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ABSTRACT

Gear pitting is a common gearbox failure mode that can lead
to unplanned machine downtime, inefficient power transmis-
sion and a higher risk of sudden catastrophic failure. Con-
sequently, there is strong incentive to create machine learn-
ing models that are capable of detecting and quantifying the
severity of gearbox pitting faults. The performance of ma-
chine learning models is however highly dependent on the
availability of training data and since training data for a wide
variety of different operating conditions and fault severities is
rarely available in practice, machine learning models must be
designed to be robust to unseen operating conditions and fault
severities. Furthermore, models should be capable of identi-
fying data outside of the training data distribution and ad-
justing the confidence in a prediction accordingly. This work
presents a strategy for pitting severity estimation in gearboxes
under unseen operating conditions and fault severities in re-
sponse to the PHM North America 2023 Conference Data
Challenge. The strategy includes the design of dedicated val-
idation sets for quantifying model performance on unseen
data, an investigation into the most appropriate preprocessing
methods, and a specialized convolutional neural network with
an integrated out-of-distribution detection model for identi-
fying samples from foreign operating conditions and fault
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severities. The results show that the best models are capable
of some generalization to unseen operating conditions, but
the generalization to unseen pitting severities is more chal-
lenging.

1. INTRODUCTION

This section presents a brief overview of prior work in pitting
severity estimation in gearboxes, describes the pitting sever-
ity dataset of PHM2023 data challenge and provides a short
overview of the contents of the rest of the article.

1.1. Pitting Severity Estimation in Gearboxes

Gear transmission systems play an important role in rotat-
ing machinery, which are used in various industrial appli-
cations, ranging from high-power wind turbines (Salameh,
Cauet, Etien, Sakout, & Rambault, 2018) to aircrafts (Cartocci,
Napolitano, Costante, Valigi, & Fravolini, 2022).

To ensure the continuous and reliable operation of these ma-
chines, condition based maintenance practices have been de-
veloped to reduce unnecessary maintenance (Lei et al., 2018),
and reduce machine downtime (Lee, Wu, Zhao, Ghaffari,
& Liao, 2014). To this end, various methods for detecting
and quantifying the severity of gear pitting deterioration have
been studied in recent years.

Traditional methods for vibration-based condition-based main-
tenance that rely on signal processing have proven to be very
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successful in this task (Elasha et al., 2014; Teng, Wang,
Zhang, Liu, & Ding, 2014) (Öztürk, Sabuncu, & Yesilyurt,
2008). However, the outputs of these signal processing tech-
niques often require interpretation by experienced operators.

As a competing alternative to these traditional methods based
on signal processing, machine learning (ML) techniques have
shown promising results for pitting fault detection and sever-
ity quantification in recent years (Chen, Li, & Sanchez, 2015;
Kumar, Parey, & Kankar, 2023) (Qu, He, Deutsch, & He,
2017; Medina et al., 2019). By processing large amounts
of data collected from machines in healthy and faulty con-
ditions, ML algorithms can identify hidden fault patterns in
data that does not require manual feature engineering as re-
quired in signal processing methods (Hendriks, Dumond, &
Knox, 2022). In particular, Convolutional Neural Networks
(CNN) (LeCun et al., 1989), have demonstrated remarkable
versatility across a broad spectrum of applications of condi-
tion monitoring, including the detection and diagnosis of gear
pitting faults. (Li, Li, Zhao, Qu, & He, 2020) proposed 1D
separable convolution with a residual connection network to
diagnose gear pitting, achieving high classification accuracy
on different operating speeds. In another work, a model that
combines a CNN with gated recurrent units effectively identi-
fied gear defects using acoustic emission and lateral vibration
data (Li, Li, Qu, & He, 2019). Additionally, CNN’s fre-
quently serve as foundational elements for more sophisticated
network designs, enabling the creation of intricate models for
diverse challenges. For example, (Qin, Wang, & Xi, 2022)
utilizes a CNN as the underlying structure of CycleGAN to
identify gear pitting through image data.

Despite the success of ML approaches, the effectiveness of
supervised machine learning models as applied in condition
monitoring is highly dependent on the availability of data at
different operating conditions and fault severities, since these
data driven methods assume that labeled training samples are
available (Schmidt & Heyns, 2019). Specifically, data-driven
supervised machine learning models have trouble generaliz-
ing to data distributions that are different from the data they
were trained on (Shimodaira, 2000) (Lakshminarayanan, Pritzel,
& Blundell, 2017) (Louizos & Welling, 2017). This distri-
bution shift is present when the model encounters data from
unseen operating conditions and fault severities. Therefore, it
has been proposed to use Out-of-Distribution (OOD) detec-
tors when deploying machine learning models to flag samples
out of the training distribution (Bishop, 1994).

In this work, the strengths of traditional signal processing
methodologies are combined with CNN’s for the task of pre-
dicting pitting severity from vibration data. The presented ap-
proach aims to evaluate model performance and the general-
ization capabilities of the machine learning models to unseen
operating speeds and fault severities. Ultimately, this rigorous
evaluation enables the selection of an optimal combination of

signal processing and machine learning methodologies.

1.2. Description of PHM2023 Data Challenge Dataset and
Data Exploration

This investigation into gearbox pitting severity estimation is
conducted as part of the PHM North America 2023 Data chal-
lenge (Prognostics and Health Management Society, 2023).
Participating teams are required to diagnose the pitting fault
severity of a gearbox from a three-axis vibration measure-
ment.

1.2.1. Dataset Description and Visualisation

The dataset comprises of vibration signals from gear pitting
experiments of increasing severity conducted on a one-stage
gearbox test rig. The gearbox has spur gears with a speed re-
duction ratio of 1.8:1, containing a driving gear with 40 teeth
and a driven gear with 72 teeth. The pitting severity of the
gears was artificially increased by manual drilling operations
on the gear tooth faces without any disassembly of the gear-
box between consecutive tests (Prognostics and Health Man-
agement Society, 2023). Measurements were collected under
various operating conditions and pitting severities including
the gearbox in healthy condition. The operating conditions
include speeds from 100 to 2000 rpm and torque levels from
200 to 900 Nm. During measurement, longer time series sig-
nals were collected for lower rotational speed conditions to
ensure sufficient data points per shaft rotation. Therefore, the
signal duration varies, with approximately 12 seconds sig-
nals for speeds of 100-200 rpm, 6 seconds signals for speeds
of 300-1000 rpm, and 3 seconds for speeds exceeding 1200
rpm. The vibration signals were sampled at a rate of 20480
Hz, and included a total of 3 measured channels for the hori-
zontal, axial, and vertical accelerations respectively.

The data challenge imposed a dataset split to evaluate par-
ticipants, with the training set comprising only 78 operating
conditions across 7 pitting severity levels even though the test
set contained data from 81 operating conditions and 11 pitting
severity levels. This means that some pitting severity levels
(5, 7, 9, 10) and operating conditions (1500RPM, 1800RPM,
2400RPM) are excluded from the training set, thereby requir-
ing models to generalize to unseen operational conditions and
fault levels. The data available in the training set is shown in
Table 1.

As a further introduction to the dataset, the time series, the
Power Spectral Density (PSD) (Welch, 1967) and the first
principal components of the PSD are visualized for different
fault severities and operating conditions. From the time series
plots of the training data set in Figure 1, it is clear that pitting
severity cannot easily be diagnosed from the magnitude of
the raw time series data alone. For instance, increasing pit-
ting severity does not necessarily imply larger peak-to-peak
values as shown for the 100rpm-300N and 600rpm-50N data
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Table 1. Splitting of training data for different operating con-
ditions. Operating conditions present in the training data are
indicated with 3. Operating conditions only present in the
test set are indicated with 7. No data is available for blank
cells.

Speed (RPM) Torque (Nm)
50 100 200 300 400 500

100 3 3 3 3 3 3

200 3 3 3 3 3 3

300 3 3 3 3 3 3

400 3 3 3 3 3 3

500 3 3 3 3 3 3

600 3 3 3 3 3 3

700 3 3 3 3 3 3

800 3 3 3 3 3 3

900 3 3 3 3 3 3

1000 3 3 3 3 3 3

1200 3 3 3 3 3 3

1500 7 7 7 7 7 7

1800 7 7 7 7 7

2100 3 3 3 3

2400 7 7 7 7

2700 3 3 3

3000 3 3 3

3600 3 3

in Figure 1.

The PSD of the vibration signal at different loads and operat-
ing conditions are shown in Figure 2. The subplots show a
comparison of different operating torques for a healthy con-
dition, different operating torques for a faulty condition, and
different fault conditions for a fixed operating condition, re-
spectively. While a relation between the peak value in the
PSD and load at a fixed speed can be observed for healthy
samples (Figure 2a), the same pattern is not identifiable for
faulty samples (Figure 2b). Finally, in the PSD of the vibra-
tion signal for different pitting severities under a fixed op-
erating condition (Figure 2c), there is also no clear relation
visible between the peak value and the pitting severity.

The challenge of separating the different pitting severity states
is further made apparent in Figure 3 showing the first two
principal components of training data PSDs after a Box-Cox
transform (Box & Cox, 1964). There tends to be an over-
lap between fault classes, especially at high speeds. Further-
more, similar pitting severities do not necessarily lie in the
same vicinity in the first two principal components.

1.2.2. Competition Scoring Metrics

The 2023 PHM North America Data challenge competition
used a dedicated scoring system that rewarded correct pre-
dictions and severely penalized predictions that are far from
the true pitting severity. Hereby the competition participants
are encouraged to create models that do not make incorrect
predictions confidently. The score per observation is defined

Figure 1. Vibration measurements at different speeds and
loads for pitting severity 3 and 6 in the training set. From
top to bottom: 100rpm-300N, 600rpm-50N, 1200rpm-500N,
2100rpm-100N.

as:

Score observation := c
10X

i=0

pi si (1)

where c 2 {0.2, 1} is a confidence factor of the prediction
and pi 2 [0, 1] is the probability of the sample belonging
to pitting severity i as predicted by the model. The pitting
severity score si is the reward or penalization based on the
distance between pitting severity i and the true state of the
observation according to Table 2.

This results in a scoring scheme where random prediction
of the observation pitting severity, on average, results in a
negative score, irrespective of the true pitting severity of the
observation. In fact, for a balanced testing data set the ex-
pected value of the score is �0.81. This scoring system en-
courages participants to not make incorrect predictions con-
fidently. Specifically, the confidence factor c can allow par-
ticipants to distinguish between observations for which the
model prediction is considered reliable (confident prediction)
or unreliable (unconfident prediction).

Finally, for each observation, a constraint on pi is applied
such that the sum of the predicted probabilities for a signal
should be equal to or less than one:

10X

i=0

p i  1 (2)

2. MODEL DESIGN APPROACH

This work presents a strategy for effective machine learning
model design for predicting pitting severities with the added
challenge of unseen pitting severities and unseen operating
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(a) Welch PSD (Window length 8000) for healthy condition at speed 100
rpm.

(b) Welch PSD (Window length 8000) for pitting severity level 3 at speed
100 rpm.

(c) Welch PSD (Window length 8000) for severities in the training set at
speed 100 rpm and load 200N.

Figure 2. Welch PSD (Window length 8000) for the measured
vibration signals at different operating conditions and fault
severities.

Table 2. Pitting severity score table: point system based on
proximity to the true answer. Predictions far from the true
pitting severity are heavily penalized.

Distance from true state pitting severity score s
0 (correct prediction) 1.0
1 0.5
2 0
3 -0.5
4 -1.0
5 -1.5
6 -2.0
7 -2.5
8 -3.0
9 -3.5
10 -4.0

conditions in the test set.

As shown schematically in Figure 4, this approach follows
an experimental design approach based on carefully selected
validation sets. Each of the components are discussed in
greater detail though the remainder of the paper. Firstly, Sec-
tion 3 describes the procedure for creating dedicated valida-
tion sets for evaluating candidate machine learning models
on data from unseen operating conditions and fault severi-
ties. Thereafter, Section 4 introduces several preprocessing
approaches that are applied during model development. Fol-
lowing this, the machine learning classification model with an
integrated out-of-distribution detector is considered in Sec-
tion 5. The wide range of design choices outlined in Figure 4
are then evaluated on the previously designed validation sets.
These results are presented in Section 6 together with the per-
formance of the final selected model on the test dataset.

3. DESIGN OF VALIDATION SETS TO MIMIC TEST SETS
WITH UNSEEN DATA

The modeling strategies proposed in this work are compared
based on model performance on carefully designed valida-
tion sets which are created in an effort to emulate the test data
that contains signals from unseen operating conditions and
fault severities. A comprehensive set of preprocessing tech-
niques, normalization schemes and machine learning models
are evaluated and the optimal strategy is then selected based
on its performance on each of these validation sets. This sec-
tion describes how the validation sets are designed such that
they mimic the true test conditions.

As mentioned in Section 1.2, the model will be evaluated on
a test set containing data from the same operating conditions
and pitting severities as training, with different operating con-
ditions and with different fault severities. To evaluate the
generalization of a model to these unseen conditions, can-
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Figure 3. The first two principal components of the training data PSD’s after Box Cox transform. PSD window length: 8000.

Figure 4. The proposed approach for model design.

didate models and preprocessing strategies are validated on a
selected subset of the training set. Therefore, three scenarios
are considered: seen operating conditions and pitting sever-
ities (normal supervised learning), unseen operating condi-
tions, and unseen pitting severities during training. Out of
these scenarios, three validation cases are created out of the
training data: validation set I with 20% of the training signal
randomly separated off, validation set II with the speeds of
900rpm and 1200rpm separated off and validation set III with
fault severity two and eight separated off.

In validation set II the decision was made to use the speeds of
900rpm and 1200rpm as validation data based on the fact that
the unseen speed-load conditions in the test set are not at low
speed. In fact, the lowest unseen speed in the test data is 1500

rpm. Thus, validation set II focuses on high speed conditions
which still contain torque levels up to 500Nm. Validation
set III is created to highlight the challenge of unseen pitting
conditions in the test set. As in the test set the highest pitting
severity is not included in training, highest pitting severity
from training (eight) is used for validation in validation set
III. As not every unseen pitting condition in the test set are
high severities, pitting condition two is included in validation
set III as well.

The models are first evaluated on their performance on valida-
tion set I. The purpose of validation set I is to check for over-
fitting of the model on the training data and to evaluate the ex-
pected performance on the in-distribution test data. Secondly,
the models are evaluated on the unseen speed conditions by
the use of validation set II to check the generalization capa-
bilities to unseen operating conditions. Finally, validation set
III is used to determine which model could generalize best to
unseen pitting severities.

4. DATA PREPROCESSING

In an attempt to combine the strengths of signal processing
and machine learning methods, several signal processing and
normalization techniques were evaluated to determine which
diagnostic features are most suitable as input for the machine
learning models to be evaluated.

4.1. Signal Processing Methods as Data Preprocessing

A total of four established signal processing approaches were
evaluated to obtain informative features as input for the ma-
chine learning models. The first preprocessing technique un-
der consideration is the Power Spectral Density (PSD), esti-
mated by the Welch method (Welch, 1967). This method
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Figure 5. The CSCoh map of degradation state 6 with the gear
mesh frequency indicated in green and the shaft frequency
sideband in red.

gives an estimate of how the vibration signal energy is dis-
tributed in the frequency domain and has been effectively
used as a preprocessing technique in machine learning gear-
box fault recognition (Su, Tomovic, & Zhu, 2019). The PSD
is calculated with a window length of 8000 points over a sig-
nal segment of 40960 points. Due to the fact that the signal
segment of 40960 points is shorter than a full measurement
in the training set, a data augmentation scheme can be im-
plemented where the start point of the signal segment used
to compute the PSD moves with a stride of 5120 samples
over the full measured signal. This results in multiple dif-
ferent PSD representations per training signal and thus in an
increase of training samples.

The second preprocessing technique applied in this work is
the Cyclic Spectral Coherence (CSCoh), (Antoni, 2007). The
CSCoh reduces the vibration signals to a bi-variable map which
gives an indication of the signal energy associated with a
given modulation between cyclic frequency (fault characteris-
tic frequency) and spectral frequency (fault carrier frequency).
One simple and effective procedure to analyze the bi-variable
map is to integrate along spectral frequency to obtain a spec-
trum showing the energy associated with a given cyclic fre-
quency over a range of spectral frequencies. For instance, the
Improved Envelope Spectrum (IES) can be generated by inte-
grating the magnitude of the CSCoh within a specific narrow
spectral frequency band (Mauricio, Smith, Randall, Antoni,
& Gryllias, 2020).

Figure 5 shows a section of the CSCoh map where the gear
mesh frequency is indicated in green and the shaft frequency
sidebands indicated in red. To monitor gear pitting under var-
ious speed and load conditions, the most salient fault infor-

Figure 6. The IES with a spectral frequency range from
300Hz to 3700Hz for the 200rpm and 100Nm operating con-
ditions from half the gearmesh frequency to two and a half
times the gear mesh frequency with eight pitting severity lev-
els.

mation is expected at the gear mesh frequency and its side-
bands. It is clear from Figure 5 that the modulation of the
gear mesh frequency and its sidebands is strongest in the fre-
quency band of 300Hz to 3700Hz and therefore this spectral
frequency band is selected to generate the IES. In this way,
the cyclostationarity-based feature derived from the bi-variate
CSCoh map is used as the input to the pitting severity predic-
tion model.

To maximize the fault information of the processed signal,
only a range of frequencies of the IES from half of the gearmesh
frequency to two and a half times the gear mesh frequency is
used. The two largest peaks in this feature vector (See Fig-
ure 6) are related to the gearmesh frequency, with the expec-
tation that the amplitude and number of sidebands spaced at
regular multiples of the shaft frequency should be indicative
of a gear pitting fault. This range of the IES is used as input
for the ML for all the operational speeds, meaning that the
gearmesh peaks and sidebands tend to show up at the same
position in the feature vector provided that the amount of fre-
quency bins in this range remain the same. This proposed
feature representation is chosen in an effort to help the ma-
chine learning network to generalize well to unseen opera-
tional conditions.

The CSCoh indicator, and consequently the IES, has a fixed
frequency resolution which is the sampling frequency divided
by the signal length (Antoni, Xin, & Hamzaoui, 2017). Since
measured signals in the dataset originate from different oper-
ating speeds, the frequency range of interest in the IES differ
from each other, which brings inconsistency of the input di-
mensions for the network. To address this issue, the amount
of frequency bins in a frequency range expected to contain the

6



INTERNATIONAL JOURNAL OF PROGNOSTICS AND HEALTH MANAGEMENT

Figure 7. The frequency representation of the time syn-
chronous averaged signal for the 200rpm and 100Nm oper-
ating conditions for eight degradation states

most salient fault information is kept constant. This is done
by selecting only a part of the full signal length in computing
the IES, thereby controlling the frequency resolution. In fu-
ture work other approaches could be proposed in an effort to
efficiently reduce the dimension of the IES representation in
the frequency domain.

The final preprocessing technique considered in this work is
the time synchronous average (TSA), which is used to extract
signal components that are periodic with the observed gear
such as the pitting faults. This operation is performed by av-
eraging a series of angle-synchronized signal segments, each
corresponding to one period of a synchronous signal. Specif-
ically, the raw signal is firstly segmented based on the avail-
able tacho signal (Mcfadden & Toozhy, 2000), and is then
resampled with a fixed dimension. Finally, each of the resam-
pled segments are averaged. As an additional preprocessing
candidate, we further evaluate a TSA preprocessing scheme
that includes cepstrum prewhitening before the resampling
and averaging (Borghesani, Pennacchi, Randall, Sawalhi, &
Ricci, 2013). The resampling step results in a representa-
tion in the angular domain with a fixed size, which allows for
element-wise averaging and also allows for a fixed input size
for downstream machine learning models. The fixed signal
length in this work is chosen to be 8000 points. Finally, since
all other methodologies represent the signal in the frequency
domain the TSA signal is transformed into the frequency do-
main using the fast Fourier transform. Figure 7 shows the
frequency representation of the time synchronous averaged
signal for one of the operating conditions.

4.2. Normalization and Scaling Candidates

Different data normalization schemes can greatly influence
the input data distribution on which neural networks are trained,
which can have a significant influence on network training
and performance. Therefore, different normalization and scal-
ing schemes are evaluated in this work.

The first normalization scheme under investigation is
z-normalization. In this approach, data is centred by subtract-
ing its mean and scaled with respect to the standard deviation
as calculated over the full training dataset. This results in the
transformation shown in Eq. (3), where µ is the mean and �
the standard deviation which is calculated over the full train-
ing dataset per frequency bin.

x =
x� µ

�
(3)

Furthermore, the Box-Cox normalization (Box & Cox, 1964)
approach is further considered as a normalization candidate.
The Box-Cox normalization scheme is a method that trans-
forms positive non-normally distributed data to be more Gaussian-
like. This property makes it well suited for normalizing posi-
tive amplitude spectra as used in this investigation. The Box-
Cox approach utilizes a power transformation to stabilize data
variances and make the data distribution more symmetric.
The transformation is defined as:

x(�) =

8
<

:

x��1
� , if � 6= 0

ln(x), if � = 0

Here, x is the input data, and � is the transformation param-
eter. The optimal � value is determined through maximum
likelihood estimation.

As a final preprocessing candidate, the frequency represen-
tations are also re-scaled using a simple log transformation.
Here, the motivation is similar as for the Box-Cox transform,
ensuring that the strictly positive spectral data has more uni-
formly distributed variance.

5. CLASSIFICATION AND OUT-OF DISTRIBUTION MODEL
DESIGN

In this section, the machine learning models that analyze the
preprocessed data discussed in the previous section are intro-
duced. This includes a convolutional neural network for fault
severity classification, as well as an out-of-distribution detec-
tion model to identify samples for which the model should
not make confident predictions. All the machine learning hy-
perparameters are set based on experimentation on the previ-
ously defined validation sets.
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5.1. Machine Learning Models

The machine learning models considered in this work are
CNN’s with 3 layers of one dimensional convolutional layers,
followed by a flatten layer, one fully connected layer, and an
output layer with a single output which was trained in an or-
dinal regression fashion (Rosenthal & Ratna, 2022) (LeCun
et al., 1989) (McCullagh, 1980). By using the ordinal regres-
sion instead of a softmax layer with cross entropy loss the
relative ordering of the different classes is preserved.

The first convolutional layer has 5 filters with a kernel size of
100 and a stride of 10. The second has 10 filters with a kernel
size of 50 and a stride of 10. The final convolutional layer has
20 filters with a kernel size of 20 and a stride of 2. The fully
connected layer has 20 output nodes.

Initial trails on the validation tests showed that the model has
a tendency to over-fit on the training set and thus several mea-
sures are taken to prevent overfitting. First of all dropout
was used with a factor of 0.1 on the first convolutional layer
and 0.03 on the second convolutional layer (Hinton, Srivas-
tava, Krizhevsky, Sutskever, & Salakhutdinov, 2012). Then a
weight decay of 10�6 is added (Loshchilov & Hutter, 2017).
Finally, to reduce the number of weights, the same weights
were used for the convolutional layers over the data of the
three different axes of the accelerometer.

The CNN’s were trained using an Adam optimizer (Kingma
& Ba, 2014) with a learning rate of 10�4 for 60 epochs when
the PSD with data augmentation is used and 1020 epochs
when one of the preprocessing schemes without data augmen-
tation is used. In this way, the same number of training steps
are used between different preprocessing techniques.

Further, to address potential problems arising from the un-
equal distribution of the operating speeds and of the operat-
ing loads a loss reweighting scheme is investigated (Cui, Jia,
Lin, Song, & Belongie, 2019). The weight assigned to an
operating speed is equal to the average amount of samples
per operating speed divided by the amount of samples for the
operating speed in question. In the same way, a weighting
scheme is implemented for the operational loads. The final
loss weight used for a given speed and load combination is
then the weight from the operating speed multiplied by the
weight from the operating load.

The model used in the final submission is based on an ensem-
ble of the same model with five different random initializa-
tions. Using a homogeneous ensemble of models by combin-
ing the model results tend to improve model generalizability
(Ganaie, Hu, Malik, Tanveer, & Suganthan, 2022).

During the validation phase, it was observed that the final
outputs of the deep ordinal model are miscalibrated, which
means that the predicted probability distribution did not match
well with the expected empirical distribution of the labels.

The model was very unsure about its prediction and thus al-
ways outputted a very high entropy distribution, where the
predicted probabilities for all classes were similar. However,
in most of the cases on Validation Set I the true label was
predicted to have the highest probability and thus the model
should have been more certain.

To solve this miscalibration a post-processing step is intro-
duced which transforms the final output into a discrete distri-
bution where one class has pi = 1.0 and all other classes have
pi = 0. During the experimental phase, some experiments
were carried out using temperature scaling (Guo, Pleiss, Sun,
& Weinberger, 2017). However, it was observed that ex-
tremely low temperature showed the best results and thus the
temperature scaling was simplified to a one-hot distribution.
During validation, it was observed that this post-processing
step increased the average score. Additionally, to handle un-
certainty in the output of the model an out-of-distribution
(OOD) detector is considered as will be discussed in the next
section.

5.2. Out-of-Distribution Detection Methodologies

As will be shown in the next section, the models are able to
perform well on in-distribution data (Validation test I) and un-
seen speeds (Validation test II) but not on unseen health con-
ditions (Validation test III). Therefore, an out-of-distribution
(OOD) detector is implemented to detect unseen pitting sever-
ities and to indicate that these predictions are uncertain. The
OOD detector is trained to consider data from the training set
as normal and other unfamiliar data as anomalous. Specifi-
cally, the latent features from the final layer of the machine
learning model is used as input to the anomaly detection model.

Two different anomaly detection models are considered which
are the One-Class SVM (Alam, Sonbhadra, Agarwal, & Nagab-
hushan, 2020) and the Local Outlier Factor (LOF) (Breunig,
Kriegel, Ng, & Sander, 2000).

The One-Class SVM is a variant of the popular Support Vec-
tor Machine (SVM) classification algorithm. It is trained on
normal instances to create a boundary that encompasses the
majority of the normal data points. To do this, the algorithm
identifies a hyperplane that separates the normal data from
the outliers, with the margin between the healthy and faulty
samples defined by a parameter ⌫ that governs the proportion
of training data considered as outliers, thereby allowing for
a flexible adjustment of the outlier detection sensitivity. The
formulation of the One-Class SVM involves solving a convex
optimization problem, which results in finding a hyperplane
that maximizes the margin while minimizing the classifica-
tion errors for the normal instances. Points lying on or outside
the decision boundary are considered outliers. The One-Class
SVM is implemented with a radial basis function kernel with
a gamma value of 0.9 and a ⌫ value of 0.01.
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Table 3. Average score and MSE of the machine learning model with different preprocessing techniques and different normal-
ization schemes on different validation sets. Best performing scores are reported in bold. Numbers in brackets indicate the
standard deviation over 5 independent trials. Set I: In-distribution data, Set II: Unseen speed, Set II: Unseen fault severity.

Preprocessing Normalization Set I Set II Set III
Score " MSE # Score " MSE # Score " MSE #

PSD Log 0.969 (0.009) 0.062 (0.018) 0.278 (0.042) 1.444 (0.085) 0.002 (0.020) 1.996 (0.040)
Box-Cox 0.956 (0.006) 0.089 (0.012) 0.493 (0.117) 1.015 (0.223) -0.138 (0.023) 2.276 (0.046)
z-norm 0.949 (0.008) 0.101 (0.016) -0.312 (0.153) 2.624 (0.306) -0.055 (0.070) 2.109 (0.139)
None 0.875 (0.043) 0.251 (0.087) -0.364 (0.123) 2.729 (0.246) -0.304 (0.047) 2.609 (0.093)

TSA log 0.835 (0.015) 0.330 (0.031) 0.151 (0.087) 1.699 (0.175) -0.376 (0.053) 2.752 (0.106)
boxcox 0.836 (0.013) 0.328 (0.026) -0.010 (0.058) 2.019 (0.115) -0.456 (0.099) 2.912 (0.197)
z-norm 0.841 (0.015) 0.317 (0.030) 0.043 (0.117) 1.914 (0.234) -0.348 (0.049) 2.695 (0.099)
None 0.850 (0.026) 0.301 (0.051) 0.031 (0.058) 1.938 (0.117) -0.363 (0.064) 2.726 (0.127)

TSA whitened log 0.755 (0.015) 0.489 (0.030) 0.508 (0.091) 0.984 (0.182) -0.418 (0.043) 2.836 (0.086)
boxcox 0.750 (0.054) 0.500 (0.108) 0.398 (0.066) 1.203 (0.133) -0.414 (0.049) 2.828 (0.097)
z-norm 0.844 (0.027) 0.311 (0.054) 0.653 (0.070) 0.694 (0.139) -0.142 (0.046) 2.285 (0.092)
None 0.861 (0.006) 0.279 (0.013) 0.624 (0.092) 0.752 (0.185) -0.153 (0.036) 2.306 (0.072)

IES Log 0.509 (0.015) 0.982 (0.029) -0.002 (0.049) 2.004 (0.099) -0.518 (0.049) 3.037 (0.098)
Box-Cox 0.684 (0.016) 0.633 (0.032) 0.302 (0.047) 1.396 (0.095) -0.395 (0.057) 2.790 (0.114)
z-norm 0.724 (0.022) 0.552 (0.043) 0.304 (0.056) 1.393 (0.113) -0.287 (0.067) 2.573 (0.134)
None 0.672 (0.019) 0.656 (0.037) 0.153 (0.035) 1.694 (0.069) -0.468 (0.077) 2.936 (0.155)

The second outlier model used is the Local Outlier Factor
(LOF) model. Unlike One-Class SVM, LOF does not require
a training phase and evaluates the local density of instances
to identify outliers. The LOF algorithm assesses the density
of a data point by comparing its local density to the densities
of its neighbors. Data points with significantly lower local
densities compared to their neighbors are identified as out-
liers. The local density is determined based on the distances
between data points and their k-nearest neighbors where for
this work 100 neighbours are considered. In the training data
1% of the data is considered anomalous which is used to set
the threshold on the local density. This threshold is then used
to determine if a sample is out-of-distribution or not.

When a sample is flagged as OOD the model will set the value
of c as used in Eq. (1) to 0.2 with the intention of minimizing
the penalty from the misclassified OOD samples.

6. RESULTS

This section presents the results of different models for the
validation sets described in Section 3 and the performance of
the selected model on the hold out test set.

6.1. Results on Specially Designed Validation Sets

The average score and the mean square error (MSE) between
the predicted pitting severity and the actual severity on the de-
signed validation sets are shown in Table 3 with the standard
deviation in brackets. The results show that PSD-based ap-
proaches tend to have the highest score on the in-distribution
validation set (Validation set I). One possible explanation for
this could be due to the data augmentation scheme used as
part of the PSD based approach. This data augmentation
scheme results in more training samples which can reduce

overfitting and thus increase generalizability on in-distribution
data.

However, for the unseen operating conditions (Validation set
II) some of the TSA methods are outperforming PSD-based
methods.

One of the possible causes could be that not every speed and
not every load is present in an equal amount in the training
dataset of the PSD methodology due to the data augmen-
tation. This is due to the fact that, for the high operating
speeds the signal length is reduced (only 3s captured instead
of 12s) and thus when using the proposed data augmentation
approach for PSD data there is a disproportionate amount of
training samples for the low operating speeds. Therefore, the
reweighting scheme proposed in Section 5 is used to rem-
edy this. The results for models that do and do not use the
re-weighting scheme are shown in Table 4. Making use of
the reweighting scheme results in an increase on the average
score of 0.015 on set II. It can be noted that despite this per-
formance increase for the PSD based model, the best TSA
based model still achieves a higher score.

It is clear that all the models perform best on the in-distribution
data (Validation test I) which was expected based on the pre-
vious literature. Most models also perform better on the un-
seen speeds (Validation set II) than the unseen states (Valida-
tion set III).

To account for the reduced performance in validation set III
two different OOD detection models are considered in an
effort to decrease penalizations of wrong predictions as de-
scribed in Section 5.2. When an anomaly detection model
flags a sample as anomalous the prediction is considered an
uncertain prediction, which scales the score with a factor of
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Table 4. Performance of PSD with log scaling model with and without operational weighting in training. Set I: In-distribution
data, Set II: Unseen speed, Set III: Unseen fault severity.

Weighting Set I Set II Set III
Score MSE Score MSE Score MSE

No 0.969 (0.009) 0.062 (0.018) 0.278 (0.042) 1.444 (0.085) 0.002 (0.020) 1.996 (0.040)
Yes 0.968 (0.005) 0.064 (0.009) 0.293 (0.081) 1.415(0.163) 0.030 (0.049) 1.939 (0.099)

Table 5. Performance of PSD with log scaling model with and without several out-of-distribution detectors. Set I: In-distribution
data, Set II: Unseen speed, Set III: Unseen fault severity.

OOD detector Set I Set II Set III
Score Score Score

No OOD detection 0.968 (0.005) 0.293 (0.081) 0.030 (0.049)
One-Class SVM 0.952 (0.015) 0.099 (0.034) 0.050 (0.017)

LOF 0.945 (0.012) 0.164 (0.095) 0.007 (0.054)

0.2 as discussed in Section 1.2.2.

The performance on the three validation sets with the OOD
detection model on a model with PSD based preprocessing
and log scaling is reported in Table 5. The table shows that
using OOD model results in a drop in performance on Val-
idation set I. However, using an OCSVM OOD detector a
smaller drop in score can be observed in comparison to the
LOF model. The One-Class SVM model also allows for an
increase in the performance on validation set III and thus cor-
rectly flags samples with negative scores as OOD.

Ultimately, a model with PSD-based preprocessing with log-
arithmic scaling was selected, as this approach leads to the
highest performance on validation sets I and III. The model
further included a loss reweighting scheme during training
with respect to the operating conditions as described in Sec-
tion 5.

Additionally, it could be observed that the model had difficul-
ties with generalizing to unseen pitting severities and thus an
out-of-distribution detector was implemented. Table 5 shows
that this did not impact the results on the in-distribution data
(validation set I) significantly. However, the out-of-distribution
detector did decrease performance on the unseen operational
conditions and thus it was not used when a test sample came
from an unseen speed-load combination.

6.2. Results on Data Competition Unseen Test Sets

The final model submitted to the competition was evaluated
on two unseen test sets of which the labels were not pub-
licly available but were scored by the organizers. Ultimately,
an ensemble of 5 randomly initialized models trained on PSD
data with a log re-scaling was submitted. The model achieved
a final total score of 282.2 on the test set used as a criterion
by the organizers and 213.3 on test set on which participants

could evaluate their models beforehand. The maximum score
achievable on this dataset is 800 (800 signals with each a
maximum score of one). Despite the heavy penalization of
incorrect predictions as explained in Section 1.2.2, the model
achieves a respectable positive score that is consistent with
the results on the internal test sets listed in Table 3. Consid-
ering that the test set contained 800 samples translating to an
average score of 0.35, which is in between the results on the
different validation sets. Thus, the performance of the valida-
tion sets seems in line with the performance on the test sets.
To conduct a quantified analysis on the representativeness of
the validation sets, the relative ratio of unseen pitting severi-
ties would be needed which is currently unknown.

7. CONCLUSION

In this work, a strategy is presented to design a model for pre-
dicting gearbox pitting severity under unseen operating con-
ditions and fault severities.

As part of this strategy a convolutional neural network with
an ordinal loss criterion, trained on the power spectral den-
sity data is proposed as a possible solution. This model was
selected after rigorous model evaluation using three valida-
tion sets that are carefully designed to evaluate how well the
model generalizes to unseen operation conditions and fault
severities. The results show that the proposed model is suc-
cessful at generalizing to unseen operating conditions whilst
generalizing to unseen fault severities remains a challenge.

The model design approach exploits the use of validation sets
that provide insights for making modeling choices and tend
to be indicative of the final score on the test set. Thus, this
work illustrates the need for careful experimental design in
preprocessing and machine learning methods for condition
monitoring.
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In future work, additional signal processing methods could
be evaluated as preprocessing options since the result showed
notable differences in model performance depending on the
signal processing method used for preprocessing. Addition-
ally, data augmentation techniques could be considered to fur-
ther enhance model generalization. Finally, ensembles based
on different preprocessing techniques could be considered to
capture the benefits of different signal processing techniques
on different cases as the TSA methodology did outperform
the PSD methodology on unseen speed-load conditions. The
idea of using an ensemble could also be used to augment the
OOD detector, where a different OOD detector with different
parameters could be designed to be used on unseen speeds.
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