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ABSTRACT 

The increasing complexity of a vehicle's digital architecture 
has created new opportunities to revolutionize the 
maintenance paradigm. The Artificial Intelligence (AI) 
assisted maintenance system is a promising solution to 
enhance efficiency and reduce costs. This review paper 
studies the research trends in AI-assisted vehicle 
maintenance via keyword co-occurrence network (KCN) 
analysis. The KCN methodology is applied to systematically 
analyze the keywords extracted from 3153 peer-reviewed 
papers published between 2011 and 2022. The network 
metrics and trend analysis uncovered important knowledge 
components and structure of the research field covering AI 
applications for vehicle maintenance. The emerging and 
declining research trends in AI models and vehicle 
maintenance application scenarios were identified through 
trend visualizations. In summary, this review paper provides 
a comprehensive high-level overview of AI-assisted vehicle 
maintenance. It serves as a valuable resource for researchers 
and practitioners in the automotive industry. This paper also 
highlights potential research opportunities, limitations, and 
challenges related to AI-assisted vehicle maintenance. 

1. INTRODUCTION 

The COVID-19 pandemic had a profound impact on the 
global automotive industry, notably causing disruptions in 
the supply chain and chip shortages that significantly slowed 
automobile production and narrowed profit margins (Coffin 
et al., 2022). Amid such global disruptions, the Industrial IoT 
(IIoT) plays a crucial role in sustaining automotive 
production (Agrawal et al., 2020). Building on this 
technology, many within the sector prioritized remote 

monitoring and health forecasting as key strategies to 
navigate the challenges (Umair et al., 2021). Furthermore, 
while the trend of generating revenues throughout a vehicle’s 
lifecycle started before the pandemic, it has been accentuated 
during the COVID disruption (Singh, 2020). This heightened 
attention to the vehicle lifecycle, coupled with advancements 
in technology, necessitates a reevaluation of traditional 
vehicle maintenance paradigms. 

Vehicle maintenance is an integral part of the vehicle 
lifecycle. As the digital architecture of a vehicle grows 
sophisticated and intelligent, new opportunities have 
emerged, shifting the maintenance paradigm. A general 
maintenance strategy usually takes one of four forms 
(Coleman et al., 2017). The simplest form of vehicle care is 
reactive maintenance, in which a vehicle is fixed only when 
it fails. Unpredictable failure usually causes variation in 
vehicle downtime. Currently, the common form of vehicle 
care is scheduled maintenance, in which maintenance 
activities are performed at pre-determined intervals, 
regardless of the condition of the vehicle or equipment. 
Scheduled maintenance brings additional inspection costs but 
reduces unexpected failures during operation. 

 
Figure 1. Attributes of four types of maintenance strategies 

Advanced vehicles are equipped with features that enable 
predictive maintenance, which allows maintenance activities 
to be performed as needed based on the current condition of 
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the vehicle or equipment. This form of maintenance typically 
relies on sensing technologies and failure modeling. While it 
requires a higher sensing cost, it can reduce unexpected 
vehicle breakdowns and avoid possible over or under-
maintenance experienced in scheduled maintenance. On the 
other hand, proactive maintenance not only anticipates but 
actively identifies potential issues, addressing their root 
causes rather than just symptoms for a more thorough 
prevention. Proactive maintenance typically requires more 
advanced hardware and software and can be more complex 
than other maintenance forms. However, its intelligence and 
self-correcting capability can greatly increase vehicle 
reliability, leading to improved performance and decreased 
downtime and maintenance costs. Figure 1 identifies the 
attributes of the four maintenance forms. There is a trade-off 
between the maintenance system complexity and the system 
downtime.   

The integrated vehicle health management (IVHM) system is 
a maintenance architecture for ground vehicles, aircraft, and 
railways. Originally developed by NASA for aerospace 
applications, the IVHM system has been adapted for use in 
ground vehicles and marine transportation. A typical IVHM 
system uses sensor inputs to evaluate and forecast the health 
status of the vehicle (Esperon-Miguez et al., 2013). In 2018, 
the Society of Automotive Engineers (SAE) published the 
JA6268 standard for "Design & Run-Time Information 
Exchange for Health-Ready Components" to promote 
industry collaboration and encourage the adoption of 
upgraded maintenance strategies in the automotive sector 
(Felke et al., 2017). This standard defined six IVHM system 
capability levels from “no intelligence” to “self-adaptive” 
capabilities (presented in Figure 2) (SAE JA6268, 2023). 

 
Figure 2. SAE-defined IVHM capability levels for 

automotive applications 

The IVHM capability levels can be mapped to the 
maintenance forms described earlier. The attributes of 
maintenance categories also apply to the IVHM capability 
levels. Vehicles manufactured since the early 1980s are 
equipped with dashboard indicators, which constitute a level 
0 health management system. These indicators alert the 
operator when reactive maintenance is required. The 
introduction of microprocessor-based controls and on-board 
diagnostic (OBD) systems adopted between 1980 and 1995 
allowed vehicles to support level 1 diagnostic scanning tools 
through electric ports. The use of scan tools improved the 

efficiency of scheduled inspection and maintenance. The 
deployment of the GM OnStar telematic system enabled level 
2 real-time vehicle data transmission (Yilu Zhang et al., 
2009). However, by design, a level 2 system does not involve 
modeling, so it can only provide remote support center advice 
during reactive or scheduled maintenance. A level 3 system 
is characterized by its ability to perform diagnostic and 
prognostic modeling at the component level. The addition of 
vehicle-level diagnostic and prognostic modeling to a level 3 
upgrades the system to a level 4 system. These modeling 
techniques transform data from various sensors into 
information and knowledge, enabling predictive 
maintenance. Finally, a level 5 system achieves proactive 
maintenance by leveraging vehicle control feedback from the 
diagnostic and prognostic mechanisms. A Level 5 system 
extends vehicle operational-availability and enhances vehicle 
safety(SAE JA6268, 2023).  

 
Figure 3. Key sensors in a conventional vehicle (AllCarFix, 

2022) 

While the design and configuration of diagnostic and 
prognostic models may differ across various IVHM 
capability levels, they all rely on data obtained from vehicle 
sensors, physical measurements, and system logs to operate 
effectively. Figure 3 shows some key sensors in a typical 
commercial vehicle. These sensors generate signals in a time 
series format. The sensor data is accessible through network 
interfaces such as Controller Area Network (CAN) bus 
(Avatefipour & Malik, 2018). With increasing IVHM 
capability level, the data dimension grows, and the complex 
interdependencies between signals become challenging for 
diagnostic and prognostic modeling.  

Artificial intelligence (AI) techniques have demonstrated 
superior performance in high-dimensional signal processing 
and sensor fusion. In recent years, many studies have 
explored the use AI-assisted systems to diagnose faults in 
real-time and predict maintenance needs across various 
industries (Carvalho et al., 2019; Lo et al., 2019). This review 
will primarily focus on data-driven approaches, which rely on 
machine learning algorithms as the key enablers.  
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Typically, a machine-learning-based predictive maintenance 
method take one of the two workflows. The first workflow 
option involves a separate feature engineering step to format 
the data according to the input requirements of machine 
learning algorithms. This step includes data preprocessing, 
signal transformation, feature selection, and dimension 
reduction, all of which contributes to the extraction  of 
valuable information from raw signals or images  (Y. Hu et 
al., 2022). However, vehicle sensor data, such as waveform 
signals and images, is usually high-dimensional, 
heterogeneous, and multimodal. These characteristics usually 
lead to highly complex and nonlinear relationships among 
variables associated with vehicle failures. The second 
workflow option is using end-to-end deep learning models 
that have embedded sensor fusion and feature extraction 
capacities (LeCun et al., 2015). These models take raw sensor 
data as input obviating the need for manual feature 
engineering. While they have advantages over the first 
option, the deep learning models also have some drawbacks 
such as computational complexity, robustness to changing 
conditions, interpretability, and reliability in real-life 
applications. 

Existing review papers that are relevant to this work mostly 
focus on a subtopic of machine learning and prognostics and 
health management (PHM) methodologies. For example, 
Zhang et al. (2019) reviewed deep learning applications for 
general PHM applications. Carvalho et al. (2019) reviewed 
machine learning applications for predictive maintenance in 
various industries. Recently, Arena et al. (2022) surveyed 
machine learning algorithms widely applied in predictive 
maintenance in the automotive sector. Theissler et al. (2021) 
reviewed use cases of AI-assisted predictive maintenance in 
the automotive sector till 2019. In this work, we aim to 
contribute to the existing body of knowledge by examining 
the latest trends from all data-driven models on vehicle 
maintenance applications covering four forms of 
maintenance strategies. 

The motivation of this keyword co-occurrence-based review 
paper is to reveal the trends in the AI applications for vehicle 
maintenance and understand purpose and implementation 
environments of key AI applications. The research trends will 
inform promising directions for future research in this area. 
The remainder of this paper is structured as follows: Section 
2 describes the methodology used to construct the keyword 
co-occurrence networks and analyze the data. Section 3 
presents the results of our analysis, including the most 
frequently occurring keywords and their relationships, the 
evolution of the research field, key research topics and trends, 
and key applications. Section 4 provides a discussion of the 
real-world deployment scenarios of the reviewed applications 
and potential future research directions. Section 5 concludes 
the paper with a summary of the main findings and their 
implications for the field of AI applications for vehicle 
maintenance.  

2. METHODOLOGY 

This work aims to explore the trends of AI systems for 
vehicle maintenance. A conventional literature review 
usually systematically evaluates existing publications on a 
specific topic. However, identifying the most relevant studies 
and summarizing the research trends becomes cumbersome 
when the subject is broad and interdisciplinary. In this work, 
we adopt the keyword co-occurrence network (KCN) 
analysis as an effective way to quantify the research trends 
and identify the most relevant and up-to-date publications on 
AI systems for vehicle maintenance. This section explains the 
article collection process, keyword co-occurrence network 
construction, and network analysis methods. 

2.1. Article Collection and Network Construction  

We queried the Engineering Village and the IEEE database 
for relevant articles. Figure 4 presents the keyword criteria 
for the article collection. To be included in the review, an 
article’s metadata, including title, keywords, and abstract, 
must contain at least one keyword from each of the first three 
boxes from the left and exclude any keyword from the fourth 
box. We also limited the search to peer-reviewed journal 
articles and conference proceedings published in English 
from 2011 to 2022. After removing duplicates and articles 
with no author-defined keywords, we identified a final set of 
3153 articles. 

 
Figure 4. Keyword criteria for quarrying relevant articles 

from published literature 

The next step is constructing a database of author-specified 
keywords from the selected articles. To minimize the impact 
of authors’ language habits on the analysis, we reconciled the 
keywords with pipelines constructed with natural language 
processing toolkits in Python (Ozek et al., 2022). The 
preprocessing pipeline performs the following operations: (1) 
tokenization: breaking the strings of keywords into individual 
phrases, (2) inconsequential-word removal: removing 
commonly used words such as “the” and “a” that do not add 
significant meaning to the keywords, (3) stemming and 
lemmatization: reducing words to their base form, such as 
converting “clustering” and “clusters” to “cluster,” (4) 
synonym and acronym merger: using domain knowledge to 
merge words with identical meanings, such as merging 
“CNN” and “convolution neural network.” Each keyword is 
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also categorized as “application” or “model” related for 
future analysis. 

 
Figure 5. The process of building a KCN with keywords 

from two articles 

After preprocessing the keywords to a standard format, we 
calculated their co-occurrence values, which indicate the 
frequency of two keywords appearing together in an article. 
Using these values, we built the KCN in which nodes stand 
for keywords, edges represent co-occurrences, and the edge 
weights indicate co-occurrence frequencies. Figure 5 shows 
an example KCN built with keywords from two articles. As 
new keywords from Article 2 were introduced, the KCN 
expanded with new nodes and edges. The weight of an edge 
indicates the co-occurrence count. For instance, the link 
between “machine learning” and “deep learning” became 
stronger because these keywords co-occurred in Articles 1 
and 2. The keyword nodes are color-coded based on their 
label, making it easier to visually distinguish which machine 
learning model is used in which application. 

2.2. Network Analysis Parameters 

Network parameters provide quantitative insights into the 
structure and relationships of the keywords in the KCN. This 
section outlines the parameters used to analyze the KCN and 
interprets each parameter in the context of literature review. 

Degree refers to the total number of links connecting a single 
node (node 𝑖𝑖) to other nodes in the network. It measures the 
relative importance of a node compared to other nodes in this 
network. The degree of a node 𝑖𝑖 is defined as follows: 

𝑘𝑘𝑖𝑖 = �𝑒𝑒𝑖𝑖𝑖𝑖
𝑖𝑖∈𝑁𝑁

 (1) 

where 𝑁𝑁 denotes the set of nodes connected to node 𝑖𝑖 in this 
network. The indicator variable 𝑒𝑒𝑖𝑖𝑖𝑖 takes the value of 1 when 
node 𝑖𝑖 and 𝑗𝑗 are connected and 0 when there is no connection 
between them. In the context of our KCN, the degree of a 

keyword is the total number of unique keywords with which 
it co-occurs. The more often scholars include a keyword in 
their studies, the more connections this keyword will 
potentially have to other keywords. Therefore, the degree 
partially reflects a keyword’s popularity within the research 
field. 

Strength is the sum of the weights of all links connected to 
node 𝑖𝑖. It is a measure of a node’s importance in a weighted 
network. The strength of a node 𝑖𝑖 is defined as follows: 

𝑠𝑠𝑖𝑖 = �𝑒𝑒𝑖𝑖𝑖𝑖
𝑖𝑖∈𝑁𝑁

𝑤𝑤𝑖𝑖𝑖𝑖 (2) 

where 𝑤𝑤𝑖𝑖𝑖𝑖 is the weight of the edge 𝑒𝑒𝑖𝑖𝑖𝑖. The edge weight in 
the KCN represents the number of times a pair of keywords 
(represented by nodes 𝑖𝑖  and 𝑗𝑗) co-occurs. The degree of a 
keyword measures the number of unique co-occurrences it 
has, while the strength of a keyword measures the total 
number of co-occurrences, not necessarily unique, it has. In 
the context of a KCN, both the degree and the strength of a 
keyword (node) reflects its centrality and influence within the 
research field. Keywords with higher degree are more likely 
to be associated with multiple research topics, while 
keywords with higher strength are likely to be more popular 
indicating their reference frequently. 

Average weight as a function of endpoint degree examines 
the relationship between the degree of a keyword and the 
average weight of its connections. Given nodes 𝑖𝑖 and 𝑗𝑗, we 
visualize the relationship by plotting the weight 𝑤𝑤𝑖𝑖𝑖𝑖 against 
the product of  𝑘𝑘𝑖𝑖 and 𝑘𝑘𝑖𝑖. However, different combinations of 
degrees can lead to the same product of degrees, for example, 
2 × 50 = 10 × 10 = 100. To capture the general trend, we 
take the average weights of all edges with the same endpoint 
degree (product of end node degrees). The relationship is 
defined as follows: 

< 𝑤𝑤𝑖𝑖𝑖𝑖 >  ~ (𝑘𝑘𝑖𝑖𝑘𝑘𝑖𝑖) (3) 

where <∙>  denotes the average operation. In the KCN 
context, if there is a positive correlation between average 
weight and endpoint degree, we conclude that popular 
keywords tend to have heavier weight connection with other 
keywords. On the contrary, a negative correlation indicates 
that less popular keywords tend to have heavier connections. 
This relationship provides insights into the structure and 
dynamics of the research field.  

Average weighted nearest neighbor’s degree measures the 
average number of links that a node’s closest neighbors have 
while considering the strength of those links. The average 
weighted nearest neighbor’s degree of a node 𝑖𝑖 is defined as 
follows: 

𝑘𝑘𝑖𝑖𝑛𝑛 =  
1
𝑠𝑠𝑖𝑖
�𝑒𝑒𝑖𝑖𝑖𝑖𝑤𝑤𝑖𝑖𝑖𝑖 𝑘𝑘𝑖𝑖
𝑖𝑖∈𝑁𝑁

 (4) 
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To reveal the general characteristics of the neighbor’s degree, 
we plot 𝑘𝑘𝑖𝑖𝑛𝑛  against the keyword degree 𝑘𝑘𝑖𝑖 . In the KCN 
context, if 𝑘𝑘𝑖𝑖𝑛𝑛 increases with increasing keyword degree 𝑘𝑘𝑖𝑖, 
we conclude that high-degree keywords tend to connect with 
other high-degree keywords.  

Weighted clustering coefficient measures the extent to 
which the neighbors of a node are interconnected. It reflects 
the local cohesiveness of a node among its neighbors. In this 
work, the weighted clustering coefficient of a node 𝑖𝑖  is 
defined as follows (Onnela et al., 2005): 

𝑐𝑐𝑖𝑖 =  
1

𝑘𝑘𝑖𝑖(𝑘𝑘𝑖𝑖 − 1) � (𝑤𝑤�𝑖𝑖𝑖𝑖𝑤𝑤�𝑖𝑖𝑖𝑖𝑤𝑤�𝑖𝑖𝑖𝑖)
1
3

𝑖𝑖,𝑖𝑖∈𝑉𝑉𝑖𝑖

 (4) 

where 𝑉𝑉𝑖𝑖  is the set of nodes connected to node 𝑖𝑖, and 𝑤𝑤�𝑖𝑖𝑖𝑖 ,  
𝑤𝑤�𝑖𝑖𝑖𝑖, and 𝑤𝑤�𝑖𝑖𝑖𝑖, are the weight 𝑤𝑤𝑖𝑖𝑖𝑖 ,  𝑤𝑤𝑖𝑖𝑖𝑖 ,  and 𝑤𝑤𝑖𝑖𝑖𝑖 normalized 
by dividing them by the maximum weight in the network. 
(𝑤𝑤�𝑖𝑖𝑖𝑖𝑤𝑤�𝑖𝑖𝑖𝑖𝑤𝑤�𝑖𝑖𝑖𝑖)

1
3  is the intensity of the triangle subgraph 

connection 𝑖𝑖, 𝑗𝑗 , and 𝑘𝑘 . The interconnectivity of node 𝑖𝑖 ’s 
neighborhood is calculated by summing up the intensity of all 
triangle subgraphs that involve node 𝑖𝑖 . Finally, the 
summation of subgraph intensity is normalized between 0 
and 1. A value of 1 indicates that all the neighbors of node 𝑖𝑖 
are fully connected with the maximum network weight, while 
a value of 0 indicates that none of the neighbors of node 𝑖𝑖 are 
connected. In the KCN context, a keyword with a high 

weighted clustering coefficient indicates a strong local 
connectivity and cohesiveness. 

3. RESULTS 

Our search criteria yielded 3153 papers published between 
2011 and 2022. To facilitate trend analysis, we divided the 
12-year span into four 3-year windows and built a KCN for 
each time window. In this section, we present the network 
metrics from each time window and comment on the 
evolution of the research field. We then visualize the research 
trends in applications and models over the years. Finally, we 
present the co-occurrence matrix of the top 10 applications 
and models from each time window. These findings provide 
valuable insights into the trends of AI models for vehicle 
maintenance and identify the key applications.  

3.1. Network Metrics 

Table 1 and Figure 6 show that the number of articles, 
keywords, and co-occurrences in this research field has 
increased steadily over the years. Compared to the initial 
2011-2013 period, the number of articles, keywords, and co-
occurrences in the most recent 2020-2022 period has grown 
by a factor of 4.71, 3.68, and 3.26, respectively. This overall 
trend suggests that the research field is expanding as more 
and more researchers are attracted to the field exploring new 
AI models for vehicle maintenance applications.

Table 1. Network metrics of a KCN from four time periods  

 
Figure 6. Number of articles, keywords, and links over the four time-windows 

Metric 2011-2013 2014-2016 2017-2019 2020-2022 
Number of Articles 335 421 821 1576 
Number of Nodes (Keywords) 3001 4049 6590 11045 
Number of Links (Co-occurrences) 25971 47926 47576 84778 
Average Network Strength 17.49 23.76 14.54 15.58 
Max Strength 475 511 849 2009 
Average Network Degree 17.31 23.67 14.44 15.35 
Max Degree 447 481 793 1662 
Average Network Weight 1.010 1.004 1.007 1.016 
Max Weight 5 5 7 16 
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Figure 7. Node degree, strength, and link weight value distribution 

Although the growth rate of keywords and co-occurrences is 
lower than that of articles, this trend suggests that some 
research topics are gaining depth over time. In addition to 
exploring the application of new AI models to new vehicle 
maintenance tasks, researchers are gaining a more nuanced 
and multifaceted understanding of specific models and 
applications. 

Table 1 and Figure 7 presents the changes in average and 
maximum network strength, degree, and weight. The average 
strength and degree leaped from 2011-2013 to 2014-2016, 
decreased considerably in 2017-2019, and increased slightly 
in 2020-2022. The trend suggests that certain topics attracted 
research interests, and connections between such topics grew 
stronger from 2011-2013 to 2014-2016. Then the most rapid 
keyword increase occurred from 2014-2016 to 2017-2019, 
rapidly expanding the research landscape, resulting in a less 
interconnected network, and leading to a decrease in average 
strength and degree. In the most recent time window (2020-
2022), the slight increase in average strength and degree 
indicates that certain topics are gaining more attention and 
forming stronger connections. 

The steady growth of maximum strength, degree, and weight 
suggests the emergence of highly connected keywords in the 
AI application for the vehicle maintenance field. Figure 7 
supports this finding as the degree, strength, and weight 
distribution in all time windows is right skewed with 
numerous outliers having large values. These network 
metrics help us identify such highly connected keywords and 
topics, which we will discuss in the following subsection. 

 
Figure 8. Average weight as a function of endpoint degree   

Figure 8 presents the average weight as a function of the 
endpoint degree plotted on the log-transformed axis. The plot 
shows a positive linear trend between the average weight and 
the endpoint degree product. The positive correlation 
suggests that high-degree keywords have stronger 
connections between them. Scholars continue to build upon 
the fundamental concepts resulting in popular keyword hubs. 
Additionally, we observe a slight rightward shift of the trend 
line with time progression. It means that, given an average 
weight, the magnitude of the end point degree product has 
kept increasing over time. This trend implies that popular 
keywords serve as bridges that connect new topics to the 
expanding network. 

 
Figure 9. Average weighted nearest neighbor’s degree as a 

function of node degree 

Figure 9 presents the relationship between the node degree 
and its average weighted neighbor’s degree. Except the most 
recent time window (2020-2022), all other time windows 
show a slightly increasing trend. The most significant 
increase occurs in the 2014-2016 period. This trend suggests 
that nodes with high degrees are more likely to connect with 
other high-degree nodes, forming popular keyword hubs. In 
the most recent time window (2020-2022), no clear 
correlation is observed between high-degree nodes and their 
neighbors, suggesting that these nodes are more likely to 
connect with a diverse range of nodes rather than forming 
concentrated keyword hubs. 
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Figure 10. Weighted clustering coefficient as a function of 

node degree 

Figure 10 illustrates the relationship between the node degree 
and its weighted clustering coefficient for all time windows. 
The declining trend indicates that keywords with a small 
number of connections tend to form clusters with other low-
degree keywords, while popular keywords connect with both 
popular and less popular keywords. In recent years, the 
magnitude of the weighted clustering coefficient has 
decreased, and the declining trend has become more 
pronounced with time. It suggests that the research network 

has become more decentralized over time, and there are fewer 
tightly interconnected clusters as the research landscape 
expands. 

3.2. Research Topics Trends 

Although network metrics provide valuable insights into the 
development of the research landscape, it is crucial to 
examine the trends at a topic level to understand the direction 
of the research interests. In this section, we will delve into the 
trends of specific research topics to uncover emerging trends 
and research hotspots. 

Figure 11 and Figure 12 show the changes in the frequency 
rank of keywords grouped by AI models and vehicle 
maintenance applications, respectively. Keywords are ranked 
by frequency occurrence in descending order, and the rank 
change is plotted as a slope connecting the rank from the 
initial time window 2011-2013 to the most recent time 
window 2020-2022.  It is worth noting that a mild declining 
trend for a specific keyword doesn't necessarily indicate a 
decrease in its research significance. Instead, it may simply 
not be as prevalent as other emerging keywords while 
remaining crucial and relevant in the domain.

 

 
Figure 11. Emerging and declining keywords in the model category from 2011-2013 to 2020-2022
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Figure 11 suggests the following research trends in AI models 
for vehicle maintenance: 

• Fault diagnostics, a broader term that refers to the 
process of detecting, isolating, and identifying faults, 
remains the most popular keyword across time windows. 
However, the functions and approaches to achieve fault 
diagnostics have become increasingly complex over the 
years. The focus of modeling has shifted from binary 
fault detection or multi-class fault classification to more 
challenging tasks such as predictive modeling and image 
segmentation. Instead of simply classifying a vehicle 
component as failure-prone or not, the model is expected 
to predict the component’s remaining useful life and 
identify the damage location and severity from images. 
This trend can be partly attributed to the increasing 
complexity of data generated in modern vehicles, 
including big data from multimodal sensors and 
unstructured data such as images and text logs. 

• Classic signal processing methods such as wavelet 
transformation and empirical mode decomposition have 

matured and become less popular in vehicle maintenance 
research over time. Instead, there is an increasing interest 
in exploring the feature extraction capability of deep 
learning-based models such as Long Short-Term 
Memory (LSTM) recurrent neural network (RNN). The 
layered structure of an RNN can automatically extract 
relevant features from vibration and acoustic signals, 
skipping the manual feature engineering step before 
modeling.  

• Deep learning and ensemble learning models have 
gained popularity over traditional anomaly detection 
models such as support vector machines, clustering, and 
coefficient analysis. This trend results from the 
integrated feature extraction capacity and high accuracy 
deep learning models in experimental settings. However, 
traditional models are still widely used in vehicle 
maintenance because of their interpretability and 
scalability. Traditional models also typically require less 
training data and computational power than deep 
learning models. 

 

 
Figure 12. Emerging and declining keywords in the application category from 2011-2013 to 2020-2022
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Figure 12 validated the trend where the research focus shifted 
from failure classification to more challenging tasks such as 
remaining useful life prediction. Other research trends in 
vehicle maintenance applications include: 

• There is an increasing interest in applying AI systems to 
electric and autonomous vehicles. This trend can be 
attributed to the fact that modern electric and 
autonomous vehicles are usually equipped with various 
sensors and advanced perception system that rely on AI 
technologies. In contrast, integrating AI systems into 
traditional gasoline cars can be challenging, as they may 
not have the necessary sensors or computational power 
to support such systems.  

• Applying AI systems to vehicle maintenance is well-
aligned with the Internet of Things (IoT) scope. Various 
existing frameworks and technologies from other IoT 
research, such as data management, cloud computing, 
and edge computing, can be adapted to vehicle 
maintenance applications. However, there is a gap 
between experimental success and practical application. 
It is important to study the impact of AI-based vehicle 

maintenance systems on factors such as maintenance 
costs, power demand, and overall system reliability in 
real-world scenarios. 

3.3 Frequently Co-occurring Models and Applications 

This paper aims to identify popular applications of AI 
systems for vehicle maintenance and examine their 
implementation environments. To achieve this objective, we 
created a keyword co-occurrence matrix (Figure 13) that 
displays the top 10 most frequently occurring AI models (X-
axis) and applications (Y-axis) over the years. The matrix 
uses a color-coding scheme to represent the co-occurrence 
frequency of keyword pairs, with darker blue indicating a 
higher frequency of occurrence. The matrix is accompanied 
by bar charts on the right and bottom, which show the 
frequency of keywords within each time window. The 
increase in the overall magnitude of keywords’ frequency 
indicates a significant growth of the research field. 
Additionally, the evolution of the top keywords over time 
further confirms the research trends identified from the slope 
chart

Figure 13. Keyword co-occurrence matrix of top 10 most frequent applications vs. models over the years
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Based on the analysis of the keyword co-occurrence matrix, 
we identified the top two pairs of interest: “support vector 
machine - fault diagnosis” and “deep learning - fault 
diagnosis”. The former was the most frequent model-
application pair during 2011-2013 and 2014-2016, while the 
latter dominated during 2017-2019 and 2020-2022. In the 
following subsections, we will review the relevant literature 
on the two keyword pairs of interest with emphasis on the 
research goals, experimental setup, data processing process, 
and modeling methodology.  

Support Vector Machine – Fault Diagnosis The support 
vector machine (SVM) is a well-established machine 
learning model in the industrial setting, and it usually 
performs well with small training datasets. Mainly used for 
classification problems, SVM projects data points onto a 
high-dimensional space with a kernel function and classifies 
them using a hyperplane (Noble, 2006). Researchers have 
applied SVM to achieve fault diagnosis on both the 
component and vehicle levels. The targeted fault events 
include the shift solenoid and speed sensor fault in an 
automatic transmission system (Du et al., 2019), the 
malfunction of the lubrication system in a diesel engine (Y. 
Wang et al., 2016), the degradation of the torque converter 
clutch (Jia et al., 2019), loosened connectors from light 
assemblies (W. Hu et al., 2013), the DC serial arc fault in an 
EV power system (Xia et al., 2019), the single cylinder 
misfire fault (Xu et al., 2018), the lithium-ion battery aging 
(Y. Li et al., 2022), the abnormal increase in friction and 
malfunction in the electric power steering system(Ghimire et 
al., 2018), and the open switch fault in an EV inverter 
(Mwangi et al., 2022).  

 
Figure 14. In-situ test bench of a vehicle cylinder (Xu et al., 

2018) 

Training data come from three main sources: computer 
simulation, lab setups, and real-life vehicle experiments. For 
simulation-based approaches, researchers can either develop 
a theoretical model of a vehicle part and simulate its 
dynamics using tools such as MATLAB Simulink (Ghimire 
et al., 2018; Mwangi et al., 2022), or use specialized vehicle 
simulators like VE-DYNA (Nieto González, 2018). In a lab 
setup, the target vehicle part is placed on a test bench and 
fitted with additional sensors to capture data during 
controlled experiments. Figure 14, for instance, shows a lab 
setup for collecting data for cylinder misfire fault 
classification. While lab data provides controlled conditions, 
the closest approximation to real-world scenarios is obtained 
through experiments on vehicles (Y. Wang et al., 2016) 

Table 2. Recent work related to SVM-assistant diagnosis 

Method Feature Extraction Parameter Optimization Application 
SVM (Brusamarello et al., 2023) Principal Component Analysis SMO Bearing system 
SVM (Goyal et al., 2020) Discrete Wavelet Transform SMO Bearing system 

SAE-SVM(Long et al., 2021) Hybrid Sparse Auto-encoder SMO Multi-joint robots 
DCNN+SVM (Xue et al., 2020) Deep CNN model SMO Bearings and Rotors 

BAS-SVM (Z. Wang, Yao, Cai, 
et al., 2020) 

Mahalanobis Semi-supervised 
Mapping (MSSM) manifold 
learning algorithm 

Beetle Antennae Search Wind turbine 

GS-SVM(Yao et al., 2021) Discrete cosine filtering and 
modified covariance matrix Grid search Lithium Battery 

Systems 
SSA-SVM (Tuerxun et al., 2021) Random Forest Sparrow search Wind turbine 

SPA-SVM(Z. Wang et al., 2021) Modified multiscale weighted 
permutation entropy Marine predators algorithm Rolling Bearing 

EGM-SVM(Wu et al., 2020) Pearson correlation coefficient Stacking-based ensemble learning Hydraulic system 
GALS-SVM(F. Wang et al., 
2020) 

multivariate multiscale fuzzy 
entropy genetic least square optimization Looseness detection 

of bolted connections 
Model-based SVM(Shi & Zhang, 
2021) 

linear discriminant analysis (LDA) 
for undersampling the data Grey Wolf Optimizer (GWO) Autonomous Vehicle 

GOA-SVM (Z. Wang, Yao, & 
Cai, 2020) 

Generalized Refined Composite 
Multiscale Sample Entropy 

Supervised Isometric Mapping (S-
Isomap) and Grasshopper 
Optimization Algorithm 

Rolling bearing 
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The sensor data collected often goes through signal 
processing for feature engineering, then the resulting features 
are used to train the SVM models. Table 2 summarizes recent 
work about SVM-assistant PHM research from 2020. There 
two main subfields in SVM-assistant diagnosis research. 
First, to handle the high-dimensional signal, recent work 
applied feature selection algorithms, such as Principal 
Component Analysis (PCA) and Random Forest, and Deep 
learning methods such as Auto-encoder to extraction features 
from raw sensor signal. Second, we need to solve the SVM 
training problem via a constrained optimization problem. The 
most common method used to solve this optimization 
problem is Sequential Minimal Optimization (SMO) 
algorithm. Table 2 summarizes the most recent research in 
these two subfields. 

Deep Learning – Fault Diagnosis Deep learning represents 
a group of models that use multiple layers of interconnected 
neurons to model and solve complex problems. Researchers 
have applied deep learning models to diagnose vehicle part 
failures, such as EV micro-grid faults (Haque et al., 2018), 
battery thermal runaway faults (D. Li et al., 2022), and 
lithium-ion battery degradation (Cui et al., 2020; Ke et al., 
2021; S. W. Kim et al., 2022). In addition to vehicle part 
failure diagnosis, deep learning models are also commonly 
used to diagnose faults on the vehicle and fleet level. Ren et 
al. (2019), Gültekin et al. (2022a), and K. Kim et al. (2020) 
exploited the data fusion benefit of deep neural networks and 
developed multisensory fault diagnosis systems for 
autonomous vehicles. Al-Zeyadi et al. (2020), Gherbi et al. 
(2022), and Gültekin et al. (2022b) applied the cloud 
computing structure from the Internet of Things technologies 

and constructed frameworks for fleet-level model training 
and deployment.  

 
Figure 15. An example of LIME applied to vehicle 

diagnostic prediction (Al-Zeyadi et al., 2020)  

One of the drawbacks of deep learning models is their “black-
box” nature. To address this limitation, researchers have 
integrated model explainers such as Local Interpretable 
Model-agnostic Explanations (LIME) to the front-end user 
interface (Al-Zeyadi et al., 2020). Diagnostic explainers 
powered by LIME can explain the reasoning behind the 
diagnosis of a particular fault in a vehicle, providing 
transparency and improving trust in the model’s outputs 
(Ribeiro et al., 2016). In Figure 15, the LIME technique is 
used to explain the output of a deep sequential neural network 
with 9 layers. The model predicted the instance as error type 
G2029043, and LIME presented the contribution of key 
features to the prediction. SHAP (SHapley Additive 
exPlanations) is another model-agnostic method for 
interpreting the predictions of machine learning models 
(Lundberg & Lee, 2017). The SHAP method produces a set 
of explanations for each prediction, with each explanation 
representing the contribution of a particular feature to the 
prediction. The explanations can be used to gain insights into 
the model's behavior and to identify which features are 
driving the predictions. 

 

 

Table 3. Recent work related to Interpretable DL-assistant diagnosis 

Method Sensor data Interpretability Application 
Deep-SincNet (Abid 
et al., 2020) 

Raw current signals Utilize a Sinc filter in the first layer of CNN to discover 
the frequency bandwidths investigated in the automatic 
feature learning step. 

Induction motors multi-
class diagnosis 

Fully interpretable 
neural network (D. 
Wang et al., 2022) 

Raw vibration signals From the aspect of signal processing, wavelet transform, 
square envelope and Fourier transform are incorporated 
into the first four layers. 

Bearing condition 
monitor 

Unsupervised-SHAP 
(Brito et al., 2022) 

Raw vibration signals  Shapley Additive Explanations (SHAP) and local 
Depth-based Feature Importance for the Isolation Forest  

Rotating machinery 
Fault detection 

DTAE (Aguilar et al., 
2023) 

Categorical and 
numerical data 

A decision tree-based autoencoder that can detect 
anomalies on categorical data 

Anomaly detection 

WaveletKernelNet(T. 
Li, Zhao, et al., 2022) 

Raw time-domain 
signal 

A continuous wavelet convolutional layer is designed to 
replace the first convolutional layer of the standard CNN 

Bearing and Helical 
Gear Fault Diagnosis 

RE-RM(Costa & 
Sánchez, 2022) 

Time-domain signal 
after framing 

Compress the input data to a latent space that serves as a 
basis to build a self-explanatory map  

Aircraft engines remain 
useful life estimation 

AGCNN(Liu et al., 
2021) 

Raw signal after sliding 
window processing 

A feature-attention based bidirectional GRU CNN 
model 

Turbofan engine remain 
useful life estimation 

mFG-CAM(M. S. 
Kim et al., 2022) 

Frequency-domain raw 
signal 

Frequency-Domain-Based Gradient Class Activation 
Mapping 

Bearing Fault diagnosis 

Explainable -
GWDN(T. Li, Sun, et 
al., 2022) 

Graph data transform 
time-domain signal 

The graph wavelet denoising convolution is proposed 
based on the discrete graph wavelet frame to achieve 
multiscale feature extraction. 

Rolling Bearing 
diagnosis 
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Table 3 summarizes the most recent works related to 
interpretable deep learning methods in diagnosis domain. In 
summary, in current PHM research domain, the interpretable 
methods mainly focus on how one can integrate traditional 
signal processing technology into deep learning model to let 
users interpret the prediction from raw sensor signal, like 
feature importance estimation. 

4. DISCUSSION 

Between 2011 and 2022, the number of publications focused 
on AI applications for vehicle maintenance experienced a 
nearly fivefold increase. To provide context for this growth, 
we also examined the general field of vehicle maintenance 
research, excluding the constraint of ‘machine learning’. 
Using IEEE Xplore and Engineering Village for this analysis, 
we found that the number of articles increased approximately 
threefold from 2011 to 2022. This comparative data further 
emphasizes the growing interest in incorporating AI into 
vehicle maintenance. As a result, this evolving focus has led 
to a rapidly expanding and decentralized research network 
over time. By analyzing the emerging and declining 
keywords, we found that the problem scope for modeling has 
shifted from binary fault classification to challenging tasks 
such as vehicle component remaining useful life (RUL) 
prediction and vehicle system level maintenance action 
recommender. Classic machine learning models have 
matured, and deep learning and ensemble learning models 
have come into the spotlight of recent studies. In terms of 
application trends, there has been a surge in the research on 
AI systems for electric and autonomous vehicles, as these 
vehicles often come equipped with modern sensors and 
computational systems. The development of IoT 

technologies in other sectors has also inspired researchers in 
the automotive industry. However, limited efforts have been 
made to study the real-world deployment of IoT technologies 
and associated issues, such as cost, reliability, and 
cybersecurity. 

A real-life vehicle maintenance AI system development 
lifecycle (Iyengar & Portilla, 2022) is presented in Figure 16. 
During each stage of the lifecycle, a variety of unique 
challenges arise from the nature of the vehicle system. Yet, 
researchers and practitioners can leverage knowledge and 
best practices from other industries, such as aerospace and 
manufacturing, to effectively address these challenges. To 
that end, we provide the following prescriptive suggestions 
and resources, organized by each stage of the AI system 
development lifecycle. 

Design the AI System The design of an AI system for vehicle 
maintenance requires careful consideration of the availability 
and modality of vehicle sensors. However, a trade-off often 
emerges between a clean-sheet design, where new sensing 
and communication systems are installed primarily for health 
management purposes, and a retrofit design, where existing 
sensing and communication structures are modified to 
enhance the health management capacity. According to the 
Aerospace recommended practice ARP6407 (SAE ARP6407, 
2019), while retrofitting is the prevalent practice for 
aerospace and ground vehicle applications, it presents 
challenges such as the significant cost of system re-
certification, compromised data quality from existing sensors 
not primarily meant for the intended purpose, and reduced 
inherent system reliability. 

 
Figure 16. The AI-system development lifecycle with the parties involved and key steps
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Train the AI Model To effectively train an AI model, the 
evaluation process must accurately reflect its performance in 
real-world applications. This requires specialized 
performance evaluation metrics that go beyond general 
metrics like the failure detection rate. Aslanpour et al. (2020) 
analyzed various real-world metrics to evaluate the 
performance of cloud, fog, and edge computing paradigms, 
which can be adapted to the vehicle maintenance scenario. 
They noted that metrics like fault detection, cost/profit, 
resource utilization, delay/latency time, and scalability 
become more critical as edge models evolve from private to 
federated. Additionally, system throughput, number of 
orchestration decisions, and energy consumption are equally 
important for all models. 

Build the AI Service The deployment of the trained AI 
service requires an edge computing platform that seamlessly 
integrates into the vehicle's hardware and software systems. 
However, the mobility of vehicles presents unique challenges 
such as network instability or complete disconnection. In 
addition, the AI system must be designed to operate within 
the constraints of limited computational resources, 
intermittent power supply, and harsh environmental 
conditions. To address these challenges, it is valuable to 
leverage the insights from other AI systems deployed in 
vehicular environments. Tong et al. (2019) reviewed the 
state-of-the-art AI applications in the vehicle-to-everything 
(V2X) system, which mainly focus on enhancing traffic 
efficiency, road safety, and energy efficiency. Insights can be 
gained about communication technologies for vehicles, such 
as dedicated short-range communication (DSRC) and long-
term evolution (LTE) cellular communication, by analyzing 
these V2X applications.  

Publish the AI Service The AI-assisted vehicle health 
management system relies on a sensor network. However, 
once the AI service is published, security becomes a major 
concern, as the system is vulnerable to potential cyber attacks 
on individual sensor devices, the edge computing device, and 
the communication network. It is important to detect when a 
component has been compromised. While extensive studies 
have been conducted on cyber attacks in sensor networks, the 
security frameworks developed for general-purpose 
computing systems cannot be directly migrated to vehicular 
AI systems due to different network topologies and 
communication protocols (Xiao et al., 2019). Therefore, 
specific security protocols need to be designed and tested for 
AI-assisted vehicle health management systems. 

Deploy the AI Service Deploying an AI service requires a 
well-trained workforce that can operate the system and take 
vehicle maintenance actions accordingly. It is important to 
consider the unique skills and knowledge required to operate 
an AI-assisted vehicle health management system. For 
example, workers may need to be trained on how to interpret 
and analyze data generated by the system and how to use the 
system's interface to access information and control its 

functions. It is worth referring to research investigating 
workforce skill gaps given the rapidly digitalized working 
environment (Bühler et al., 2022; G. Li et al., 2021) and 
develop training programs and product manuals accordingly.  

Update the AI Model To ensure the continued effectiveness 
of the AI-assisted vehicle health management system, it is 
necessary to regularly update and maintain the AI model. 
This requires monitoring and detection of both sensor and 
model aging. To ensure seamless vehicle operation, it is 
essential to integrate the AI-system maintenance into the 
current scheme of vehicle maintenance. 

Industry solutions are widely available at each step of this 
lifecycle. Commercial edge computing platforms, such as 
IBM Edge Application Manager (IBM, 2022), NVIDIA EGX 
platform (NVIDIA, n.d.), and Microsoft Azure IoT Edge 
(Azure, n.d.), provide high-performance edge computing and 
network hardware and streamlined data management and 
modeling software. Various industry collaboration programs, 
such as the automotive edge computing consortium (AECC) 
(AECC, n.d.) and health-ready components and systems 
(HRCS) charter, are also established to collaboratively 
develop AI solutions for vehicle maintenance.  

While industry solutions provide practical tools and 
frameworks for implementing AI systems in the field, 
academic researchers are responsible for fundamental 
research that addresses issues at each step of the lifecycle. 
This includes analyzing AI-system integration, model 
deployment and maintenance, and evaluating trade-offs and 
interactions among stages. This holistic approach ensures the 
development of reliable, robust, and customized AI systems 
for vehicle maintenance applications. 

5. CONCLUSION 

This paper conducted a keyword co-occurrence analysis of 
the literature on AI systems for vehicle maintenance 
applications. We collected keywords from a total of 3153 
peer-reviewed articles published between 2011 and 2022. 
The centrality, affinity, and cohesiveness of the keywords are 
examined to understand the knowledge structure and growth 
momentum of this research field.  

We explored trends in AI systems for vehicle maintenance 
from different angles. We categorized keywords into the 
model and application groups and visualized the frequency of 
emerging and declining keywords. We also created co-
occurrence matrices of the top 10 applications and models 
from each time window. The results revealed a shift in the 
problem setting for modeling, from binary fault classification 
to more challenging tasks such as vehicle component 
remaining useful life (RUL) prediction and vehicle system 
level maintenance action recommender. Classic machine 
learning models have matured, and deep learning and 
ensemble learning models have gained prominence in recent 
research. Moreover, researchers are increasingly focusing on 



INTERNATIONAL JOURNAL OF PROGNOSTICS AND HEALTH MANAGEMENT 

International Journal of Prognostics and Health Management, ISSN 2153-2648, 2023 14 

developing AI systems for electric and autonomous vehicles, 
which come equipped with modern sensors and 
computational systems. We observe that IoT technologies are 
gaining attention in the automotive industry, but limited 
research has been conducted on the deployment of IoT 
technologies and associated issues, such as cost, reliability, 
and cybersecurity analysis.  
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