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ABSTRACT

Bearings are critical components extensively used in rotary
machines, often being the leading cause of unexpected ma-
chine shutdowns. To mitigate system failures, it is crucial to
implement effective maintenance strategies. This paper in-
troduces a novel methodology for bearing prognostics, em-
ploying Wavelet Packet Decomposition (WPD) for data pre-
processing, Sequential Backward Selection (SBS) for feature
selection, and Adaptive Neuro-Fuzzy Inference System (AN-
FIS) networks for prognostic modeling. The proposed ap-
proach consists of two key steps. Firstly, the data under-
goes preprocessing through Wavelet Packet Decomposition,
enhancing the quality and extracting relevant features. Sub-
sequently, the Remaining Useful Life (RUL) of the bearing
is predicted using a degradation model. The accuracy of the
proposed method is evaluated using a bearing life dataset ob-
tained from a run-to-failure test (IMS dataset). The results
demonstrate the remarkable capability of the ANFIS model
to learn and accurately estimate the system’s RUL. By lever-
aging the combined power of WPD, SBS, and ANFIS, this
methodology showcases its potential as an effective prognos-
tic tool for bearing health assessment and proactive mainte-
nance planning.

Keywords: Wavelet Packet Decomposition (WPD), fault Prog-
nosis, Sequential Backward Selection (SBS), Adaptive Neuro
Fuzzy Inference System (ANFIS), Data preprocessing, Main-
tenance.
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1. INTRODUCTION

Bearings are vital components extensively employed in rotat-
ing machinery, serving as key elements for transmitting loads
and facilitating smooth operation, including manufacturing,
transportation, and energy production (Y. Wang, Xu, Zhang,
Liu, & Jiang, 2015; Soualhi, Lamraoui, Elyousfi, & Razik,
2022; Lourari, Soualhi, Medjaher, & Benkedjouh, 2024). Their
reliable performance is crucial for ensuring the overall effi-
ciency, productivity, and safety of various industrial processes(Lei,
Lin, Zuo, & He, 2014; Ghods & Lee, 2016; Liu, Wang, &
Golnaraghi, 2009; Jia, Lei, Lin, Zhou, & Lu, 2016). How-
ever, bearing failures can lead to unexpected machine break-
downs, resulting in significant financial losses, production
delays, and potential safety hazards(Heng, Zhang, Tan, &
Mathew, 2009; Soualhi, Yousfi, Lamraoui, & Medjaher, 2022).

Prognostics and health management literature encompasses
three distinct fields, each offering unique methodologies for
predictive analysis. Model-based techniques rely on mathe-
matical models and theoretical frameworks to predict future
behavior, necessitating a thorough understanding of the sys-
tem’s characteristics. Data-driven approaches, on the other
hand, leverage vast datasets to identify patterns and trends
without explicit models, making them well-suited for com-
plex systems. However, these methods may suffer from over-
fitting and limited generalizability. In response, hybrid tech-
niques emerge as a fusion of model-based and data-driven
strategies, aiming to capitalize on the strengths of both paradigms
to achieve more accurate and robust predictions. A compre-
hensive analysis and comparison of these three fields are cru-
cial to uncover their respective advantages and drawbacks,
paving the way for advancements in Prognostics and health
management methodologies. Among the mentioned methods,
the data-driven approach is frequently preferred due to its ca-
pacity for real-time insights(Medjaher, Zerhouni, & Gouriveau,
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2016; Habbouche, Benkedjouh, & Zerhouni, 2021), predic-
tive maintenance, and operational efficiency improvements
through data analysis and pattern recognition. To effectively
manage the health and performance of bearings, it is essential
to monitor and analyze various health indicators that provide
insights into their condition. Health indicators are measurable
quantities derived from sensor data such as electrical(Satish
& Sarma, 2005; Schoen, Habetler, Kamran, & Bartfield, 1995;
Abdenour, Kamal, François, et al., 2022), acoustic(Elforjani
& Shanbr, 2017), and vibration sensor data(K. Zhou & Tang,
2023), reflecting the degradation and fault development in
bearings.

In bearing prognosis, the utilization of vibration signals plays
a crucial role and holds significant importance among the var-
ious signals used for analysis(Gohari, Tahmasebi, & Ghor-
bani, 2023). Vibration signals capture the mechanical behav-
ior and dynamic characteristics of bearings(Lv, Zhao, Zhao,
Li, & Ng, 2022), providing valuable insights into their health
condition. Vibration analysis enables the extraction of es-
sential features related to bearing faults(Buchaiah & Shakya,
2022), such as amplitude variations, frequency components,
and changes in signal patterns. The distinctive advantage of
vibration signals lies in their sensitivity to early-stage degra-
dation, making them highly effective for detecting and mon-
itoring the progression of bearing faults. In fact, bearings
generate vibration signatures during their normal operation.
These signatures are processed to detect changes in the bear-
ing condition. This procedure is called signal processing.
There exist three signal processing techniques:

(i) Time Domain Analysis:
Time domain analysis is a powerful technique that in-
volves analyzing the vibration signal’s time waveform to
identify trends, amplitudes, and frequencies. This anal-
ysis method proves particularly valuable in the identifi-
cation of specific fault frequencies associated with vari-
ous bearing faults. By scrutinizing the time domain char-
acteristics, such as changes in signal amplitude and fre-
quency, bearing fault types such as inner and outer race
defects, rolling element defects, and cage defects can
be effectively identified. The ability to pinpoint fault-
specific frequencies enables accurate fault diagnosis and
facilitates timely maintenance interventions to prevent
unexpected machine breakdowns(Fu, Liu, Xu, & Liu,
2016).

(ii) Frequency Domain Analysis:
Frequency domain analysis is a crucial technique used
in bearing fault diagnosis. This approach involves trans-
forming the time-domain vibration signal into its frequency
components using methods such as the Fourier Trans-
form. By analyzing the frequency domain, valuable in-
formation about the spectral content of the vibration sig-
nal is obtained, enabling the identification of specific fre-
quencies associated with bearing faults. Fault-related fre-

quencies, such as those resulting from inner and outer
race defects, rolling element defects, and cage defects,
can be effectively detected and isolated. The applica-
tion of frequency domain analysis enhances the accu-
racy and sensitivity of bearing fault diagnosis, contribut-
ing to timely maintenance actions and the prevention of
costly machine breakdowns(L. Zhou, Duan, Mba, Wang,
& Ojolo, 2018).

(iii) Time-frequency analysis:
Time-frequency analysis is a valuable technique that pro-
vides a detailed understanding of both time and frequency
characteristics of a vibration signal, surpassing the limi-
tations of frequency domain analysis. By breaking down
the signal into shorter time intervals and examining the
frequency content within each interval, time-frequency
analysis generates a time-varying spectrum that captures
how the frequency components change over time. This
approach enables the detection of evolving frequency com-
ponents and transient features associated with bearing
faults. The ability to observe the temporal variations
of frequency components enhances the accuracy of fault
detection and diagnosis, enabling proactive maintenance
strategies. Overall, time-frequency analysis offers a com-
prehensive analysis of the signal’s behavior and facili-
tates effective bearing prognostics(Medjaher et al., 2016).

Time-frequency techniques combine both time and frequency
information to capture the dynamic behavior and transient
changes in bearing signals. Methods like the Continuous Wavelet
Transform (CWT)(Niu, Liu, Wang, & Zhang, 2023) and the
Short-Time Fourier Transform (STFT)(Hamid, Ibrahim, Ab-
delgeliel, & Desouki, 2023) enable the representation of sig-
nals in the time-frequency domain. These techniques are par-
ticularly useful for detecting transient faults, bearing damage
initiation, and the identification of fault development patterns.
Among the various time-frequency techniques, Wavelet Packet
Decomposition (WPD) stands out as an effective approach
for feature extraction from bearing signals(Habbouche et al.,
2021). WPD provides a multi-resolution representation of the
signal, enabling the extraction of detailed information at dif-
ferent scales and frequency bands. This decomposition tech-
nique offers superior adaptability and flexibility for capturing
fault-related features in bearing signals. In the field of prog-
nostics for bearing health assessment, machine learning algo-
rithms have gained significant attention due to their ability to
learn complex patterns and make accurate predictions. Dif-
ferent techniques such as artificial neural networks, support
vector machines, and fuzzy logic systems have been applied
to develop prognostic models for estimating the Remaining
Useful Life (RUL) of bearings. These models utilize the ex-
tracted health indicators as input features to predict the fu-
ture degradation and remaining lifespan of the bearings. The
overall procedure of the proposed methodology is illustrated
in Figure 1.
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Figure 1. Overall framework of the proposed method.

The rest of this article is organized as follows: Section 2
presents the proposed methodology, which combines Wavelet
Packet Decomposition (WPD), Sequential Backward Selec-
tion (SBS), and the Adaptive Neuro Fuzzy Inference System
(ANFIS) for bearing prognostics. Section 3 discusses the re-
sults and provides a comprehensive analysis of the experi-
mental findings. Section 4 concludes the study, highlighting
the key contributions and discussing future perspectives in the
field of bearing prognostics and maintenance management.

2. METHODOLOGY AND PROGNOSTIC APPROACH

The proposed methodology represents a crucial aspect of Prog-
nostics and Health Management (PHM) activities, focusing
on Rolling Element Bearing (REB) health monitoring, Re-
maining Useful Life (RUL) estimation, and decision support.
This data-driven approach relies on the integration of WPD
and ANFIS techniques, requiring expertise in signal process-
ing, statistics, machine learning, and mechanical engineering.
The implementation of the methodology is carried out using
the MATLAB platform for network development and train-
ing.
The field of maintenance has witnessed significant advance-
ments in recent years, particularly in the field of PHM based
on machine learning techniques. Nonetheless, certain chal-
lenges persist in practice. Firstly, automatic detection of the
onset of degradation before its spread remains a gap. Sec-
ondly, the development of a robust health indicator capable of
monitoring degradation over time is crucial. Lastly, an algo-
rithm that effectively utilizes historical REB data to estimate
the severity of defects is needed (Zhang, Zhang, & Li, 2019).

To tackle these challenges, we present a comprehensive frame-
work for predicting the remaining life of bearings, as de-
picted in Figure 2. This framework comprises four key steps:
data pre-processing, construction of a virtual health indica-
tor (VHI), extraction and selection of features, and learning
the prediction model. In the data pre-processing stage, we
employ the Wavelet Packet Decomposition (WPD) algorithm
to extract different levels, enabling us to pinpoint the most
pertinent level for prognostic purposes. Subsequently, we
construct a virtual health indicator by fitting the Root Mean
Square (RMS) value using the Weibull Failure Rate Function
(WFRF) algorithm. This step allows us to precisely capture
and track the degradation state of the studied bearing. Af-
ter determining the optimal WPD level, we calculate a set of

time-domain and frequency-domain features. The Sequen-
tial Backward Selection (SBS) algorithm is then applied to
choose the most relevant indicators for training the predic-
tion model. Finally, the Adaptive Neuro Fuzzy Inference Sys-
tem (ANFIS) model is adopted to map the selected features,
which serve as the input, to the corresponding VHI value at
each instant. This VHI value, representing the degradation
state, is the output of the ANFIS model, providing a compre-
hensive approach to bearing life prognostics.

2.1. Data Pre-Processing using the Wavelet Packet De-
composition

Various time-frequency analysis techniques have been devel-
oped, including the Short-Time Fourier Transform (STFT)
(Attoui, Fergani, Boutasseta, Oudjani, & Deliou, 2017), Em-
pirical Mode Decomposition (EMD) (Motahari-Nezhad & Ja-
fari, 2020), Variational Mode Decomposition (VMD) (Motahari-
Nezhad & Jafari, 2020), and Wavelet Packet Decomposition
(WPD). Among these techniques, WPD has gained signif-
icant attention in the prognostics field as an effective tool
for degradation monitoring (Belmiloud, Benkedjouh, Lachi,
Laggoun, & Dron, 2018). WPD provides high resolution in
both the time and frequency domains (J. Wang & Liao, 2005).
The process involves iterative decomposition using a pair of
filters, resulting in approximation and detail signals (Tobon-
Mejia, Medjaher, Zerhouni, & Tripot, 2011), as illustrated in
Figure 3 (Medjaher et al., 2016). To perform signal anal-
ysis using WPD, it is essential to define the decomposition
levels and select the appropriate filtering waveforms (such as
db1, db2, db4, haar, etc.) for extracting detail and approxima-
tion coefficients at each level (Dastourian, Dastourian, Das-
tourian, & Mahnaie, 2014). Once the signal analysis is com-
pleted, the data organization phase begins in preparation for
the prediction model. The input data for the model consists
of decomposed signals obtained from the WPD, represented
as X = {xt, xt�1, xt�2, . . . , xt�n}. These signals corre-
spond to the measurements recorded at different time points
(t, t� 1, t� 2, . . . , t� n). The target vector for the model is
the Health Indicator (HI) labeled from 0 to 1, representing the
entire degradation process.

2.2. Virtual Health Indicator Construction

Monitoring the health status of REBs traditionally involves
periodic inspections, which can be cumbersome, leading to
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Figure 2. Architecture of the proposed bearing fault prognostic methodology.

Figure 3. Illustration of wavelet packet decomposition of sec-
ond order.

production disruptions. Moreover, detecting defects such as
cracks often necessitates sophisticated means. Real-time track-
ing using sensors like accelerometers and microphones proves
valuable in this regard. However, the acquired sensor signal
contains both useful information and noise, making it neces-
sary to employ a Health Indicator (HI) to extract relevant in-
formation (Lei et al., 2018). The chosen HI should accurately
represent the health state while exhibiting a monotonous be-
havior (Zhang et al., 2019).

The Root Mean Square (RMS) is one of the most commonly
feature used for the monitoring of bearing degradation (Cheng,
Cheng, Lei, & Tsai, 2020). Among the reasons that made us
select RMS as good HI in this investigation is that it reflects
the state of the monitored bearing (Ahmad, Khan, & Kim,
2017) and have a proportional relation with the energy of the
vibration signals (Lei et al., 2018).

In this case, the utilization of a fitting feature with a model
that closely represents the degradation phenomenon becomes
essential. Two commonly employed models in the litera-
ture are the Weibull Failure Rate Function (WFRF) and the

Exponential Degradation Model (EDM) (Yan, Wang, Wang,
Chang, & Muhammad, 2020). In this paper, a modified ver-
sion of the WFRF (Wu, Li, Qiu, et al., 2017) is utilized to fit
the RMS for irreversible degradation. The formulation of this
modified WFRF requires the identification of specific model
parameters, namely Y ,K,� and ⌘:

# (t) = Y +K
�

⌘�
t
��1 (1)

One of the key advantages of the Health Indicator (HI) is its
ability to eliminate the need for continuous monitoring of ma-
chines throughout their entire operational lifespan, which is
often unnecessary in practice. The HI’s evolution over the
life of the Rolling Element Bearing allows for the division
of its lifespan into multiple health stages (HS). This division
enables a better understanding of the REB’s health condi-
tion and facilitates the identification and assessment of dif-
ferent levels of degradation severity. By monitoring the HI,
the severity of degradation can be effectively assessed, lead-
ing to improved maintenance strategies and enhanced overall
system performance.

2.3. Features Extraction & Selection

Signal processing plays a pivotal role in the domain of Prog-
nostics and Health Management (PHM) activities. It serves
as a crucial step in extracting pertinent features from the ac-
quired data to enable effective analysis and decision-making.
In this context, various techniques are employed to accom-
plish the task of feature extraction. Among these techniques,
time-frequency methods hold significant prominence due to
their ability to capture both temporal and spectral informa-
tion concurrently.
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In this study, health indicators play a pivotal role in character-
izing the condition of the system under investigation. Health
indicators encapsulate crucial information derived from the
underlying signals, enabling a comprehensive assessment of
the system’s state. The calculation of health indicators in-
volves intricate processing techniques that extract pertinent
features from the raw signals. These techniques are designed
to capture various aspects of the signal’s behavior, providing
valuable insights into the system’s health status. The cho-
sen indicators are meticulously tailored to highlight specific
trends, anomalies, or degradation patterns that might other-
wise remain concealed within the raw data. This method-
ological approach empowers us to transform complex signals
into quantifiable metrics, facilitating robust decision-making
in maintenance and prognostics.

Table 1 summarizes the ten distinct health indicators employed
in this study, each capturing distinct facets of the system’s
health. These indicators are meticulously calculated through
a combination of advanced signal processing techniques, in-
cluding wavelet packet decomposition, statistical analysis, and
feature extraction methods. The selected indicators span a
range of characteristics, including amplitude variations, fre-
quency content, energy distribution, and temporal behavior.
By combining these indicators, a comprehensive understand-
ing of the system’s health can be achieved, enabling accurate
assessments and informed maintenance strategies.

Table 1. Health Indicators and Mathematical Descriptions

INDICATOR Mathematical Description

Crest max(|x(t)|)
RMS(|x(t)|)

Skewness E[x(t)3]
(RMS[x(t)])3

Mean 1
N

P
N

i=1 xi

Energy
P

N

i=1 x
2
i

Kurtosis E[x(t)4]
(RMS[x(t)])4

Variance E[(x(t)� µ)2]

Maximum Amplitude max(|x(t)|)
Maximum FFT Value max(|FFT(x(t))|)
Peak-to-Peak Value max(x(t))�min(x(t))

Waveform Factor RMS[x(t)]
Mean[x(t)]

Where x(t) represents the time-domain signal under investi-
gation, xi represents the individual data points at time index i

where i varies from 1 to N , µ corresponds to the mean value
of the signal x(t) and N stands for the total number of data
points in the dataset x(t).

1. Sequential Backward Selection
The SBS technique, commonly applied in statistical mod-

eling and machine learning, serves as a feature selection
method. Rather than exhaustively evaluating all conceiv-
able combinations of indicators, this approach aims to
identify and eliminate the least relevant indicators based
on a computed Criterion Quality (QC). This QC metric
is contingent on the discriminative power and compact-
ness of the classes under investigation. Its fundamental
purpose is to assess the significance of the selected indi-
cator. A higher QC value is indicative of lower intra-class
dispersion (Disp-intra) and higher inter-class dispersion
(Disp-inter). Both of these properties are formulated as
follows:

Disp-intra =
1

C

CX

i=1

1

N

NX

j=1

(Sij � gi) · (Sij � gi)
T

(2)

Disp-inter =
1

C

CX

i=1

(gi � g) · (gi � g)T (3)

The Criterion Quality (QC) is then calculated as follow:

QC=
Disp-inter
Disp-intra

(4)

In the context of the SBS technique, let Sij represent the
j-th sample belonging to the class Ci. To illustrate, each
class Ci is depicted as a matrix where each row j cor-
responds to a sample represented by a vector. The total
number of samples per indicator is denoted as N, and the
number of classes is represented by C. Additionally, gi
denotes the gravity center of class Ci, while g signifies
the gravity center of all samples. The formulas for com-
puting these gravity centers are given as follows:

g =
1

C

CX

i=1

gi (5)

gi =
1

N

NX

j=1

Sij (6)

As demonstrated in Figure 4, the SBS technique proves
valuable in selecting indicators for different operating
modes, offering an effective means to reduce data dimen-
sionality and enhance model efficiency and interpretabil-
ity.

2.4. Adaptive Neuro Fuzzy Inference System

ANFIS networks leverage the capacity of neural networks
to learn from training datasets and the uncertainty modeling
of fuzzy logic. In contrast to traditional binary logic, fuzzy
logic quantifies failure degrees using different distributions of
membership functions. This ability aids in defining the sever-
ity of bearing defects at any stage of degradation. A typical
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Figure 4. Representation of good health indicators selection
with the SBS.

ANFIS architecture is illustrated in Figure 5. The ANFIS
model comprises five distinct layers, each serving a specific
role and composed of a certain number of nodes.

Figure 5. ANFIS architecture.

For a simple ANFIS network, as shown in Figure 5, the oper-
ating principle of each layer is as follows:

1. Fuzzification layer:
In this first layer, the degrees of membership for inputs
are determined using the chosen membership function.
By default, the adopted function is the Gaussian mem-
bership function.

A (X) = e
�
⇣

X�µ1
�1

⌘2

(7)

Where A is the membership function, µi and �i (i = 1, ..., 4)
are called the premise parameters.

2. Inference layer:
The outputs of this layer are calculated by the product
of the membership degrees defined in the fuzzification
layer.

W1 = A (X) · C (Y ) ,W2 = B (X) ·D (Y ) (8)

3. Normalization layer:
In this layer, the weights calculated in the subsequent
layer are normalized as follows:

W1
⇤ =

w1

w1 + w2
,W2

⇤ =
w2

w1 + w2
(9)

4. Aggregation layer:
In this layer, we will use the consequent parameters with
the model inputs to determine the outputs of this layer.

f1 = p1X + q1Y + r1, f2 = p2X + q2Y + r2 (10)

pi, qi and ri (i = 1, 2) are the consequent parameters.
5. Defuzzification layer:

In this layer we calculate the final score as follows:

f = W1
⇤ · f1 +W2

⇤ · f2 (11)

The prediction of the RUL is defined as the time remaining
between the current moment and the failure threshold. This
definition has been interpreted in previous works as the in-
tersection of the HI with the FT. In essence, RUL estima-
tion entails estimating the remaining lifespan of a machine
by monitoring the HI, even if it does not reach the end-of-life
threshold. This provides a decision-making interval, enabling
proactive maintenance actions to be taken (Lei et al., 2018).
Problems in PHM can be approached through two different
methods: classification or regression. In the classification ap-
proach, the life of a REB is divided into several stages based
on the behavior of the health indicator. On the other hand, re-
gression techniques, as illustrated in Figure 6, in this figure, tc
represents the current time, ti corresponds to the instance of
incipient threshold and tf signifies the time associated with
the failure threshold. This limits allow for a smooth tracking
of the machine’s life or a sequential observation of various
health stages. However, the use of machine learning algo-
rithms in regression models often leads to local fluctuations
that can influence the accuracy of RUL prediction.

To mitigate this issue, a smoothing technique such as the
moving average filter can be employed for denoising the data
(Sarih, Tchangani, Medjaher, & Péré, 2019). Subsequently, a
reverse transformation from the Health Indicator (HI) to RUL
is performed using the equation (Habbouche et al., 2021):

RUL(t) = tEOL �HI
�1(t) (12)

Metrics serve as a means of evaluation and facilitate the ex-
change of standardized information among scientists, thereby
providing opportunities for improving proposed techniques
to meet the requirements of PHM activities (Saxena, Celaya,
Saha, Saha, & Goebel, 2010). In this study, the employed
metrics include root mean squared error (RMSE), mean ab-
solute error (MAE), mean squared error (MSE) (Du & Wang,
2019), and accuracy (Siswipraptini, Aziza, Sangadji, & In-
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Figure 6. Illustration of prognostic process.

drianto, 2020), which is directly related to the mean absolute
percentage error (MAPE) through the equation Accuracy =
100% - MAPE. To ensure reliable comparisons, these metrics
are estimated using random sub-sampling cross-validation,
enhancing the credibility of the results.

3. RESULTS AND DISCUSSION

3.1. Experimental setup

The proposed method was evaluated and tested using the IMS
vibration dataset (Eker, Camci, & Jennions, 2012), which
comprises three experiment tests, each test involves running
one or more bearings to failure. The data was collected at a
frequency of 1 record per second, with a sampling frequency
of 20 kHz, and recorded every 10 minutes using the NI DAQ
6062E. The test was conducted on a Rexnord ZA-2115 double-
row bearing, depicted in Figure 7, with a radial load of 6000
lbs. The rotation speed was maintained at 2000 RPM, and
force lubrication was employed to ensure the required tem-
perature (Eker et al., 2012).

In this study, the model was constructed using the data from
the second run-to-failure test, with a failure time of 9840 min-
utes. Each sample in this experiment consisted of a vibration
signal comprising 20480 samples.

3.2. VHI construction results

Figure 8 illustrates the historical RMS vibration data obtained
from the run-to-failure experiments conducted by IMS (2nd
run to failure bearing in this case). These data show the
fluctuations, noise, and uncertainties resulting from the prob-
abilistic degradation behavior and vibration variations (Ali,
Chebel-Morello, Saidi, Malinowski, & Fnaiech, 2015).

Figure 7. bearing prognosis bench.
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Figure 8. RMS measurement.

From Figure 8, we can see that the behavior of the RMS in-
dicator can be described in three stages. The first one rep-
resents normal functioning with a stable RMS. The second
stage indicates the initiation of a fault with a linear evolution
of the RMS, known as the incipient threshold. Finally, the
third stage demonstrates severe degradation with non-linear
behavior, referred to as the failure threshold (Ahmad et al.,
2017).

To ensure the monotonicity of the Health Indicator (HI) and
improve the quality of Remaining Useful Life (RUL) pre-
diction, the RMS curve is fitted using the (WFRF) method.
WFRF is chosen due to its ability to reduce fluctuations and
noise while maintaining fitting quality and flexibility (Yan et
al., 2020). The parameters obtained from previous works (Ali
et al., 2015) are used to fit the RMS curve and are provided
in Table 2.
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Table 2. Fitting parameters

⌘ � Y K

RMS 281.021 12.092 0.0773 1.38⇥ 10�5

The fitting result is presented in Figure 9 (red curve). One can
see that employing the WFRF method allows to enhance the
accuracy of the RUL estimation by reducing fluctuations and
noise of the raw RMS indicator, and thus, better representa-
tion of the degradation process is obtained (Thoppil, Vasu, &
Rao, 2021).
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Regression

Figure 9. RMS fitting measurement.

3.3. Feature extraction and selection results

The estimation of the RUL is conducted within two thresh-
olds: the incipient threshold (IT) indicating the beginning of
degradation and the failure threshold (FT) representing the
point at which the machine should be immediately shut down
to prevent reaching the end-of-life limit, as shown in Figure
6. In this study, the determination of these thresholds was
conducted based on the kurtosis value of the vibration sig-
nal, with the criteria obtained from previous works (Kumar,
Kumaraswamidhas, & Laha, 2021; Habbouche et al., 2021).
Hence, the IT is defined when the kurtosis value of the vibra-
tion signal reaches a value of 5, corresponding to the 702nd

sample, signifying abnormal functioning. Normal function-
ing is observed when kurtosis is between 3 and 4 (Kumar et
al., 2021). Whereas the FT is determined when the kurtosis
value reaches a value of 16, corresponding to the 977th sam-
ple, as illustrated in Figure 10. These results align closely
with findings from other frameworks, such as (Y. Wang, Zhao,
& Addepalli, 2020).

During the construction of the Health Indicator (HI) and the
division of Health States (HS) within the context of mon-
itoring REBs, a concurrent feature extraction procedure is
conducted employing the WPD analyzer. The main signifi-
cant contribution of this framework is the adoption of a sin-

Figure 10. Threshold determination.

gle level for degradation assessment, as opposed to utilizing
all levels obtained through the feature extraction process. A
comprehensive evaluation of performance is presented in Ta-
ble 3, which clearly demonstrates that the employment of the
fourth level of WPD, alongside the utilization of five indica-
tors specifically tailored for this level, yields the most favor-
able outcomes.

Table 3. Different levels of WPD predicted by ANFIS

MAE MSE RMSE
Original signal 2.12e-2 5.17e-3 2.38e-3
2nd level 1.10e-3 3.11e-6 18.00e-4
3rd level 1.76e-4 1.15e-7 3.40e-4
4th level 1.04e-4 2.28e-8 1.51e-4
5th level 7.81e-5 4.68e-8 2.16e-4
6th level 3.11e-4 6.51e-7 8.07e-4
7th level 11.8e-3 5.32e-4 2.30e-2

By focusing on a specific level and then calculating a set of in-
dicators to represent the most significant aspects of that level,
the SBS algorithm is employed to determine the most per-
tinent indicators from the pool of calculated indicators. To
ascertain the efficacy of the proposed model, a comparative
study is conducted, analyzing the relationship between the
number of indicators employed and the performance of the
prognostic model. Figure 11 illustrates the performance of
the proposed method in relation to the number of indicators
employed for prognostic purposes. Notably, the results indi-
cate that optimal performance is achieved when utilizing a set
of five indicators for the fourth level.

This streamlined approach offers various advantages, includ-
ing enhanced efficiency in preprocessing operations, reduced
data storage requirements, and the feasibility of real-time im-
plementation of the technique in practical applications. The
determination of the optimal decomposition level, which en-
sures the capture of the most informative data, is achieved
through an iterative trial-and-error process. This involves the
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Figure 11. Comparison of Accuracy for Different Indicators.

utilization of the ANFIS training algorithm, along with the
application of the Daubechies wavelet family of order 6. Fur-
thermore, the performance evaluation of the proposed method-
ology is conducted employing two metrics: the maximum er-
ror (Max-error) and mean squared error (MSE).

After applying the SBS algorithm among the calculated in-
dicators of Table 1, the following indicators have been se-
lected: crest, energy, mean, Skewness, and the maximum
value of the fast Fourier transform. These selected indi-
cators will serve as the inputs for the ANFIS model in the
subsequent steps of the analysis. By carefully choosing these
indicators based on their relevance and informativeness, the
ANFIS model can effectively capture and analyze the patterns
and characteristics of the data, enabling accurate predictions
and prognostic assessments.

Table 3 provides an overview of the results obtained when uti-
lizing the raw vibration signal, as well as the different levels
obtained through WPD. This comparison allows for a com-
prehensive assessment of the performance of each level, with
particular emphasis on the fourth level, which demonstrates
the most favorable outcomes.

3.4. ANFIS model prediction results

In order to select the best membership function for the AN-
FIS model prediction, a comparative study was conducted be-
tween various membership functions, as detailed in Table 4.
This table presents the performance of the proposed model
when employing different membership functions. This anal-
ysis is crucial in order to determine the optimal membership
function to utilize throughout the remainder of this work.

To clearly demonstrate the performance of the proposed method-
ology, Figures 12 and 13 show a representation of the actual
and predicted points for the training and test data. In these
figures, red points represent the predicted values, while the
blue ones stand for the actual HI values. The HI values in this

Table 4. Performance Metrics for Membership Functions

Membership Function RMSE MAE MSE
Triangular 3.00e-3 1.00e-3 9.27e-6
Gaussian 1.51e-4 1.04e-4 2.28e-8
Trapezoidal 1.2e-1 3.21e-1 3.54e-1
Pi-shaped 6.36e-2 3.07e-2 4.01e-3
Bell membership 2.07e-4 8.88e-5 4.27e-8

case are rescaled from 0 to 1 and presented in Figures 12 and
13 as survival probabilities, where 0 represents the IT (high
probability of survival) and 1 represents the FT (low proba-
bility of survival).
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Figure 12. Validation of network with train experimental
data.
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Figure 13. Validation of network with test experimental data.

In Figure 14, the visual representation of the discrepancy be-
tween actual and predicted values shows that the maximum
observed difference does not exceed 10e-4. The predicted
values closely coincide with the actual values in nearly all
points, illustrating the model’s strong predictive performance
and high accuracy in monitoring the degradation process ef-
fectively.
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Figure 14. Error Distribution Between Actual and Predicted
Values.

In Figures 15 and 16, the evolution of the HI over time is
plotted for the training and test datasets. It’s important to note
that the ANFIS model was learned using the VHI constructed
in section 2.2. This methodology serves as a valuable tool
for monitoring the progression of bearing degradation using
vibration signals, even in cases where the faults in the bearing
exhibit low pulse amplitude (Dibaj, Ettefagh, Hassannejad, &
Ehghaghi, 2021).

0 50 100 150 200 250 300

Time (10min)

0

0.2

0.4

0.6

0.8

1

H
e
a
lt

h
 I
n

d
ic

a
to

r

True value

predicted value

150.8
0.20085

0.2009

0.20095

Figure 15. HI with train experimental data.
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Figure 16. HI with test experimental data.

Based on the health indicator (HI) estimation depicted in pre-
vious figures, the prediction of Remaining Useful Life (RUL)
can be determined by temporally projecting the reverse oper-
ation of Equation 12. The linear RUL prediction is then plot-
ted, as demonstrated in Figure 17, which displays the RUL
estimated with the test experimental data. The obtained re-
sults show the promising quality of the prediction with the
proposed approach.
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Figure 17. RUL with train experimental data.

To further evaluate the results qualitatively, it is essential to
assess the confidence of the obtained outcome, as illustrated
in Figure 18. This indicator holds significant importance as
it reflects the reliability of the provided monitoring tool, rep-
resenting the largest percentage error between the true and
predicted RUL during the monitoring period. The confidence
of the prediction is estimated at 0.5% over the entire bearing
health monitoring period, showing encouraging results com-
pared to the 3% confidence found in (Dibaj et al., 2021) and
2.4% confidence in (Habbouche et al., 2021).
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Figure 18. RUL estimation with confidence.

3.5. Performance evaluation

To quantitatively compare the proposed methodology with
previous works and evaluate its performance, statistical eval-
uation metrics are utilized, as mentioned in Section 2. The re-
sults are presented in Table 5, showing that the errors achieved
in the proposed methodology are the lowest when compared
to previous works (Y. Wang et al., 2020; Lan et al., 2022;
Tran, Trieu, Tran, Ngo, & Dao, 2021). These findings demon-
strate the robustness of the proposed methodology in moni-
toring the degradation of Rolling Element Bearings (REB).

The paper successfully introduces a monitoring tool for Rolling
Element Bearings (REB) utilizing Wavelet Packet Decompo-
sition (WPD) and Adaptive Neuro Fuzzy Inference System
(ANFIS). The tool activates at the incipient threshold (IT),
initiating Remaining Useful Life (RUL) prediction with ac-
ceptable probability to support decision-making processes.

To showcase the methodology’s relevance in industrial appli-
cations, rigorous testing was performed on an experimental
dataset. Various metrics were calculated for comparison with
prior works. Results indicate a substantial enhancement in
REB health monitoring at the machine level, surpassing pre-
vious approaches. This advancement is crucial for proactive
addressing of potential REB-related issues, preventing mate-
rial and human disasters in machinery.

4. CONCLUSION

The study introduces a novel bearing prognostics methodol-
ogy, integrating Wavelet Packet Decomposition (WPD) for
data preprocessing, Sequential Backward Selection (SBS) for
feature selection, and Adaptive Neuro Fuzzy Inference Sys-
tem (ANFIS) networks for prognostic modeling. The ap-
proach achieves an exceptional 99.5% accuracy in predicting
Remaining Useful Life (RUL) of bearings.

WPD enhances data quality and feature extraction, while SBS

refines the feature set by selecting significant indicators and
eliminating irrelevant ones. The ANFIS network, combin-
ing fuzzy logic and neural networks, constructs an accurate
prognostic model by learning from the training dataset and
leveraging the optimized feature set.

Validation using a real-world dataset (IMS dataset) from a
run-to-failure test confirms the methodology’s effectiveness
in bearing health assessment and proactive maintenance plan-
ning. The high accuracy achieved suggests practical applica-
tions in rotary machine maintenance, contributing to reduced
system failures, minimized unexpected shutdowns, and im-
proved reliability and operational efficiency.
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