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ABSTRACT

In the era of industrial big data, prognostics and health
management is essential to improve the prediction of future
failures to minimize inventory, maintenance, and human
costs. Used for the 2021 PHM Data Challenge, the new
Commercial Modular Aero-Propulsion System Simulation
dataset from NASA is an open-source benchmark containing
simulated turbofan engine units flown under realistic flight
conditions. Deep learning approaches implemented previ-
ously for this application attempt to predict the remaining
useful life of the engine units, but have not utilized labeled
failure mode information, impeding practical usage and ex-
plainability. To address these limitations, a new prognostics
approach is formulated with a customized loss function to
simultaneously predict the current health state, the eventual
failing component(s), and the remaining useful life. The
proposed method incorporates principal component analysis
to orthogonalize statistical time-domain features, which are
inputs into supervised regressors such as random forests,
extreme random forests, XGBoost, and artificial neural
networks. The highest performing algorithm, ANN–Flux
with PCA augmentation, achieves AUROC and AUPR scores
exceeding 0.94 for each classification on average. In addition
to predicting eventual failures with high accuracy, ANN–
Flux achieves comparable remaining useful life RMSE for
the same test split of the dataset when benchmarked against
past work, with significantly less computational cost.

1. INTRODUCTION

The field of prognostics and health management (PHM)
has attracted recent research attention for large-scale, high-
dimensional, and dynamic engineering systems. Typically
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performed on the component level, the goal of intelligent
prognostic approaches is to predict in advance the pro-
gression of degradation to facilitate swift and responsible
decision-making before catastrophic failure (Lee et al., 2014;
Tsui et al., 2015). Typical PHM applications include data-
driven fault diagnosis and prognosis of bearing failures (Shao
et al., 2018) and gearbox failures (C. Li et al., 2016) utilizing
vibration, current, and/or acoustic emission signals. As
described by Liao and Köttig (2014), PHM approaches can
be separated into different categories: physics-based, expert
knowledge-based, or data-driven, with significant potential
for hybridization. PHM is essential for reliable operation of
safety-critical systems such as nuclear power plants, which
have devastating consequences should catastrophic failures
occur and are often difficult to predict due to the lack of
historical, labeled failure data (Coble et al., 2015).

Recently, deep learning approaches have seen growing
popularity in prognostics research, particularly for estimating
the remaining useful life (RUL) of physical assets. Graph
neural networks (GNNs) and graph convolutional networks
(GCNs) have become attractive for fault diagnosis and
prognosis tasks with their ability to handle highly correlated
and non-Euclidean applications in PHM (T. Li et al., 2022;
Lai et al., 2023; Kong et al., 2022). Advanced techniques
leveraging long short-term memory (LSTM) networks and
attention mechanisms improved RUL prediction for time
series data (Song et al., 2022). Berghout et al. (2022) further
illustrated how these architectures can benefit from transfer
learning to improve prognostic performance.

This paper will focus on the new Commercial Modular Aero-
Propulsion System Simulation (N-CMAPSS) dataset, which
was featured in the 2021 PHM Data Challenge and centered
on accurately estimating the RUL for a small fleet of tur-
bofan engines (Chao et al., 2021b). Openly available from
the NASA Prognostics Center of Excellence (PCoE) Data Set
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Figure 1. Turbofan engine schematic, courtesy of NASA
Prognostics Center of Excellence (Chao et al., 2021b)

Repository (Chao et al., 2021a), N-CMAPSS consists of syn-
thetic run-to-failure trajectories operating under more realis-
tic flight conditions compared to the legacy C-MAPSS dataset
used as a popular PHM benchmark (Chao et al., 2021a). The
turbofan engines experience multiple failure modes that in-
volve the simultaneous efficiency and/or flow failures of up
to 5 rotating subcomponents: fan, low-pressure compressor
(LPC), high-pressure compressor (HPC), low-pressure tur-
bine (LPT), and high-pressure turbine (HPT). A schematic
representation of a turbofan engine unit is shown in Figure 1.

For predicting the RUL of the turbofan engine units, Lövberg
(2021) proposed a neural network-based normalization pro-
cedure to effectively denoise the sensor measurements with
respect to the dynamic flight conditions. After normalization,
the input trajectories were passed into a deep convolutional
neural network (CNN) with dilated convolutions in an
approach that allows for variable input sequence lengths.
Lövberg relied on the provided health state label to sample
degraded sequences in their RUL prediction model. DeVol
et al. (2021) proposed the integration of inception modules
within a CNN architecture to handle the variable trajectory
lengths. DeVol et al. reported RUL prediction results using
NASA’s training-testing split in the N-CMAPSS dataset,
streamlining reproducibility and benchmarking for this
challenge problem. Solı́s-Martı́n et al. (2021) approached
this problem by stacking two CNNs in sequence: an encoder
model first used for dimensionality reduction and feature
extraction, and a secondary model used for RUL prediction.
Solı́s-Martı́n et al. used Bayesian hyperparameter optimiza-
tion to tune their models and noted that their prediction
results could be improved by reducing overfitting. Biggio et
al. (2021) utilized deep Gaussian processes (DGPs) to obtain
accurate RUL predictions paired with uncertainty estimates
on a subset of N-CMAPSS. Additional studies by Chao et al.
(2022) and Berghout et al. (2022) highlighted the potential
for physics-based hybridization and transfer learning to
improve RUL prediction accuracy.

These approaches benefit from the strengths of deep learning;

namely, they allow for effective feature representations to be
learned automatically by CNN rather than manually crafted.
Clever variations of CNNs, such as Lövberg’s approach im-
plementing dilated convolutions and DeVol et al.’s usage of
inception modules, have allowed for accurate RUL estimation
given varying flight trajectories and input lengths (Lövberg,
2021; DeVol et al., 2021). However, there are key limitations
to these approaches that inhibit their potential for practical
usage. By focusing solely on RUL prediction, prior methods
do not provide a holistic prognosis that predicts the eventual
failing component(s). DeVol et al. (2021) mentioned that the
resulting RUL predictions lack explainability, and that future
work should utilize the labeled failure modes and components
provided in the N-CMAPSS dataset to provide a more com-
plete prognosis for turbofan engines.

Our work significantly expands upon past efforts by broad-
ening the research scope to simultaneously predict RUL as
well as the eventual failing component(s). Being able to ac-
curately predict and isolate the reason for failure has impor-
tant implications on maintenance decision-making, equipping
operators with the capability to dispatch the appropriate ex-
perts and resources in a timely manner. Such predictive main-
tenance strategies can enable intelligent inventory optimiza-
tion (Bousdekis et al., 2017) and reduce reactive maintenance
costs, which may account for up to 40% of the overall bud-
get in large industries (Bagavathiappan et al., 2013). Previ-
ous work attempting to perform fault classification as well as
RUL prediction typically carry these objectives in separate
stages, with Gupta et al. (2023) devising a method to perform
fault classification after RUL prediction, whereas J. Y. Wu et
al. (2021) first classified the health state and then performed
RUL regression. Additionally, X. Wu and Ye (2016) inves-
tigated RUL estimation for solid oxide fuel cells following
a separate fault detection stage. To the best of our knowl-
edge, no previous studies have attempted to explicitly opti-
mize RUL regression and component-level classification on a
simultaneous basis on a dataset as large and high-dimensional
as N-CMAPSS. This is the first attempt at a unified model to
effectively accomplish fault detection, isolation, and RUL es-
timation for the N-CMAPSS benchmark dataset.

To maximize applicability for a real-world scenario, we aim
to simultaneously predict three meaningful indicators: 1) the
current health state; 2) the eventual failing component(s);
and 3) the RUL until catastrophic failure. We accom-
plish these goals by first simplifying the feature extraction
process to enable comparisons amongst state-of-the-art
machine learning regressors. Then, we derive and optimize
a specialized loss function that balances classification and
regression objectives. We also compare the performance of
state-of-the-art machine learning regressors and important
pre-processing steps such as orthogonalization via principal
components analysis (PCA). Our main contributions for this
research effort are summarized as follows:
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Figure 2. Proposed methodology flow for failure prediction

1. Reformulating and expanding upon the 2021 PHM Data
Challenge to include health state detection and forecast-
ing eventual failures;

2. Deriving a customized loss function to simultaneously
optimize classification and regression PHM objectives;
and

3. Accurately predicting health state, eventual failures, and
RUL with state-of-the-art regression approaches bench-
marked with prior work.

In the following sections of the paper, we will detail our
proposed methodology, our reproducible results, and provide
comparisons to previous work.

2. METHODS

First, we will describe the N-CMAPSS dataset, and introduce
the input variables and dataset composition in detail. With the
expanded goal to predict the current health state and eventual
failing components in addition to RUL, our proposed method-
ology encompasses both classification and regression objec-
tives. Our method is summarized in three steps: 1) feature
extraction; 2) feature normalization and orthogonalization via
PCA; and 3) training a supervised machine learning model to
obtain the final predictions. Figure 2 provides an overview of
the flow for the proposed methodology.

2.1. Dataset Description

The N-CMAPSS dataset consists of 8 provided subsets and
contains 90 engine units in total. In our research, we combine
flow and efficiency failures into one general failure category

Table 1. Component-level failure descriptions as labeled from
the N-CMAPSS dataset (Chao et al., 2021b)

Subset Units Fan LPC HPC HPT LPT
Name Fail? Fail? Fail? Fail? Fail?
DS01 10 No No No Yes No
DS03 15 No No No Yes Yes
DS04 10 Yes No No No No
DS05 10 No No Yes No No
DS06 10 No Yes Yes No No
DS07 10 No No No No Yes
DS08a 15 Yes Yes Yes Yes Yes
DS08c 10 Yes Yes Yes Yes Yes

for each mechanical component. Table 1 provides a summary
of the failure modes present in each subset. In the dataset,
engine units have a lifetime rated typically between 60 and
100 cycles, with the overall objective being to estimate the
RUL until catastrophic failure. Each flight cycle is of vari-
able length and is characterized by 18 time series signals: 4
flight data descriptors W = {W1,W2,W3,W4} summariz-
ing the dynamic operating conditions, and 14 real-time sen-
sor measurements Xs = {Xs1 , Xs2 , . . . , Xs14}. In addition
to the time series signals, each cycle also includes auxiliary
variables A = {A1, A2, A3, A4} useful for understanding the
context of a flight cycle: the unit number, cycle number, a cat-
egorical flight class variable Fc representing the length of the
flight (set to 1 for short flights, 2 for medium flights, and 3 for
long flights), as well as a binary health state variable hs (set
to 1 for healthy status and 0 for unhealthy status). We note
that the simulated engines are flown past unhealthy operation
until end of life (i.e., catastrophic failure). Table 2 provides a
summary of the variables provided in the dataset. In all, there
are a total of 6825 flight cycles in the dataset, with engines
averaging approximately 75 cycles per unit.

2.2. Feature Extraction

Feature extraction is necessary to reduce the input dimen-
sionality of the dataset. Although there are only 90 turbofan
engine units in the N-CMAPSS dataset as per Table 1, the
dataset contains over 63 million timestamps and requires re-
duction for subsequent data processing. As in previous work,
we aim to make predictions on a per-cycle basis (DeVol et al.,
2021).

In this study, we extract cycle-wide statistical time domain
features to summarize the distribution for each time series.
These features include:

1. Mean;
2. Standard deviation;
3. Minimum;
4. 1st Quartile;
5. Median;
6. 3rd Quartile;
7. Maximum,
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Table 2. Auxiliary, flight descriptors, and sensor measure-
ment variables used in N-CMAPSS dataset (Chao et al.,
2021b)

Variable Symbol Description Units
A1 unit Unit number -
A2 cycle Flight cycle number -
A3 Fc Flight class -
A4 hs Health state -
W1 alt Altitude ft
W2 Mach Mach number -
W3 TRA Throttle-Resolver angle %
W4 T2 Total temp. at fan inlet �R
Xs1 Wf Fuel flow pps
Xs2 Nf Physical fan speed rpm
Xs3 Nc Physical core speed rpm
Xs4 T24 Total temp. at LPC outlet �R
Xs5 T30 Total temp. at HPC outlet �R
Xs6 T48 Total temp. at HPT outlet �R
Xs7 T50 Total temp. at LPT outlet �R
Xs8 P15 Total pressure in bypass-duct psia
Xs9 P2 Total pressure at fan inlet psia
Xs10 P21 Total pressure at fan outlet psia
Xs11 P24 Total pressure at LPC outlet psia
Xs12 Ps30 Static pressure at HPC outlet psia
Xs13 P40 Total pressure at burner outlet psia
Xs14 P50 Total pressure at LPT outlet psia

for all 18 time series signals (the 4 W ’s and 14 Xs’s), result-
ing in 126 statistical features. We append this feature set by
additionally selecting features that are held constant per cycle
such as:

1. Time duration of cycle;
2. Current cycle number (A2);
3. Flight class (A3).

Importantly, we do not use the unit number A1 and health
state A4 as input features, and we opt to learn the health state
as an output instead. All together, this results in 129 total fea-
tures extracted from the N-CMAPSS dataset. In more general
terms, this feature extraction method is applied for n training
cycles, with xj 2 Rn representing the vector of samples for
the jth feature. Finally, the feature vectors are concatenated
into a single data matrix containing all p features, X 2 Rn⇥p.

2.3. Feature Normalization and PCA Orthogonalization

Features extracted from the time series signals may be of dif-
ferent scales and units. As a result, normalization helps en-
sure that predictions are not influenced by these differences.
First, we apply a min-max normalization scheme across all
features to map all features in the bounded range [0, 1] as
shown in Eq. (1):

x̄j =
xj �min(xj)

max(xj)�min(xj)
. (1)

Once again, we concatenate the feature vectors into a nor-
malized data matrix, X̄ 2 Rn⇥p. After obtaining the normal-
ized data matrix, PCA orthogonalization is recommended as

a multivariate preprocessing step to obtain a set of uncorre-
lated variables. PCA is typically used to achieve dimension
reduction by retaining the most important principal compo-
nents (PCs) such that the explained variance is maximized
(Jollife & Cadima, 2016). However, we have found that in
practice, there is utility to keeping all PCs to improve training
results. This is potentially because the features extracted are
significantly correlated, and therefore simply using PCA for
its orthogonalization benefits may improve the performance
of gradient descent-based optimization methods employed in
training. In Section 3, we will compare results with and with-
out PCA orthogonalization for all models. PCA can be for-
mulated as a linear transformation using the eigendecompo-
sition of the sample correlation matrix Q 2 Rp⇥p of the fea-
tures from X̄, as shown in Eqs. (2)–(3):

Q = V⇤VT

=
⇥
v1 . . . vp

⇤
2

64
�1 . . . 0
...

. . .
...

0 . . . �p

3

75
⇥
v1 . . . vp

⇤T (2)

X̃ = X̄V =
⇥
x̄1 . . . x̄p

⇤ ⇥
v1 . . . vp

⇤
, (3)

where v1, v2, . . . , vp are the PCs with corresponding eigen-
values �1 � �2 � · · · � �p � 0. The resulting ma-
trix X̃ 2 Rn⇥p is the newly orthogonalized training dataset
scored along the PC axes.

2.4. Output Labeling Scheme

While N-CMAPSS provides hs and failure mode infor-
mation as possible inputs for a RUL prediction model, we
aim to instead predict them as outputs encoded as binary
variables. As mentioned previously, these additional out-
puts will provide a more comprehensive prognosis of the
degraded turbofan engine unit. With these new outputs,
we require a labeling scheme for training a model. For
learning the current cycle health state hs, we borrow the
labels provided in the N-CMAPSS dataset, i.e., a label
of “1” for healthy operation and “0” for unhealthy opera-
tion. We introduce a vector of possible eventual failures
yEF =

⇥
yFan yLPC yHPC yHPT yLPT

⇤T , in which
each variable ycomp 2 yEF is binary, with the positive
label indicating eventual failure as specified in Table 1. For
example, for the DS06 subset in which the LPC and HPC
components eventually fail (even if the engine is presently
healthy), yEF =

⇥
0 1 1 0 0

⇤T . Lastly, for the RUL
training label, we follow the N-CMAPSS convention, which
provides RUL 2 Z⇤ as calculated by subtracting the current
cycle number from the total lifetime of the engine unit, i.e.,
RUL = tEOL � A2. With these definitions, we can prepare
the ground truth vector of labels y =

⇥
hs yT

EF RUL
⇤T

paired with the features of each cycle.
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2.5. Training Loss Function and Model Evaluation

Handling classification and regression objectives simultane-
ously provides additional complexity for training a predic-
tive machine learning model. We propose optimizing a cus-
tomized loss function that explicitly combines both objec-
tives. First, we base the RUL loss contribution from NASA’s
scoring criteria (Chao et al., 2021b), which penalizes over-
estimation of RUL to favor conservative predictions and is
defined in Eqs. (4)–(6):

sc
⇣

RUL, dRUL
⌘
=

1

n

nX

i=1

exp
⇣
↵|RULi � dRULi|

⌘
� 1 (4)

RMSE
⇣

RUL, dRUL
⌘
=

 
1

n

nX

i=1

⇣
RULi � dRULi

⌘2
!1/2

(5)

NASA
⇣

RUL, dRUL
⌘
= 0.5RMSE + 0.5sc, (6)

in which ↵ is the overestimation penalty equal to 1/13 if the
RUL is underestimated (i.e., dRULi < RULi) and equal to
1/10 for overestimations. We note that this makes the loss
function non-differentiable. However, modern automatic dif-
ferentiation packages are able to estimate gradients via sub-
gradients and are more flexible for handling unconventional
loss functions (Innes et al., 2019). In our work, we substitute
the values of ↵ directly and rewrite Eq. (4) as follows using
an indicator function, which allows for easier implementation
within automatic differentiation coding environments:

u =

✓
1

13
+

3

130
1dRULi>RULi

◆
|RULi � dRULi| (7)

sc
⇣

RUL, dRUL
⌘
=

1

n

nX

i=1

exp(u)� 1. (8)

This alternative formulation essentially “upgrades” the ↵
penalty from a base value of 1/13 to 1/10 when RUL is
overestimated.

In addition to the loss in Eq. (6) for capturing RUL er-
rors, we further incorporate the binary cross-entropy loss
BCE

⇣
y\RUL, ŷ\dRUL

⌘
to reflect the errors on the q classifi-

cation outputs. Together, we obtain an overall loss function
through a weighted sum of the terms introduced above:

L(y, ŷ) = NASA
⇣

RUL, dRUL
⌘

+ �BCE
⇣
y\RUL, ŷ\dRUL

⌘
, (9)

where � is a tunable scalar weight coefficient. Since the
NASA score is based on RUL regression, this term tends to
carry a larger magnitude compared to the BCE. In order to
achieve a more balanced contribution of the regression and
classification parts, we set � = 10 for our test cases, although

other values can be selected to reflect the relative importance
of the regression and classification tasks under the particular
PHM situation being considered.

Additionally, because benchmarking comparisons between
multiple machine learning regressors have not yet been
provided in previous work on the N-CMAPSS dataset
(DeVol et al., 2021; Lövberg, 2021; Solı́s-Martı́n et al.,
2021), we compare the performance of four state-of-the-art
machine learning methods: random forests (RFs) (Genuer
et al., 2017), extreme random forests (ERFs) (also known
as extra trees) (Maier et al., 2015), XGBoost (XGB) (Chen
& Guestrin, 2016), and artificial neural networks (ANNs)
(Mahamad et al., 2010). Specifically, we will compare the
performance of the tree-based ensemble regressors trained
to minimize mean squared error (MSE) to an ANN that
minimizes our proposed loss function in Eq. (9). For
completeness, we will also compare these results to an ANN
minimizing MSE. To evaluate the quality of classification
predictions, we will use the area under receiver operating
characteristics (AUROC) and precision-recall curves (AUPR)
metrics to evaluate performance at all possible thresholds.
Meanwhile, root-mean-square error (RMSE), the NASA
scoring function detailed in Eq. (6), mean absolute error
(MAE), and MAE normalized as a percentage of the unit’s
lifetime will be reported for judging regression quality for
RUL predictions.

3. EXPERIMENTAL SETUP

For reproducibility, results are reported using the built-in N-
CMAPSS dataset split, as in past work by DeVol et al. (2021).
This dataset split is notable for having a testing set with en-
tire engine units that are unseen in the training set, making
the benchmark problem more realistic and challenging. The
split follows an approximately 60%-40% training-testing ra-
tio, with 4089 cycles in the training set and 2736 cycles in
the test set. The training set is further divided with a 80%-
20% training-validation split, with a randomly selected hold-
out validation set used for early stopping and hyperparame-
ter tuning. Following the feature extraction method detailed
in Section 2.2, we employ 129 features. Using the min-max
normalization and PCA orthogonalization methods from the
popular scikit-learn package (Pedregosa et al., 2012), we nor-
malize the training set and apply these learned transforma-
tions to the testing set.

To prepare the regressors minimizing the MSE loss function,
it is necessary to scale the labels such that the RUL regression
error does not dominate the MSE calculation. This is done by
simply multiplying the binary encoded labels in y by 100,
thereby putting the binary labels in the same magnitudes as
the RUL labels. After training the models, the AUROC and
AUPR metrics are then computed using the resulting classi-
fication predictions on the test set in ŷ to serve as robust in-
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dicators of performance averaged across all possible thresh-
olds. Table 3 shows the classification and regression results
for RF, ERF, XGB, an ANN also trained on MSE (ANN–
MSE), and an ANN trained on the custom loss function de-
rived in Section 2.5 (ANN–Flux). The average and standard
deviation for the performance on the test set are reported af-
ter repeating with 4 randomized validation sets. Results with
and without the PCA orthogonalization step are also included,
demonstrating the impact of the preprocessing procedure on
minimally tuned models. The RF and ERF regressors, im-
plemented using scikit-learn, each contain 100 base estima-
tors. The XGBoost method also uses 100 estimators, with the
learning rate ⌘ set to 0.3 and the max depth of a tree set to 6.

Both ANNs share the same shallow architecture of two
hidden layers with 64 and 32 neurons each with ReLU
activations, employing the ADAM optimizer and trained
for 5000 epochs with a batch size of 256. All methods are
implemented using the Julia 1.8.5 programming language
(Bezanson et al., 2014) and both ANNs are designed using
the Flux deep learning backend, which allows for auto-
differentiation of custom loss functions (Innes, 2018; Innes
et al., 2019). The results in Table 3 may be further improved
with a more thorough hyperparameter optimization and
merely illustrate the potential for the simultaneous prediction
of eventual failures alongside RUL.

Benchmarked on a local MacBook Pro machine running ma-
cOS Ventura 13.2.1 with Apple M2 Max CPU and 32 GB
of RAM, it takes approximately 60 seconds total to train and
evaluate the RF, ERF, and XGB methods. On the same pro-
cessor, the Flux models take approximately 250 seconds to
train. The feature extraction is the longest step in terms of
runtime, taking around 300 seconds to load the dataset and
extract all 129 features for the training and testing sets.

4. RESULTS

The ANN–Flux method with the PCA preprocessing step ac-
curately predicts the current health state and the eventual fail-
ure component(s) with AUROC and AUPR scores exceeding
0.95 for each output. This is especially notable considering
the significant overlap of the failing components depending
on the failure modes (see Table 1). In addition, the RUL pre-
diction also outperforms the other techniques tested. The par-
ity plot in Figure 3a) visualizes the ANN–Flux RUL predic-
tions in the testing set versus the ground truth labels. In addi-
tion, producing a figure similar to DeVol et al. (2021), Figure
3b) also illustrates the ANN–Flux RUL predictions with the
ground truth RUL labels sorted from least-to-greatest.

We note that these RUL predictions are directly output from
the ANN–Flux model and further considerations may im-
prove their quality and usefulness in practice. For example,
despite the asymmetric NASA scoring function favoring
conservative underestimates, the average prediction error

still slightly overestimates the ground truth by 0.65 cycles.
This contrasts with the training prediction error, which on
average underestimates the ground truth by 0.50 cycles.
Further adjustments on the overestimation penalty ↵ and the
classification loss weight � may skew the prediction error
towards underestimation. In addition, we have not instituted
hard constraints to guarantee nonnegative RUL values.
Post-processing transformations such as the ReLU function
can be implemented in the future to rectify the outputs such
that all resulting RUL predictions are nonnegative.

Notably, the PCA orthogonalization pre-processing step has a
profound impact on classification performance for the even-
tual failure of the mechanical components. These findings
are consistent among all attempted machine learning meth-
ods. However, PCA orthogonalization did not appear to im-
prove the regression performance in the same way; 3 out of
the 5 attempted methods had increased RMSE when inputs
were orthogonalized. This suggests that using PCA to or-
thogonalize these extracted features is especially useful for
binary classification predictions, but may not always lead to
better results for minimizing RUL error.

Having additional classification outputs enables explainable
analysis of RUL predictions along various slices of the
dataset. For example, Figure 4 illustrates the RUL prediction
errors for unhealthy versus healthy cycles. Intuitively,
the interquartile range for unhealthy operating cycles is
substantially narrower, indicating that RUL predictions on
average improve throughout the life of the engine unit.

It is also useful to determine whether there are certain com-
ponents with higher variance in RUL prediction errors; by
observing the RUL prediction errors on a per-component ba-
sis, operators can glean more information and make targeted
decisions based on their confidence of the prognosis. Similar
to Figure 4, Figure 5 plots the RUL prediction error spread of
the test set for each of the labeled eventual mechanical com-
ponent failures. Figure 5 demonstrates that the RUL predic-
tion errors have a median centered near 0 for each mechanical
component and there is no significant component-based bias
identified. Relatively, the compressor failures have a tighter
concentration around 0 and the turbine failures are more neg-
atively skewed, indicating more underestimates, but we note
that it is difficult to draw definitive conclusions due to over-
lapping failures.

5. DISCUSSION

Our findings have broad economic implications beyond
engine prognostics, as a similar approach could potentially
be applied for other PHM applications. Our approach is
enabled by expanding the formulation of the 2021 PHM
Data Challenge to simultaneously include classification and
regression objectives, taking full advantage of the provided
labels in the N-CMAPSS dataset. However, we note that

6



INTERNATIONAL JOURNAL OF PROGNOSTICS AND HEALTH MANAGEMENT

Table 3. Classification and regression results for N-CMAPSS dataset for ensemble methods, with the PCA-orthogonalized
XGBoost method generally outperforming the other benchmark methods

Output Metric RF + PCA ERF + PCA XGB + PCA
Health AUROC 0.99 ± 0.00 0.99 ± 0.00 0.99 ± 0.00 0.99 ± 0.00 0.99 ± 0.00 0.99 ± 0.00
State AUPR 0.99 ± 0.00 0.98 ± 0.00 0.99 ± 0.00 0.99 ± 0.00 0.99 ± 0.00 0.98 ± 0.01
Fan AUROC 0.79 ± 0.01 0.91 ± 0.01 0.78 ± 0.00 0.91 ± 0.00 0.88 ± 0.00 0.95 ± 0.03

Failure AUPR 0.63 ± 0.02 0.87 ± 0.01 0.60 ± 0.02 0.86 ± 0.01 0.78 ± 0.02 0.90 ± 0.03
LPC AUROC 0.79 ± 0.01 0.90 ± 0.01 0.78 ± 0.01 0.89 ± 0.00 0.88 ± 0.00 0.94 ± 0.03

Failure AUPR 0.63 ± 0.01 0.81 ± 0.01 0.62 ± 0.01 0.78 ± 0.01 0.81 ± 0.01 0.90 ± 0.05
HPC AUROC 0.83 ± 0.01 0.92 ± 0.00 0.82 ± 0.01 0.92 ± 0.01 0.93 ± 0.01 0.96 ± 0.03

Failure AUPR 0.79 ± 0.01 0.90 ± 0.01 0.79 ± 0.01 0.89 ± 0.01 0.93 ± 0.01 0.96 ± 0.03
HPT AUROC 0.80 ± 0.01 0.88 ± 0.00 0.80 ± 0.01 0.88 ± 0.00 0.88 ± 0.00 0.91 ± 0.04

Failure AUPR 0.77 ± 0.01 0.86 ± 0.00 0.77 ± 0.01 0.85 ± 0.00 0.87 ± 0.01 0.90 ± 0.03
LPT AUROC 0.78 ± 0.01 0.87 ± 0.00 0.77 ± 0.01 0.87 ± 0.00 0.85 ± 0.01 0.90 ± 0.03

Failure AUPR 0.76 ± 0.01 0.84 ± 0.00 0.76 ± 0.01 0.84 ± 0.00 0.85 ± 0.01 0.90 ± 0.04
RMSE 10.30 ± 0.07 10.97 ± 0.02 10.34 ± 0.12 10.34 ± 0.03 9.97 ± 0.05 9.73 ± 0.86
NASA 5.92 ± 0.05 6.37 ± 0.02 5.95 ± 0.08 5.96 ± 0.02 5.72 ± 0.03 5.58 ± 0.52

RUL MAE (cycles) 8.13 ± 0.04 8.83 ± 0.03 8.14 ± 0.10 8.26 ± 0.04 7.66 ± 0.04 7.43 ± 0.67
MAE (%) 11.01 ± 0.06 11.84 ± 0.03 11.06 ± 0.14 11.08 ± 0.05 10.32 ± 0.05 9.97 ± 1.00

Table 4. Classification and regression results for N-CMAPSS dataset for ANN methods, with the proposed PCA-orthogonalized
ANN–Flux method achieving balanced classification and regression performance compared to ANN–MSE and ANN–Flux
without PCA pre-processing

Output Metric ANN–MSE + PCA ANN–Flux + PCA
Health AUROC 0.99 ± 0.00 0.99 ± 0.00 0.99 ± 0.00 0.99 ± 0.00
State AUPR 0.99 ± 0.00 0.98 ± 0.01 0.99 ± 0.00 0.99 ± 0.00
Fan AUROC 0.95 ± 0.00 0.99 ± 0.01 0.95 ± 0.02 0.98 ± 0.00

Failure AUPR 0.93 ± 0.01 0.98 ± 0.04 0.93 ± 0.03 0.96 ± 0.01
LPC AUROC 0.93 ± 0.01 0.99 ± 0.00 0.93 ± 0.02 0.97 ± 0.00

Failure AUPR 0.87 ± 0.02 0.97 ± 0.01 0.86 ± 0.05 0.95 ± 0.01
HPC AUROC 0.98 ± 0.00 0.99 ± 0.00 0.98 ± 0.00 0.99 ± 0.00

Failure AUPR 0.98 ± 0.00 0.99 ± 0.00 0.97 ± 0.01 0.99 ± 0.00
HPT AUROC 0.95 ± 0.01 0.98 ± 0.01 0.95 ± 0.01 0.97 ± 0.01

Failure AUPR 0.96 ± 0.01 0.98 ± 0.01 0.96 ± 0.01 0.97 ± 0.01
LPT AUROC 0.89 ± 0.01 0.96 ± 0.00 0.90 ± 0.03 0.94 ± 0.02

Failure AUPR 0.89 ± 0.01 0.96 ± 0.01 0.91 ± 0.03 0.94 ± 0.02
RMSE 7.81 ± 0.24 9.01 ± 0.19 8.14 ± 0.30 8.20 ± 0.17
NASA 4.36 ± 0.15 13.89 ± 8.20 4.57 ± 0.16 4.68 ± 0.15

RUL MAE (cycles) 5.88 ± 0.21 6.48 ± 0.15 6.09 ± 0.13 6.16 ± 0.09
MAE (%) 7.67 ± 0.27 8.52 ± 0.22 8.06 ± 0.10 8.19 ± 0.15

our work targets predicting eventual failures broken down to
the detailed component-level rather than the 7 pre-defined
higher-level failure modes. Predicting component-level fail-
ure is a more challenging generalization to predicting failure
modes, since the solution space is expanded to allow all 25
possible combinations of failing components, even though
the dataset is only sparsely populated by the 7 pre-defined
failure modes. The benefit of this generalization is that a
successful model would learn how the same components
can fail with dramatically different failure data, which has
practical implications for maintenance decision-making
and inventory costs. Previous research on this dataset also
utilized the labeled health state as an input to improve RUL
predictions (Lövberg, 2021); we have relaxed assumptions
by instead learning the health state as an additional output.

The computation effort of our approach compared to past
work is also noteworthy. Table 5 compares our model’s
size (in terms of number of trainable parameters) and the
obtained RUL RMSE in comparison to the state-of-the-art

methods from available literature. Here, we note that not
all prior work reported the number of trainable parameters,
and several works did not report RUL results on the same
test split encompassing the entire N-CMAPSS dataset. The
joint classification-regression approach taken in this paper
also constrains the solution in terms of RUL performance.
While it is not the highest performing method when
solely pursuing RUL regression, ANN–Flux aims to tell
us “why”, and not just “when”.

ANN–Flux is also remarkably simple, with number of pa-
rameters approximately two orders of magnitude fewer com-
pared to the deep CNNs of prior work. In a realistic scenario
with larger datasets, smaller networks are less expensive to
run in real-time, streamlining inferencing efforts. Although
our method requires hand-selected features prior to training
an ANN, the extracted features are simple statistical features
and do not require significant domain expertise. Perhaps sur-
prisingly, predicting RUL in addition to the eventual failure
component(s) and current health state does not significantly
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Figure 3. a) Parity plot comparing actual and predicted RUL values for ANN–Flux predictions on the N-CMAPSS testing
engine unit set; b) ANN–Flux predictions scatter with ground truth labels sorted from least-to-greatest
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Figure 4. Box-and-whisker plot for RUL error for healthy and
unhealthy operation cycles

sacrifice the RUL prediction error.

Table 5. Number of trainable parameters and RUL RMSE
compared with state-of-the-art

Approach # Trainable Parameters RUL RMSE
(DeVol et al., 2021) 1,030,000 12.5

(Solı́s-Martı́n et al., 2021) 4,089,465 6.24
(Biggio et al., 2021) 169,401 7.31
(Song et al., 2022) N/A 6.867

(Berghout et al., 2022) N/A 5.64
ANN–Flux + PCA 10,631 8.20 ± 0.17

To the authors’ knowledge, our work is also the first to
compare multiple state-of-the-art regression approaches for
predicting component failures and RUL estimation for the
N-CMAPSS benchmark. We also provide comparisons with
and without PCA orthogonalization and for multiple loss
functions, with tangible improvements for both RUL and bi-
nary classifications with these computational approaches. We
hope that our contributions encourage future benchmarking
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Figure 5. Box-and-whisker plots for RUL prediction errors
for each eventual failing component

efforts on the N-CMAPSS dataset and for PHM research.

Despite these advancements, important limitations remain
that require addressing in future work. Firstly, while RUL
prediction is comparable with past work, the prediction
errors still have a large variance. Integration with physical
modeling is suggested in the future to improve the confidence
of RUL predictions. Moreover, failure data are difficult to
obtain in practice, and as a result, industrial datasets are
often imbalanced (Santos et al., 2018), threatening the utility
of fully supervised learning techniques. As a result, more
research is required in semi-supervised and unsupervised
methods to at least lighten the supervision requirement for
AI algorithms to provide accurate prognoses. In addition,
while PCA orthogonalization vastly improved the component
failure predictions, the derived PC variables lack physical
meaning, hindering the explainability of the input features.
This step makes the current formulation incompatible with
explainable AI (XAI) methods such as SHAP, which attempt

8
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to explain black-box model predictions in terms of additive
marginal contributions of features (Senoner et al., 2022).
While being able to accurately isolate eventual failures on a
component-level provides inherent explainability compared
to previous efforts, we leave XAI integration for future work.

6. CONCLUSION

Our work as benchmarked on the N-CMAPSS dataset
uniquely demonstrates the potential for an approach that
simultaneously detects the current health state, predicts
which component(s) will fail, and then estimates the num-
ber of cycles until failure. In essence, this integrates the
important disciplines of anomaly detection and fault diag-
nosis—conventionally requiring multiple models—in one
prognostic model that makes accurate predictions, even for
presently healthy units. Our main contributions and findings
for this research effort are restated as follows:

1. Reformulated and expanded the scope of the 2021 PHM
Data Challenge to include health state detection and
eventual failure prognosis;

2. Customized loss function derived to simultaneously
combine classification and regression objectives;

3. Accurately predicted health state and eventual failures,
with AUROC and AUPR exceeding 0.94 on average
for each classification prediction accomplished with the
ANN–Flux methodology; and

4. Comparable RUL RMSE achieved for the same dataset
split and with less computational effort required for train-
ing when benchmarked against prior work.

The authors hope that these contributions will help bolster
PHM research and Industry 4.0 efforts to improve safety,
lower costs, and enhance decision-making in the age of Big
Data.

DATA AVAILABILITY

We plan on making all code for this paper fully available
on GitHub for maximum transparency and encourage
reproducibility to further N-CMAPSS as a benchmark for
PHM research. The N-CMAPSS dataset is publicly available
for download in NASA’s Prognostics Center of Excellence
Data Repository: https://www.nasa.gov/content/prognostics-
center-of-excellence-data-set-repository.
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