
rial characteristics can contribute to reduced production ef-
ficiency, especially when the manufacturing process heavily
relies on specific material properties. Moreover, slight devia-
tions from these properties can lead to operational issues, an
increase in maintenance needs, and unplanned breakdowns.
Additionally, when monitoring the condition of their sys-
tems, manufacturers often use quantitative methods to predict
purely numerical results such as downtime, Remaining Use-
ful Life (RUL), downtime frequency, and so on (Benaggoune,
Mouss, Abdessemed, & Bensakhria, 2020). They rarely focus
on qualifying the severity of a failure to facilitate decision-
making. In fact, actual monitoring algorithms in industries
focus on sensor data for fault detection, diagnostics and prog-
nostics (FDDP) (Abd Al Rahman & Mousavi, 2020), due to
their availability and development in this last decade. Also,
industrial operators are increasingly aware that sensor data
provides valuable information on the status of industrial sys-
tems (Raouf, Khan, et al., 2022). For instance, the analysis of
vibration data has proven to be an efficient parameter in de-
tecting anomalies and anticipating system failures (Farahat,
Gupta, et al., 2020) In power transmission systems, vibration
analysis can help monitor the condition of gears and belts,
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and identify mechanical issues (C. Li et al., 2016). Similarly,
for rotating machinery such as electric motors vibrations can
reveal imbalances and bearing faults (Popescu & Aiorda-
chioaie, 2019). Similarly, the analysis of current data showed
the possibility of non-invasive monitoring of the health and
performance of electrical systems (Soualhi, Nguyen, Soualhi,
Medjaher, & Hemsas, 2019), especially for detecting me-
chanical and electrical faults simultaneously. In fact, sensor
measurement can reveal recurring anomalies, identify com-
mon causes, and highlight potential areas for improvement.
Natural Language Processing has also been integrated into
PHM applications. For example, (Ayed et al., 2023) used tex-
tual data from industrial machine history and NLP techniques
to predict the origin of the next breakdown. In the literature,
only a few works have explored the role of raw materials in
conducting a comprehensive analysis and gaining an efficient
understanding of breakdown mechanisms (Ramprasad, Batra,
Pilania, Mannodi-Kanakkithodi, & Kim, 2017). Understand-
ing the specific characteristics of raw materials becomes cru-
cial, as they can introduce vulnerabilities and increase the
likelihood of breakdowns throughout the production cycle
(Rizzo et al., 2020). Hence, it becomes imperative to incor-
porate material characteristics into PHM practices to ensure
a comprehensive assessment of breakdown risks. Recogniz-
ing this, we believe that material nature plays a crucial role in
machines breakdowns (Arshadi, Gref, Geladi, Dahlqvist, &
Lestander, 2008). It is essential to highlight a key assumption
underlying our analysis. In fact, the quality of raw materials
is the main factor influencing the frequency and duration of
system breakdowns in our study. Despite the various factors
that can affect an industrial system, such as environmental
impacts, human factors and machine state, the quality of raw
materials plays an essential role. This assumption is based
on in-depth expertise and empirical observations. It under-
lies our work and guides our approach to research and data
interpretation, aimed at highlighting how variations in raw
material quality significantly predict breakdowns. In this pa-
per, we introduce an innovative methodology that combines
sensor data analysis with an assessment of raw material prop-
erties. By leveraging the benefits of both elements, includ-
ing insights into the chemical composition and physical at-
tributes found in raw materials, alongside the strengths of
sensor data analysis, such as real-time monitoring, compa-
nies can quantify the impact of their raw materials on the
process’s health. This, allows them to enhance raw material
management, improve decision-making processes, optimize
maintenance schedules (Achouch et al., 2022), and achieve
higher levels of performance and productivity in their oper-
ations (Soualhi et al., 2023). Navigating this intricate data
landscape, we employ the ETL (Extract, Transform, Load)
process, a choice motivated by the diverse origins of our
datasets (Zhang et al., 2022). Building upon this foundation,
we integrate feature selection strategies with state-of-the-art
machine learning algorithms to ensure precise classification.

During the ETL process stage, we extract data from two pri-
mary sources: machines and materials. Then, these data un-
dergo transformation to ensure consistency and exploitability.
Once refined, they are stored in a dedicated database, making
it ready for analysis. This latter ETL process ensures that data
from various sources are harmonized and reliable, thus mak-
ing it an insightful analysis. The next step concerns feature
selection where the objective is to reduce the dimensionality
of the feature space and select the most influential features.
Subsequently, machine learning algorithms are used to clas-
sify materials based on the selected features. The integration
of feature selection and machine learning facilitates accurate
and efficient material labeling, allowing operators to effec-
tively categorize their material inventories (Rahman et al.,
2020). The main contributions are summarized as follows:

• Create and deploy a methodology to predict machine
breakdown occurrences based on raw material data

• Auto-label material coils according to their impact on the
process to help industries schedule their material con-
sumption.

• Improve industrial performance and anticipate frequent
machine-tool breakdowns.

The is organized as follows: section 2 presents the related
works with specific positioning. Section3 aims to present the
proposed methodology. In section 4 we present the case study
and results with a discussion on methodology performances.
Finally, a conclusion and future works are presented in sec-
tion 5.

2. RELATED WORKS

As outlined in the introduction, the methodology begins with
an ETL process, followed by feature selection techniques,
and raw material-based machine breakdown prediction. In
the literature, numerous techniques exist for ETL and feature
selection, but there is less exploration of works extending to
raw material impact, covering manufacturing processes and
supply chains (Y. Li et al., 2022). The ETL process has be-
come a cornerstone of data management. Indeed, using a rig-
orous and systematic approach to ETL ensures reproducibil-
ity, accuracy and efficiency. Nevertheless, the modern data
landscape, characterized by digital proliferation and exponen-
tial data growth, has spurred the evolution of data manage-
ment systems. Beyond traditional ETL capabilities, today’s
systems incorporate advanced functionality such as data inte-
gration, quality improvement and governance. Recent work
in state of the art describes ETL processes involving feature
selection, particularly when dealing with a profusion of vari-
ables (Abiodun et al., 2021). The benefits of effective feature
selection include improved model accuracy, reduced compu-
tational load and improved interpretability. The landscape of
feature selection techniques is varied, encompassing filtering
methods, wrapping methods and integrated methods (Mera-
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Gaona, López, Vargas-Canas, & Neumann, 2021). Feature
selection techniques can also rely on other strategies such as
dimensionality reduction through Singular Value Decomposi-
tion (SVD) and Principal Component Analysis (PCA) to offer
ways to reduce the feature space (Winursito, Hidayat, Bejo, &
Utomo, 2018). With regard to raw materials, (Stauffer et al.,
2019) investigated the management of variability in critical
attributes impacting process stability under appropriate gran-
ulation conditions in the pharmaceutical field. The process
involved the analysis of various factors such as the availabil-
ity and characteristics of raw materials that have an impact
on the production process. In the industrial context, (Borràs-
Ferrı́s, Palacı́-López, Duchesne, & Ferrer, 2022) proposed a
methodology based on the Partial Least Squares (PLS) model
to assess the ability of batches of raw materials to produce
compliant products. This enables decisions to be made re-
garding the acceptance or rejection of batches of raw mate-
rials from new suppliers. In (Ahmad et al., 2021) authors
used material characteristics to predict the shear strength of
rockfill materials. Their findings show that the Support Vec-
tor Machine (SVM) outperforms other models in predicting
the shear strength of rockfill materials, highlighting the cru-
cial role of normal stress in affecting shear strength. In the
same context, (Mosavi et al., 2020), groundwater hardness
data from 135 wells were analyzed using Boosted Regression
Trees and Random Forest (RF) models. The study identified
the key influencing factors to be the distance from rivers, el-
evation, and groundwater depth. However, the research was
limited by the quantity of data.

To contribute to the existing methods, our research aims to
quantify and label the impact of raw materials on industrial
performance. It focuses on data layer by adapting the exist-
ing methods from the state of the art to real industrial data.
Our positioning about the state of the art can be presented as
follows:

• We integrate raw material data with sensor data through
a tailored ETL process to create a predictive model.

• We highlight the most relevant material characteristics
for the manufacturing process.

Our objective, through this in-depth analysis, is to enhance
our understanding of raw materials’ effectiveness and their
impact on optimizing manufacturing performance.

3. PROPOSED METHODOLOGY: FROM RAW
DATA TO AUTO-LABELING

This section outlines the key steps of the proposed methodol-
ogy for addressing challenges related to machine breakdown
prediction and auto-labeling, while considering raw materials
proprieties variation. This approach holds significant rele-
vance for small and medium-sized enterprises (SMEs) spe-
cializing in metal parts manufacturing. These industries op-
erate stamping lines where the properties of raw materials are

rigorously identified and monitored to control their influence
on process variations, particularly machine breakdowns. As
mentioned in the introduction, this work is based on the as-
sumption that the nature of the material is the main and only
factor influencing machine breakdown, and that other process
parameters are insignificant. The overall view of the proposed
methodology is presented in Figure 1. The methodology, il-
lustrated by Figure 1, is divided into offline and online phases.
In the offline phase (subsection 3.1), the ETL process handles
data on raw materials and machines, generally merged via in-
termediary data. This produces a dataset marked by features
from C1 to Cn and real occurrences Or. A clustering model on
occurrence Or permit to identify severity thresholds and cre-
ate labels. In this phase, we apply also the feature selection
techniques to reduce ML parameters. This step is essential to
perform predicting machine breakdowns per hour Op. In the
online phase (subsection 3.2), the characteristics of the ma-
terials are automatically integrated into the prediction model,
estimating the occurrence Or with each introduction of ma-
terial. The predicted value, associated with the clustering la-
bels, determines the final label of the material.

3.1. Offline Phase: Occurrence Predictor Construction

This section describes the key steps aiming at evaluating vari-
ous feature selection techniques and choosing the most effec-
tive Machine Learning (ML) model for predicting breakdown
occurrences.

3.1.1. Data Preprocessing & Structuring : ETL Process
Application

The preprocessing step involves actions and techniques to
clean and transform raw data into exploitable information for
analytics and ML algorithms. A general overview of an ETL
process is presented in figure 3.

• Data Extraction: The objective of this stage is to col-
lect data from their source files. Indeed, data are ex-
tracted from two main sources. The first source consists
of data generated by machine tools, typically captured
through an installed monitoring system. This type of
system allows real-time display of machine parameters
and health indicators. These records, often referred to
as log data, are automatically saved as time series in .txt
files. The second type of data concerns material data, ob-
tained either from suppliers or through laboratory anal-
ysis. Stored in an SQL database, these data provide es-
sential information about the properties and characteris-
tics of the raw materials used in the studied industrial
processes. It is essential to recognize that raw data, re-
gardless of their origin, may contain inaccuracies, incon-
sistencies, or gaps. Such issues can distort subsequent
analyses or predictive models. This underscores the im-
portance of the transformation phase, discussed below, to
establish the appropriate preprocessing.
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Figure 1. Flowchart of the proposed methodology for breakdowns occurrence prediction

• Data Transformation: This phase of the process fo-
cuses on transforming data into a suitable format for
analysis and modeling. Indeed, data preprocessing is
an essential step in this transformation process, underlin-
ing the importance of data quality and reliability (Omri,
Al Masry, Mairot, Giampiccolo, & Zerhouni, 2021). It
starts with a thorough inspection to identify errors and
inaccuracies in the datasets, followed by corrective ac-
tions. It is important to note that the two data sources
mentioned in the “Extraction” phase are not treated in
the same way. In fact, machine data undergoes a spe-
cific cleaning process tailored to time-series data. The
inspection phase helps extract the important columns to
be used. Next, we proceed with data type conversion
and removal of duplicate values stemming from acqui-
sition system bugs to preserve data integrity. A criti-
cal step in data transformation is the occurrence calcu-
lation of machine breakdowns per hour based on its his-
tory reports. It is important to examine material data
carefully and rectify any inconsistencies or outlier val-
ues in the measurements, whether they originate from

suppliers or result from detailed laboratory analyses. For
missing data points, we employ strategies such as im-
putation or deletion as needed. Furthermore, we apply
statistical techniques to detect and address outliers. De-
pending on their nature and impact, outliers may be ad-
justed to match the dataset’s characteristics or removed
to avoid distorting the final results. A generic aspect of
this phase involves scaling numerical data into a stan-
dardized range and applying mathematical transforma-
tions to avoid scale-related biases and enable those vari-
ables measured on different scales. The date was trans-
formed into a common range scale [0, 1]. This will guar-
antee variables impact the subsequent analysis without
scale bias, which consequently deals with fair and accu-
rate assessments of the data on machine breakdowns. To
provide a clear visual representation of these various data
cleaning steps, figure 2 illustrates the steps involved in
the data cleaning process. After preprocessing the data,
we aggregate the transformed datasets (machine & mate-
rial) using the ’date’ variable into a single dataset.
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Figure 2. Data Preprocessing Steps

• Data Loading: Following the transformation and struc-
turing of the data into a unified dataset, data are loaded
into a single Excel file. Subsequently, the next stage en-
compasses data analytics, feature extraction, and the ap-
plication of modeling algorithms to predict breakdowns.

3.1.2. Data Analytics for Machine Learning

In our methodology, data analytics holds a crucial signifi-
cance when it evaluates the extracted features and selects the
appropriate ones for the ML model. We employed techniques
from Exploratory Data Analysis (EDA) to gain a deep un-
derstanding of data nature, distribution, correlations, as well
as potential quality issues. These informations are essential
for making the right decisions regarding feature selection and
suitable ML selection. A conducted EDA also allows for the
detection of possible redundancies or interactions between
features, which can influence the final model selection. Four
types of data analytics techniques were conducted: Statisti-
cal Analysis, Correlation Analysis, Data Distribution Visual-

ization, and Linearity Analysis. Statistical Analysis involves
the use of statistical techniques to understand and summa-
rize data characteristics. This often includes calculating mea-
sures of central tendency (mean, median, mode), dispersion
(standard deviation, variance), as well as summarizing distri-
butions (quartiles, deciles). Then, a Correlation Analysis is
held to examine the relationship between variables, particu-
larly if they are linearly associated. The Pearson correlation
coefficient is commonly used to quantify the strength and di-
rection of this relationship, ranging from -1 (perfect negative
correlation) to 1 (perfect positive correlation), with 0 indicat-
ing no correlation. The Pearson correlation coefficient (r) is
calculated using the following formula:

r =

P
(Xi � X̄)(Yi � Ȳ )pP

(Xi � X̄)2
P

(Yi � Ȳ )2
(1)

Another technique in EDA involves visualizing data distri-
bution using graphs and diagrams, such as histograms, box
plots, and density plots, to represent the distribution of val-
ues in a dataset visually. This helps in observing the shape
of the distribution, detecting potential outliers, and identify-
ing trends. Lastly, linearity analysis aims to evaluate whether
the relationship between an independent variable and a de-
pendent variable is linear. This evaluation can be performed
by plotting a scatter plot of the two variables and visually ex-
amining the shape of the relationship. Statistical tests can
also be used to confirm linearity. These analyses are of
paramount importance for data understanding, selecting ap-
propriate analysis methods, and, most importantly, narrowing
down the choice of models to be tested for prediction (Ketata,
Al Masry, Zerhouni, & Yacoub, 2023).

3.1.3. Features Selection

In our methodology, feature selection represents a crucial
step. Indeed, it is a common step among works interested
in ML modeling, especially when dealing with multiple vari-
ables. For example. In (Raouf, Lee, & Kim, 2022), au-
thors specifically showed that the chi-square test-based fea-
ture selection (Case VI) significantly enhanced classifier per-
formance, achieving the highest accuracy, which underscores
the critical role of feature selection in enhancing the effective-
ness of mechanical fault diagnosis systems. Another appli-
cation of feature selection techniques is presented by (Chen
& Gao, 2020), who proposed an integrated group-based sen-
sor selection algorithm for manufacturing systems. This ap-
proach reduces the number of sensors required for accurate
Remaining Useful Life (RUL) estimation and demonstrated
an average improvement of 86% in RUL calculation. To guar-
antee a feature selection process that yields meaningful re-
sults for breakdown prediction, we compared and contrasted
three distinct methods: the Lasso (Least Absolute Shrink-
age and Selection Operator), Recursive Feature Elimination
(RFE), and ANOVA (Analysis of Variance). RFE is a tech-
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Figure 3. ETL Process for learning dataset construction

nique that functions by recursively removing attributes and
constructing a model on the attributes that remain. It uses
model accuracy to pinpoint which attributes (or combinations
thereof) are most influential in predicting the target variable.
Meanswhile, ANOVA is a statistical method employed to
compare the means of three or more samples to discern if at
least one of the sample means significantly deviates from the
others. This method is frequently applied in feature selection
to assess if numerical features exhibit significant differences
across various categories. A detailed exposition of these two
techniques and their operational mechanisms is provided in
the appendix section. After evaluating the three mentioned
methods for feature selection and model construction, Lasso
was identified as the most pertinent method within this con-
text. The Lasso method is a regularization technique that aims
to shrink the coefficients of less important features to zero.
This process is beneficial for reducing the dimensionality of
the dataset and selecting the most relevant features for the
predictive model. In the context of our study, where we aim
to predict the Or variable using the features C1 through Cn,
Lasso can be especially beneficial in reducing variance, pre-
venting overfitting, and pinpointing the most relevant features
by shrinking coefficients of some of them to zero. Mathemat-
ically, Lasso regression is defined by minimizing the sum of
squared residuals (SSE) with a penalty on the absolute value

of the coefficients:

minimize

0

@
nX

i=1

(yi � ŷi)
2 + ↵

pX

j=1

|wj |

1

A (2)

where:

• yi are the observed values of Or.
• ŷi are the predicted values of Or.
• wj are the coefficients associated with features C1 to Cn.
• p is the number of features.
• ↵ is a regularization parameter. When ↵ = 0, Lasso re-

duces to plain linear regression. With a higher value of
↵, coefficients can be shrunk to zero, effectively elimi-
nating those features from the model.

In the analysis of the dataset, the Lasso regularization tech-
nique was employed to discern the significance of each fea-
ture in predicting the Or variable. The Lasso method is
renowned for its ability to handle complex data by efficiently
managing situations where the number of variables signifi-
cantly exceeds the number of observations. This technique is
particularly valuable in fields where large, multidimensional
datasets are common as it offers an elegant solution to the
overfitting issue that can arise from an overly complex model.
By eliminating unnecessary variables, Lasso enables the con-
struction of a simpler and more interpretable model while
maintaining high predictive performance. In comparison to
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ANOVA, which analyzes variances between different groups
without necessarily reducing the dimensionality of the data,
and RFE, which eliminates less significant variables with-
out incorporating a direct regularization mechanism, Lasso
proves to be a superior approach to feature selection. By
integrating characteristic selection with regularization, Lasso
achieves a balance between model simplicity and its ability to
generalize to new material data inputs. To validate Lasso’s ef-
fectiveness, we conducted a direct comparison with ANOVA
and RFE, using model accuracy as the primary criterion. This
approach demonstrated that Lasso not only reduces model
complexity but also improves accuracy, confirming its supe-
riority in our specific data context. With its ability to identify
and retain only the most influential variables for prediction,
Lasso is a promising method for researchers and practition-
ers seeking optimal efficiency and high precision in their pre-
dictive models. By comparing these three feature selection
techniques, the we aim to identify the most informative fea-
tures that exhibit a strong association with the target variable.
These selected features will subsequently be used for building
predictive models or conducting further analyses to gain in-
sights into the underlying relationships between the features
and the target variable.

3.1.4. Modeling

Predicting machine breakdowns using selected features ex-
tracted through advanced feature extraction techniques re-
quires a performed model selection strategy (Minh, Wang,
Li, & Nguyen, 2022). This selection is contingent upon sev-
eral factors closely aligned with the problem’s nature and the
data’s inherent characteristics. The primary step involves un-
derstanding the nature of the problem. In our context, the task
necessitates a non-linear modeling approach, as evidenced by
the data dynamics. The data volume significantly impacts the
selection process. A large dataset may cause certain models
to exhibit lethargic performance, leading to protracted train-
ing durations. Therefore, it is essential to select models that
efficiently handle voluminous data without sacrificing predic-
tive precision. Additionally, the model’s complexity demands
astute consideration. While intricate models have the prowess
to encapsulate nonlinear relationships, they are also predis-
posed to overfitting, wherein the model becomes unduly spe-
cialized to the training dataset. Striking an optimal balance
between model complexity and generalization capacity is of
utmost importance (Montesinos López, Montesinos López,
& Crossa, 2022). Model interpretability also plays a crucial
role in the decision-making process. If elucidating and jus-
tifying the model’s predictions is a priority, simpler models,
like linear regression or decision trees, emerge as prime con-
tenders due to their transparency in decision rationale. Our
initial steps incorporated an exhaustive exploratory data anal-
ysis, investigating facets such as variable correlation, linear-
ity, and distribution patterns. The insights derived indicated

a non-linear association between our features and the target
variable. Consequently, the necessity for non-linear models
was accentuated. Given the inferred non-linearity, traditional
linear regression might not be the ideal candidate for our case.
We conducted a thorough analysis of three different ML mod-
els: Random Forest (RF), Artificial Neural Networks (ANN),
and Support Vector Machine (SVM). The aim of this analy-
sis was to identify the model that would perform the best in
solving the problem at hand. To make an informed decision,
we considered several factors, such as the models’ architec-
ture, implementation, and parameter settings. We provided
a detailed description of each model’s architecture in the ap-
pendix section, including the number of layers, neurons, and
equations. To ensure the accuracy of our results, we carefully
selected the optimal parameter settings for each model. These
settings were determined through a series of rigorous exper-
iments and iterations. Based on our findings, we concluded
that the RF model is the most suitable for predicting machine
breakdown occurrences. In fact, to evaluate and compare the
performance of these ML models, we calculate their Root
Mean Squared Error (RMSE) on a specifically designated test
dataset. The RMSE is used to measure the square root of the
average of squared differences between predicted and actual
values, as presented in its equation 3:

RMSE =

vuut 1

n

nX

i=1

(yi � ŷi)2 (3)

This process allowed us to identify the most proficient non-
linear model that aligns seamlessly with our predictive ob-
jectives. RMSE serves as a reliable indicator of the models’
predictive accuracy in this context.

3.1.5. Classes thresholds identification

In this study, the thresholding method involves comparing
various clustering algorithms to determine suitable thresh-
olds for labeling materials based on occurrences of machine
breakdowns. The aim of this step is to create a set of classes
that characterize and qualify the severity of predicted break-
downs by a model. This will help in preparing for the auto-
labeling phase, which will be part of the online phase. The
goal is to establish breakdowns intervals, with each interval
characterizing a severity that will subsequently become a la-
bel. After structuring and preprocessing data, we obtained a
dataset that contained historical breakdown data for each coil
of material. We used clustering methods to predict clusters
based solely on the occurrence values. We compared three
methods: K-Means, DBSCAN, and Hierarchical. We chose
to use K-Means as it performed the best in creating distinct
and cohesive clusters that effectively categorized the sever-
ity levels of breakdown occurrences, and clearly showed the
thresholds between clusters. This method was particularly ef-
fective for our dataset, striking a balance between simplicity
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Figure 4. Classes Thresholds Identification for Labels Creation

and ability to handle the variability in the breakdown occur-
rence data. It provided a more straightforward basis for set-
ting our labeling thresholds.The number of clusters, denoted
as k, can be determined based on expert knowledge or other
criteria, such as the Elbow method, silhouette analysis, or
domain-specific insights, and has been set to 5 for our study.
By applying the K-Means algorithm to the normalized data,
breakdown occurrences are assigned to five clusters based on
their similarity which enables us to determine the five labels
denoted as A, B, C, D, E. When implementing K-Means clus-
tering, we set thresholds to distinguish between clusters. We
do this by calculating the centroids, which are the average
values of the data points within each cluster. These thresh-
olds can be placed between adjacent centroids along the rel-
evant dimensions, creating clear boundaries between differ-
ent levels of severity for breakdown occurrences. By analyz-
ing the distribution of data points around these centroids and
considering the variance within each cluster, we can deter-
mine the best thresholds to minimize misclassification. This
allows us to accurately identify each cluster’s severity level,
which helps improve maintenance interventions and materi-
als scheduling. Analyzing the resulting clusters provides in-
sights into their characteristics, including statistical measures
such as size, mean, and standard deviation. These insights
facilitate the definition of thresholds, which are determined
by considering factors such as the distance from the cluster
mean. To validate and fine-tune the defined thresholds, recent

data or pilot tests are used to ensure their accuracy in clas-
sifying new machine breakdowns. This rigorous approach
ensures the effectiveness of the thresholding method in accu-
rately classifying machine breakdowns for each coil of ma-
terial in the study. Figure 4 illustrates, on one hand, the five
identified clusters along with the thresholds between clusters.
On the other hand, it also demonstrates how this step can be
formalized into a standard for auto-labeling raw materials.
This raw-data-based method for clustering non-time series
data involves modifying the distance measurement method
in the original clustering algorithm to suit the data, thereby
preserving the most original characteristics of the data.

3.2. Online Phase: Automated Labeling of New Material
Coils

This section explains the technical intricacies of our method-
ology’s online phase, as illustrated in figure 1 and out-
lined by Algorithm 1. Our data acquisition process begins
upon receiving new material coils, accompanied by a ma-
terial certificate from the supplier, providing comprehensive
physico-chemical characteristics. Emphasizing the reliability
of supplier-provided data, free from errors and other issues,
we directly apply Lasso method to select input features which
will be an input to our predictive model. Our model is pur-
posefully designed to provide precise predictions of break-
down occurrences per hour Op. Once we have this value, we
assign this value to its corresponding label identified thanks
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the the classes thresholds identification step described in sec-
tion 3.1.5. The algorithm 1 describes the structure of the au-
tomatic labeling phase and also frames the integration of sup-
plier data into the predictive model in order to assign them la-
bels describing the severity of the predicted breakdown value.

Algorithm 1 New Metal Coil Auto-labeling
Input: Raw Material Data
Output: Coil Label

Initialization:
1. Get new input material (Coil): Variables from C1 to C12
2. Extract the most important features: Ci, Cj , Ck, Cl

3. Predict breakdown occurrence via deployed RF model
4. Auto-Labeling material coil:
if Op 2 [0, T1] then

Coil is labeled A

else if Op 2 [T1, T2] then
Coil is labeled B

else if Op 2 [T2, T3] then
Coil is labeled C

else if Op 2 [T3, T4] then
Coil is labeled D

else
Coil is labeled E

end if

4. CASE STUDY AND RESULTS

This section presents a case study involving the auto-labeling
of raw materials of a French company named SCODER, spe-
cialized in the manufacturing of metal parts in the automotive
sector. It outlines the deployment of various steps to validate
the efficiency and robustness of our prediction methodology.
subsection 4.1 offers a detailed description of this case study,
presenting the platform and the data acquisition process. And
then, in subsection 4.2, we present the obtained results of ma-
terial auto-labeling using the proposed methodology by com-
paring different ML models.

4.1. Case Study and Data Description

Figure 5. Case Study: Production Line Description

We consider the SCODER case study as a real-word applica-
tion of our proposed methodology. The primary aim of this
PHM project is to help industries enhance their production
efficiency by minimizing machine breakdowns and increas-
ing overall productivity. To illustrate the production process,
figure 5 provides an overview of the metal parts manufac-
turing process. Initially, a decoiler supplies material to the
metal rolling line, where flatness defects are subsequently
corrected. A special tool shapes the material into the desired
part, which is then transported by a conveyor. Production
performance relies on several key parameters, including the
material quality, machine condition, operator skill, and tool
functionality. In our case study, based on expert knowledge,
we attribute machine breakdowns exclusively to the charac-
teristics of the metal coils used. Therefore, this PHM study
encompasses two objectives:

• Predict the machine breakdown occurrence based on ma-
terial proprieties.

• Perform an auto-labeling of raw material coils to quan-
tify its impact on machine breakdowns.

The first step of our methodology, as described in section 3,
was data gathering. Two main types of data were collected:
materials data and machine history data, with an intermedi-
ate source which is ERP data. materials data contains the
physical and chemical properties of metal coils. These prop-
erties are carefully recorded and stored in a dedicated SQL
database. In fact, upon receiving each batch of material, we
received a material certificate containing the characteristics
of the material, batch number, reception date, etc. Table 1 de-
scribes the various raw material data we have. As we need to

Type Raw Material Constraints
Description

Raw Material Mechanical Collected 8 Coil,
Characteristics and Chemical Fmat = 3� 5 records/day

Characteristics Size = 8.2 KB/record.
Memory = 7MB/ Year

Batch Number Integer
Raw C1 Float
Raw C2 Float
Raw C3 Float
Raw C4 Float

Features Raw C5 Float
Raw C6 Float
Raw C7 Float
Raw C8 Float
Raw C9 Float
Raw C10 Float
Raw C11 Float
Raw C12 Float

Table 1. Raw Material Data Description

identify the imputation date for each metal coil, we rely on an
extracted database from the ERP system, as described in table
2, where we record the consumption history for each material
coil. To create a coherent dataset for materials, the ERP ex-
tracted data will be aggregated with corresponding material
data during the data structuring phase, ensuring accurate and
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complete integration. On the other hand, machine data were

Type ERP data Constraints
Description

Raw ERP Data Material Collected 8 Coil,
consumption Ferp = 2� 3 records/day
history Size = 4.8 KB/record.

Memory = 4MB/ Year
Batch Number Integer
Imputation Date Date

Features Tool Number Integer
Supplier Text
Quantity float

Table 2. ERP Extracted Data Description

obtained through a monitoring device equipped with a data
acquisition system. This device was connected to various
sensors that ensured machine protection by imposing maxi-
mum value limits and implementing process-oriented enve-
lope curve monitoring. Whenever the envelope curve was
reached, indicating a potential deviation or anomaly, the ma-
chine would automatically stop. The date and time of the
breakdown, along with an error message, were recorded, as
shown in table 3. The ”date” variable played a crucial role
in facilitating the subsequent integration of material and ma-
chine data, enabling comprehensive analysis. This rich set

Type Raw Machine Constraints
Description

- Raw Machine Data Machine Fm= 0.2 Hz
(Log Data) functioning Memory ⇠= 1 GB/Year

Date Date
Time Time
Runcounter Integer
Error message Text

Features Speed Integer
Module Text
Position Integer
Brake angle Integer
Strokstart Integer

Table 3. Raw Machine Data Description.

of features provided a holistic view of the manufacturing
process and formed the foundation for subsequent analysis
and modeling. The integration of these datasets will be de-
scribed further to provide a comprehensive understanding of
the learning base that enables effective analysis and decision-
making in an industrial context.

4.2. Application of the proposed methodology

In this subsection, we undertake a comprehensive exploration
of how each step in the proposed methodology can impact the
collected data. Additionally, we examine the different inter-
dependencies between these stages to gain a deeper under-
standing of their effect on the three datasets gathered from
the production line.

4.2.1. Offline phase

In subsection 3.1.1, the ETL process was proposed as a
method of structuring and preprocessing data. Data relating
to machines and raw materials are extracted over time, with
each change of raw material coil. In this context, a coil of
material is assimilated to a production cycle, during which
the characteristics of the consumed material generate an oc-
currence of machine stoppage, as illustrated in figure 5. In de-
tail, the characteristics of the material are extracted by merg-
ing the consumption history of the material with the supplier’s
material certificate database. Furthermore, the operating his-
tory of the machine provides the temporal component neces-
sary to identify occurrences of machine stoppages, hour by
hour. It is evident that this varies according to the material
and over time. After extracting, transforming, and loading a
unique set of learning data, we obtained the dataset described
in table 4. This dataset consists of 12 inputs ranging from

Features Type Features Description Constraints

C1 Float
C2 Float
C3 Float
C4 Float
C5 Float
C6 Float

Inputs C7 Float
C8 Float
C9 Float
C10 Float
C11 Float
C12 Float

Output Or Float

Table 4. Learning dataset Description

C1 to C12 and a single output representing the corresponding
breakdown occurrence; we have collected the history of 96
coils of material, resulting in 96 observations. In summary,
we explore a 96⇥ 13 matrix presented as follows:

2

666664

C1 C2 C3 . . . C12 Or

x11 x12 x13 . . . x1,12 y1

x21 x22 x23 . . . x2,12 y2
...

...
...

. . .
...

...
x96,1 x96,2 x96,3 . . . x96,12 y96

3

777775

The next step in our process involves performing an ex-
ploratory data analysis (EDA) to better understand the pat-
terns, relationships, and discerns ML models to test.
In our dataset, the output feature Or has a mean value of
µ = 2.58 and a standard deviation � = 3.822, ranging from
a minimum of 0.2 to a maximum of 35.9 with a median of
1.7. The columns C1 to C12 represent various measures.
Specifically, C1 has an average of approximately 24.57 with a
standard deviation of 1.025, and its values span from 21.1 to
26.2. The other columns also display diverse distributions, as
detailed in their descriptive statistics. The variable Or, repre-
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senting the number of breakdowns per hour indicates variabil-
ity in the production process. The statistical description of the
dataset, including measures such as mean, minimum, maxi-
mum, and standard deviation for each variable, is presented
in table 5. This table provides a comprehensive overview of
the central tendency, dispersion, and distribution shape of the
dataset’s features. To quantify the statistical relationships

Figure 6. Correlation Matrix

between the various material features and the target variable
Or, we elaborate a correlation analysis. This helps to identify
which features have a strong influence on Or, providing valu-
able insights for predictive modeling and feature selection.
The figure 6 displays the correlation matrix. It indicates that
the variable Or exhibits varying correlations with the other
columns. This heatmap demonstrates a positive correlation
between Or, C3 and C7. Conversely, it shows a negative cor-
relation with C4, C5, and C10. others variables like C1, C2,
and C6 show relatively weak or negligible correlations with
Or. The presence of these varying correlations suggests that
while some material features might play a substantial role in
influencing Or, others might have a minimal or no impact.
This correlation matrix, though insightful, underscores the
significance of other exploratory analyses, such as linearity
analysis. In fact, the purpose of linearity analysis is to ex-
amine the relationship between each feature and the output
variable Or. The figure 7 displays a series of scatter plots for
some material characteristics. We chose to show the relation-
ship between some chemical characteristics (C1, C2, C3, C4)
and mechanical characteristics (C9, C10, C11, C12) with the
target variable Or. For most features, the data points appear
dispersed, suggesting no strong linear relationship with Or.
The color gradient, ranging from purple (low Orvalues) to
yellow (high Orvalues), offers insights into regions with sim-
ilar Orvalues. While some areas exhibit color density, in-
dicating consistent Orvalues for certain feature ranges, the
overall patterns hint at potentially complex, non-linear re-

lationships. For some features, like C2 and C3, there is a
distinct pattern where the points form a linear relationship
with the output variable Or. This indicates that these fea-
tures might be good predictors for the target variable. For
other features, such as C1 and C12, the relationship is not as
clear, and the points are more scattered. This indicates that
these features might not be as strong predictors for the target
variable. These observations can be valuable when select-
ing features for modeling, as they can help to identify which
features are most relevant to the target variable. To evaluate
feature importance more precisely, we tested three different
methods: Lasso, RFE, and ANOVA, which provided distinct
results. It’s crucial to note that the global performance of
feature selection methods cannot be directly compared with-
out applying a machine learning algorithm. In this step, we
can only interpret the results of each feature selection tech-
nique with its corresponding metric, as illustrated in figure 8.
In the Lasso method, features such as C3, C4, C7, and C10

emerged as pivotal, with non-zero coefficients affirming their
significance, while other features were relegated to zero, hint-
ing at their lesser influence. The direction of the coefficients,
whether positive or negative, indicates their relationship with
the target variable Or, and the magnitude delineates the fea-
ture’s impact when other variables are held static. In the RFE
framework, C1 was identified as the most important feature,
followed by C5, C8 and then other features. It is crucial to
note that this interpretation is grounded in a linear perspective
and might differ in a non-linear setting. Lastly, ANOVA was
employed to discern the differences in means across multiple
groups for every feature. However, no features were identi-
fied as significant based on the ANOVA F-test, as all p-values
surpassed the usual 0.05 threshold. This urges a cautious
approach in their immediate validation. To compare the re-
sults of the three feature extraction methods (ANOVA, Lasso,
and RFE), we proceed directly to the modeling step. Indeed,
to accurately predict the breakdowns occurrence, we test the
three models mentioned in the methodology: SVM, RF, and
ANN. Table 6 summarizes the nine combinations created be-
tween the ML models and the feature selection methods, also
detailing the inputs chosen by each technique, the key pa-
rameters used for each method, the main conclusions, and
additional remarks that provide more context regarding the
nature and specifics of each approach. Testing each combi-
nation allowed us to calculate the Root Mean Squared Error
(RMSE). According to table 6, it is evident that each selec-
tion method offers a distinct perspective on the importance
and relevance of the features with respect to the target vari-
able Gold. The performance metrics in ML can show which
one is the most important, taking into account the context,
assumptions, and specifics of each approach. In fact, results
shows that machine learning models, feature selection meth-
ods, and the number of features play a crucial role in model
performance. RF and SVM tend to perform similarly and
generally better than ANN, maybe due to their ability to cap-
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Or C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12

count 96 96 96 96 96 96 96 96 96 96 96 96 96
mean 2.580 24.570 537.631 625.816 0.076 1.372 0.002 0.008 0.038 0.043 0.051 0.001 0.014
std 3.822 1.025 14.911 10.993 0.002 0.026 0.001 0.001 0.014 0.004 0.003 0.000 0.002
min 0.2 21.1 517 596 0.071 1.36 0.001 0.006 0.021 0.039 0.047 0.001 0.012
25% 1.1 23.9 525 620 0.074 1.36 0.001 0.007 0.024 0.041 0.048 0.001 0.012
50% 1.7 24.7 530 628 0.076 1.37 0.002 0.008 0.041 0.043 0.051 0.001 0.012
75% 2.8 25.4 552 633 0.077 1.37 0.002 0.009 0.046 0.046 0.053 0.002 0.015
max 35.9 26.2 569 638 0.08 1.51 0.003 0.01 0.058 0.049 0.056 0.002 0.017

Table 5. Data Statistical Analysis Description

Figure 7. Linearity Analysis

ture complex non-linear relationships in data. In terms of
feature selection methods, ANOVA and Lasso provide sim-
ilar performance, while RFE results in slightly worse out-
comes. This discrepancy might be due to the different ways
these methods select important features, with RFE potentially
choosing less informative features. The number of features
does not show a clear trend in impact on performance; in
some cases, using selected features (C1 to C12) yields bet-
ter results, while in other cases, a subset of features performs
better. This suggests that some features are more informative
than others, and including non-informative features can de-
grade model performance. The parameters of the models also
significantly impact performance; for instance, the maximum
number of iterations for ANN affects model convergence, and
the number of estimators and random state for RF can also in-
fluence outcomes. These results highlight the importance of
testing different combinations of machine learning models,
feature selection methods, and the number of features to find
the optimal configuration for a given dataset. The best com-
bination found in this analysis was the RF model with Lasso
as the feature selection method with 4 features (C3, C4, C7,
C10). This combination yielded the lowest RMSE of 1.7, in-

dicating superior predictive performance compared to other
combinations. The RF model is known for its ability to han-
dle complex data structures and relationships, and the Lasso
method efficiently identified the most relevant features, con-
tributing to the model’s high accuracy. These results empha-
size the potential of combining machine learning models with
appropriate feature selection methods to optimize occurrence
prediction. The presented development allows us to predict
on occurrence by material coil; a final step remains before
proceeding to the deployment of the method, which is to cre-
ate the labels. Indeed, the labels are created by comparing
the three clustering methods: DBSCAN, Hierarchical, and K-
means. This clustering technique was applied to our dataset
spanning 93 days to segment data based on Or variable. The
results, presented in figure 9, revealed distinct cluster struc-
tures with specific thresholds between each cluster. For the
DBSCAN method, it was not possible to specify the number
of clusters in advance, as this method works by identifying
high-density areas in the feature space, which are separated
by low-density areas. In our case, using the default param-
eters of DBSCAN, we obtained a single cluster, indicating
that data are very grouped in the feature space. We proceeded
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Figure 8. Feature Selection Methods Results

Combination Feature Selection Method ML Model Inputs Output Parameters RMSE
1 Lasso SVM C3, C4, C7, C10 Or - 1.308
2 Lasso ANN C3, C4, C7, C10 Or max iter=500 16.56
3 Lasso RF C3, C4, C7, C10 Or n estimators=100, random state=0 1.70
4 RFE SVM C1, C5, C8 Or - 3.08
5 RFE ANN C1, C5, C8 Or max iter=500 13.28
6 RFE RF C1, C5, C8 Or n estimators=100, random state=0 3.414
7 ANOVA SVM C1 to C12 Or - 3.308
8 ANOVA ANN C1 to C12 Or max iter=500 13.16
9 ANOVA RF C1 to C12 Or n estimators=100, random state=0 1.968

Table 6. RMSE Comparison of ML Models

to adjust the parameters of DBSCAN in an attempt to ob-
tain a specific number of clusters, but this gave us 12 clusters,
which is not a satisfactory result in our context. This situation
illustrates the limitations of DBSCAN when it comes to con-
trolling the number of clusters, especially in datasets where
the structure of clusters is not clearly defined. K-Means iden-
tified five clusters with thresholds at 0.9, 1.7, 2.15, 2.85, and
3.83, and the silhouette score was 0.61. Hierarchical cluster-
ing produced different results to K-Means with thresholds at
1.2, 1.3, 2.4 and 3.3 and a silhouette score of 0.58 . These
thresholds represent transition points between different data
groups and can be used to understand the relationships be-
tween different observations in the dataset. The silhouette
scores suggest that K-Means clustering produced the most
cohesive and separated clusters, followed closely by hierar-
chical clustering. Given the nature of our problem, which is
auto-labeling, we have chosen K-means as it has the high-
est silhouette score. Indeed, in our case, clustering is not
performed for prediction, so a simple preferment clustering
method was sufficient. We are mainly interested in the pre-
cision of the thresholds between clusters to ensure accurate
auto-labeling. The selection of K-means as the best cluster-

ing method is based on our specific objective and preferences.
The fact that K-means provided a better choice confirms that
sometimes simple ML models can deliver good results. The
key is that they match our dataset and meet our needs without
being overqualified.

4.2.2. Online phase

In the previous subsection 4.2.1, we applied the offline phase
of our methodology to the SCODER case study. This allowed
us to establish the different techniques to be deployed in the
online phase. After conducting our experiments and devel-
oping an appropriate RF model for the, we can now discuss
the findings related to predicting a global occurrence in the
manufacturing industry. We randomly selected 20 coils of
material from the historical material records. For each coil,
we extracted the four relevant features, namely C3, C4,C7,
and C10 identified by the Lasso model and used these features
as inputs to test our model in order to predict the target vari-
able’s value Or. Figure 10 presents a comparison between the
real Or value and the values predicted by our model Op. The
real values are represented in blue, and the predicted ones are
represented in red. This visualization allows us to assess the
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Figure 9. Thresholds Identifications

accuracy of our model by comparing the proximity of the two
curves. The accuracy of the model was also measured using
the following formula:

Accuracy =
1

n

nX

i=1

����
Real Valuei � Predicted Valuei

Real Valuei

���� (4)

where n is the number of samples, and Real Valuei and
Predicted Valuei are respectively the real and predicted val-
ues for the i-th sample. This formula provides a measure of
the relative error between the predicted and real values, and
higher accuracy indicates better performance of the model.
When the expert receives the label made by a the prediction
methodology, he plays a crucial role in using this information
to efficiently plan raw material consumption. The model’s
decision serves as a valuable guide, but human expertise is
still essential to interpret these data in the specific context of
the ongoing operation. The expert must consider not only the
model’s results, but also other factors such as the machine’s
operating conditions, variations in the tool shape and any
production constraints. By integrating these elements with
the model’s predictions, the expert can make informed de-
cisions that maximize production efficiency while minimiz-
ing the risks of machine breakdowns. This holistic approach,
which combines the power of data analysis with human ex-
pertise, is essential to ensure that raw material planning is
optimized and machine stoppages are minimized, thereby
achieving production goals while preserving the quality of the
production process and final product. The developed method-
ology achieved a Technology Readiness Level (TRL) of 7.
This is a significant milestone for companies that are look-
ing to optimize their usage of raw materials. This helps pro-
duction to adapt to the dynamic and changing demands of
the industrial environment, resulting in minimized interrup-

Figure 10. Predicted Breakdown Occurrence VS Real Break-
down Occurrence

tions and breakdown risks while maximizing resource use.
In practical terms, this advancement results in a precisely la-
beled raw material inventory at Scoder, facilitating a more
targeted and effective consumption of coils. In fact, labeling
materials into categories holds strategic importance for our
production chain, guiding scheduling and risk management.
Materials categorized as (A) and (B), expected to have fewer
breakdowns, are scheduled for nighttime production due to
limited technical support. Conversely, materials in (D) and
(E), known for complexity or higher fault tendency, are as-
signed to skilled operators during the day, reducing risks. If
incoming materials fail to meet the required standards, they
can be quickly returned to the supplier, avoiding waste and re-
ducing costs. By replacing the old model of random selection
or FIFO (First In First Out) selection with a strategic mate-
rial allocation, this methodology represents a significant step
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forward in industrial planning. It aligns production processes
with both sustainability and efficiency goals.

5. CONCLUSION

This study presents a comprehensive methodology aimed at
addressing the crucial challenge of integrating raw material
characteristics into the prognostics and health management
(PHM) framework for predictive maintenance in the man-
ufacturing industry. By acknowledging the pivotal role of
raw materials in influencing machine performance and reli-
ability, our methodology goes beyond conventional sensor-
based diagnostics and prognostics, thus offering a holistic
solution. The implementation of the ETL process has suc-
cessfully resulted in the development of a real-time data fu-
sion and preprocessing framework. This framework enables
the seamless integration of raw material data, allowing for
accurate material labeling and subsequent predictive analy-
sis. Through this, our methodology facilitates intelligent raw
material management, minimizing machine breakdowns, and
enhancing production reliability. Our comparative analysis
of feature selection methods revealed that the Lasso tech-
nique When combined with a RF model demonstrated su-
perior performance in accurately predicting material impact
on machine breakdowns. This underscores the importance
of feature selection in enhancing the predictive power of ma-
chine learning algorithms. Applying our methodology to a
real-world metal material dataset from SCODER, we success-
fully labeled metal coils into distinct categories based on their
characteristics. This labeling not only aids in intelligent in-
ventory management but also contributes to the proactive an-
ticipation of machine breakdowns, thus minimizing produc-
tion disruptions. The combination of ETL, Lasso, and RF
offers a powerful toolset for manufacturers to optimize raw
material consumption, reduce breakdowns, and boost produc-
tion efficiency. As industries continue to navigate the chal-
lenges of modern manufacturing, this methodology holds the
potential to redefine the landscape of predictive maintenance
and contribute to sustainable and resilient manufacturing pro-
cesses. A significant challenge of our work is to fully inte-
grate raw material characteristics with predictive analytics to
enhance the PHM systems. This complexity stems from the
varying quality of raw materials and its nuanced impact on
machine performance, which is difficult to quantify and in-
corporate into existing models. For future work, we aim to
focus on predicting the impact of raw material on part qual-
ity. This involves developing more sophisticated models that
can accurately capture the relationship between raw material
characteristics and the global quality of manufactured parts.
Such models will not only advance our understanding of ma-
terial science but also improve manufacturing processes by
enabling more precise control over the accuracy of the out-
put, reducing waste, and increasing efficiency.
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APPENDIX

ANNEX 1: USED MACHINE LEARNING MODELS

1. Random Forest (RF): The RF algorithm combines nu-
merous decision trees to render predictions (Gelzinis et
al., 2014), as shown in figure 11. It excels at understand-
ing complex nonlinear connections and handling datasets
with multiple dimensions. In RF, B = 100 trees are

Figure 11. RF Architecture

constructed using bootstrap samples from the dataset,
and for each tree, predictions are either averaged for re-
gression or a majority vote is taken for classification.
The prediction of the b

th tree for a given set of inputs
C1, . . . , C12 is denoted as Yb(C1, . . . , C12). The Or pre-
diction of the RF model, denoted as ŶOr, is calculated as
follows:

ŶOr =
1

100

100X

b=1

Yb(C1, . . . , C12) (5)

In this study, the RF algorithm operates with 12 input
features derived from observations of material proper-
ties, labeled C1 to C12. These features are selected dur-
ing the feature selection stage and are integrated into a
training database that reflects the actual occurrences or
outcomes for each set of material features. Each entry in
this training dataset corresponds to a decision tree, and
the RF uses multiple such decision trees to make pre-
dictions. The process involves using samples and com-
bining the outputs of these decision trees to arrive at a
final prediction. The RF model can be configured to use
different features, and the number of decision trees in

the forest is set to 100 to optimize both performance and
computational efficiency.

2. Artificial Neural Networks (ANN): ANN model con-
sists of interconnected nodes or neurons organized into
layers, where each neuron processes information and
contributes to the network’s overall computation. ANNs
are renowned for their ability to model complex, non-
linear relationships in data, although they often require
substantial data and computational resources to achieve
optimal performance. A neuron’s output in our specific
setup is typically represented by:

ŶOr = f

 
12X

i=1

wiCi + b

!
(6)

where wi are weights, Ci are the input features derived
from observations of material properties, b is the bias,
and f is an activation function. In our specific case study,
we adapt the ANN architecture, presented in figure 12, to
work with these input features. These inputs, labeled C1

to C12, are selected during the feature selection stage to
ensure they are relevant to our problem. We can con-
figure the ANN to accommodate different sets of fea-
tures, allowing us to explore various combinations and
their impact on the model’s performance.

Figure 12. ANN Architecture

Additionally, the number of neurons and layers in the
network can be adjusted based on the number and com-
plexity of the selected features. By fine-tuning these
architectural elements and training the network on our
material property data, we can harness the power of
ANNs to uncover intricate relationships and make accu-
rate breakdown occurrence predictions.

3. Support Vector Machine (SVM): The SVM is a super-
vised learning algorithm adept at classification and re-
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gression tasks. The SVM architecture, presented in fig-
ure 13, is designed to find an optimal hyperplane that
minimizes the errors in predicting continuous outcomes.
The decision function for SVM regression, in our case
study, can be expressed as:

ŶOr = hw,Ci+ b (7)

where hw,Ci is the dot product of the weight vector w
and the input vector C = (C1, C2, . . . , C12), and b is
the bias. By employing a suitable kernel function, such
as the linear, polynomial, or radial basis function (RBF)
kernel, and fine-tuning the model’s hyperparameters, we
can train the SVM to perform regression on specific ma-
terial properties effectively. This approach aims to pre-
dict a continuous output based on the linear or non-linear
relationships learned from the input features.

Figure 13. SVM Architecture

4. DBSCAN Clustering: DBSCAN (Density-Based Spa-
tial Clustering of Applications with Noise) is a popular
clustering method that defines clusters as continuous re-
gions of high density. It does not require the number of
clusters to be specified in advance. Instead, it operates
based on two parameters: a distance value (‘epsilon‘)
and the minimum number of points required to form a
dense region (‘minPts‘). For a given point p:

• If there are at least ‘minPts‘ points within an ‘ep-
silon‘ distance of p, then p is a core point.

• If p is within an ‘epsilon‘ distance of another core
point, it’s a border point.

• Otherwise, p is a noise point.

The equation that characterizes density in the DBSCAN
context is given by:

D(p, ✏) = {q 2 D|dist(p, q)  ✏} (8)

where D(p, ✏) denotes the number of points within an
‘✏‘ distance of p and ‘dist(p, q)‘ is a distance function
(typically Euclidean) between points p and q.

5. Hierarchical Clustering: Hierarchical clustering builds
a tree of clusters. The approach can be either agglom-
erative (bottom-up) or divisive (top-down). In the ag-
glomerative approach, every data point starts as its own
cluster, and pairs of clusters are merged based on their
similarity until only one large cluster remains. The dis-
tance between two clusters A and B in the average link-
age method is given by:

d(A,B) =
1

|A|⇥ |B|
X

a2A

X

binB

dist(a, b) (9)

where |A| is the size of cluster A, |B| is the size of clus-
ter B, and ‘dist(a, b)‘ is a distance function (typically
Euclidean) between points a and b.

6. Recursive Feature Elimination (RFE): Recursive Fea-
ture Elimination is a feature selection method employed
in the study. It iteratively eliminates less important fea-
tures based on the coefficients of a chosen machine learn-
ing algorithm. Starting with the full feature set, the
model ranks the features based on their importance and
eliminates the least significant ones. The RFE process
can be mathematically expressed as:

Fselected = argmax
F✓Fall

J(F ) (10)

where Fselected are the selected features, Fall is the full
feature set, and J(F ) is the performance metric of the
model trained using features F .

7. ANOVA (Analysis of Variance): ANOVA, a statistical
method, was also used for feature selection. It evaluates
the relationship between each feature and the target vari-
able by calculating an F-statistic:

F =
explained variance between groups
unexplained variance within groups

(11)

A p-value is then determined to assess the likelihood
that the observed differences in means are due to chance.
Features with lower p-values are considered more signif-
icant and are selected for further analysis.
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