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ABSTRACT

The main objective of Prognostics and Health Management
is to estimate the Remaining Useful Lifetime (RUL), namely,
the time that a system or a piece of equipment is still in
working order before starting to function incorrectly. In re-
cent years, numerous machine learning algorithms have been
proposed for RUL estimation, mainly focusing on providing
more accurate RUL predictions. However, there are many
sources of uncertainty in the problem, such as inherent ran-
domness of systems failure, lack of knowledge regarding
their future states, and inaccuracy of the underlying predictive
models, making it infeasible to predict the RULs precisely.
Hence, it is of utmost importance to quantify the uncertainty
alongside the RUL predictions. In this work, we investigate
the conformal prediction (CP) framework that represents un-
certainty by predicting sets of possible values for the target
variable (intervals in the case of RUL) instead of making
point predictions. Under very mild technical assumptions, CP
formally guarantees that the actual value (true RUL) is cov-
ered by the predicted set with a degree of certainty that can be
prespecified. We study three CP algorithms to conformalize
any single-point RUL predictor and turn it into a valid inter-
val predictor. Finally, we conformalize two single-point RUL
predictors, deep convolutional neural networks and gradient
boosting, and illustrate their performance on the C-MAPSS
datasets.

1. INTRODUCTION

Prognostics and Health Management (PHM) is devised to
monitor the health state of industrial components and con-
duct maintenance operations when necessary. It can notice-
ably increase the efficiency of industrial assets by reducing
their downtime, maintenance frequency, and costs accord-
ingly. One essential element of the PHM is the Remaining
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Useful Lifetime (RUL) estimation, which refers to predict-
ing the amount of time left before a system stops working as
required (Jardine, Lin, & Banjevic, 2006).

In the past years, many data-driven approaches have been pro-
posed for this problem (Y. Lei et al., 2018). From a machine
learning perspective, these works attempt to solve a regres-
sion problem, that is, to discover the relationship between the
condition monitoring (CM) data and the RUL. The main ob-
jective of most of these works is to predict the RUL as ac-
curately as possible. Obviously, due to the noisiness of CM
data, the stochastic behavior of systems failure, the unpre-
dictability of systems’ future states, and even the impreci-
sion of the regression models, the RUL estimation problem
is heavily affected by uncertainty (Sankararaman & Goebel,
2015). Moreover, RUL predictions will eventually affect the
maintenance process, which is a delicate decision-making
procedure. Hence, as a prerequisite for reliable employment
in industry, it is essential to equip such predictions with a
valid representation of their confidence, for instance, by an-
swering questions of the following kind: How confident is the
model with the prediction it made? What is the probability
that the true RUL will actually be shorter than the predicted
value, and if so, by what amount?

Uncertainty quantification (UQ) is a field in machine learning
that deals with questions like these (Hüllermeier & Waege-
man, 2021). In the regression problem, one way to quantify
uncertainty is to predict an interval equipped with a level of
confidence instead of a single value. A prediction interval
provides a lower and an upper bound on the target variable,
i.e., the RUL in our problem. Ideally, prediction intervals are
as short as possible, and their length should represent the dif-
ficulty of the prediction (adaptivity property); in other words,
the harder the prediction for a given data point, the higher the
uncertainty and the wider the interval. More importantly, a
predicted interval ought to contain the actual value of the re-
sponse variable with a certain degree of probability (coverage

property) (Angelopoulos & Bates, 2021).
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Conformal prediction (CP) is a framework for constructing
prediction intervals, or, more generally, prediction regions,
which has gained increasing interest in the recent past (Vovk,
Gammerman, & Shafer, 2005). CP can be applied in a very
versatile way and guarantees coverage property under mild
technical assumptions. It is non-parametric, i.e., it makes
no specific distributional assumptions on the data-generating
process. Moreover, it can be put on top of any single-point
RUL predictor, thereby turning it into an interval predictor. In
this work, we employ the conformal prediction framework for
the RUL estimation problem. More specifically, we present
three CP methods and describe how to turn any single-point
RUL estimator into a valid interval predictor using any of
them. To the best of our knowledge, this paper is the first to
investigate the CP framework for the RUL estimation prob-
lem.

The paper is organized as follows. After a brief overview of
related work, the RUL estimation problem is defined in Sec-
tion 3. This is followed by presenting the three conformal
prediction frameworks for interval prediction. In Section 4,
two single-point RUL predictors are conformalized using the
CP methods, and their performance is evaluated experimen-
tally using the C-MAPSS datasets.

2. BACKGROUND AND RELATED WORK

2.1. RUL Estimation

RUL estimation methods can be categorized into model-
based and data-driven approaches (An, Kim, & Choi, 2015).
Model-based approaches specify a physical degradation
model according to prior domain knowledge of the system
and utilize historical data to identify its parameters. Data-
driven approaches employ data to discover relationships
between system state and failure. Corresponding approaches
range from classical machine learning methods such as
support vector machines (SVM) (Benkedjouh, Medjaher,
Zerhouni, & Rechak, 2013), K-nearest neighbors (KNN)
(Mosallam, Medjaher, & Zerhouni, 2016), random forests
(RF) (Zhang, Lim, Qin, & Tan, 2017), and gradient boosting
(GB) (Zhang et al., 2017) to modern deep learning tech-
niques, including deep belief networks (DBN) (Zhang et al.,
2017), deep convolutional neural networks (DCNN) (Babu,
Zhao, & Li, 2016; Li, Ding, & Sun, 2018), recurrent neural
networks (RNN) (Heimes, 2008) and its variants (Y. Wu,
Yuan, Dong, Lin, & Liu, 2018; Chen, Jing, Chang, & Liu,
2019; Elsheikh, Yacout, & Ouali, 2019). More recently, the
problem has also been tackled by means of automated ma-
chine learning (AutoML) (Tornede, Tornede, Wever, Mohr, &
Hüllermeier, 2020; Tornede, Tornede, Wever, & Hüllermeier,
2021).

2.2. Uncertainty Quantification in Regression

As mentioned by (Sankararaman & Goebel, 2015), due to the
existence of multiple sources of uncertainty in prognostics,
predicting a single value as an RUL is not very meaningful.
Nevertheless, uncertainty quantification is relatively under-
studied in the field of data-driven RUL estimation. From a
machine learning point of view, RUL estimation is considered
a regression problem, for which four fundamental classes of
interval predictors exist in the literature: Bayesian methods,
ensemble methods, direct interval prediction, and CP meth-
ods (Dewolf, Baets, & Waegeman, 2022).

The most common Bayesian methods are Gaussian processes
(Liu, Zhang, Liao, Wu, & Peng, 2019; Q. Wu, Ding, &
Huang, 2020; Biggio, Wieland, Chao, Kastanis, & Fink,
2021) and Bayesian neural networks (Peng, Ye, & Chen,
2020; Benker, Furtner, Semm, & Zaeh, 2021). Their basic
idea is to adopt a prior distribution over model parameters,
which is then turned into a posterior distribution in the light
of observed data. The advantage of these methods is their the-
oretical soundness and formal guarantees, while their main
weakness is their vulnerability to model misspecification.

In ensemble methods, multiple machine learning models are
trained simultaneously, and the statistics of their predictions
(e.g., mean and variance) are utilized to quantify uncertainty
(Rigamonti et al., 2018; Liao, Zhang, & Liu, 2018). Broadly
speaking, the more the predictions diverge, the higher the un-
certainty seems to be. Ensemble methods are simple and effi-
cient but somewhat ad-hoc and difficult to interpret (e.g., they
do normally not support a probabilistic interpretation).

The most well-known direct interval predictors are quantile
regression models that construct intervals by providing lower
and upper quantiles of response variables given their features
(Zhao, Wu, Wong, Sun, & Yan, 2020). However, the intervals
constructed by estimated quantiles do not guarantee coverage
when dealing with a finite number of samples (Romano, Pat-
terson, & Candès, 2019).

2.3. Conformal Prediction

Conformal prediction delivers reliable predictions in the form
of sets or prediction regions (intervals in the case of regres-
sion), which are guaranteed to contain the sought target value
with a predefined level of confidence. CP assumes no specific
distribution for the data and works under the mild assumption
of data exchangeability, which requires the joint probability
distribution of a set of data points to be independent of their
order. CP has originally been introduced for transductive in-
ference in an online setting, but inductive variants have been
developed later on — we refer to (J. Lei, G’Sell, Rinaldo, Tib-
shirani, & Wasserman, 2018) for details. Due to the com-
putational complexity of full (transductive) CP, we focus on
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the inductive variant of so-called split conformal prediction
in this paper.

Split CP divides the training data into subsets for proper train-
ing and calibration, using the former to fit the regression
model and the latter to quantify the uncertainty of predictions
(in the test set). One major drawback of the original split
CP algorithm is that, in the case of regression, the prediction
intervals have the same length for all data points in the test
set. (Romano et al., 2019) address this issue by fitting two
quantile regression models (for lower and upper bounds on
the target values, respectively) and calibrating them using the
calibration subset to ensure the coverage property.

All theoretical guarantees of the aforementioned approaches
rely on the exchangeability assumption. However, this as-
sumption can easily be violated, especially when dealing with
ordered data such as time series. (Barber, Candes, Ramdas,
& Tibshirani, 2022) tackle this issue by assigning weights to
calibration data points based on their “similarity” to each data
point in the test set. We will discuss this approach in more de-
tail in Section 3.3.

3. CONFORMAL PREDICTION FOR RUL ESTIMATION

In PHM, each data instance is represented by a (possibly mul-
tivariate) time series Zi := {z(i)1 , z(i)2 , . . . , z(i)Ti

}, a collection
of condition monitoring data from the moment system i starts
operating up to time Ti, and a scaler Fi indicating its failure
time. The RUL of instance i at time t can be computed as

y(i)t = Fi � t, (1)

t 2 [Ti] := {1, . . . , Ti}.

Typically, for training data {(Zi, Fi)}Ntrain
i=1 , the time series ter-

minate when a failure occurs, i.e., Fi = Ti. Such data is also
referred to as run-to-failure data. On the other hand, for a test
dataset {(Zk, Fk)}Ntest

k=1, the series may end at a random time
before a failure occurs, i.e., Fk � Tk. Clearly, the ultimate
objective is to estimate y(k)Tk

for every data point (Zk, Fk) in
the test dataset.

Depending on the regression algorithm, these training and test
datasets usually need to be transformed into

D =
�
(xi, yi)

 N 0
train

i=1

and

Dtest =
�
(xk, yk)

 N 0
test

k=1
,

correspondingly. In the simplest case, the transformed dataset
is simply the collection of all CM data from all instances and
their corresponding RULs, e.g.,

D =
n
(z(i)t , y(i)t ) : i 2 [Ntrain], t 2 [Ti]

o
. (2)

Test phase

RUL labels

features

trained
RUL estimator

trained
RUL estimator

trained
RUL estimator

interval 
constructor 

Training phase

Calibration phase

model training

RUL labels

features

features

estimsted RULs

estimsted RULs

non-conformity 
measure

RUL intervals

Figure 1. The general procedure of split conformal prediction
for RUL estimation problem.

(Li et al., 2018) consider a time window of length Lw and
stack all CM data within that interval to construct two-
dimensional features. As a result, the transformed dataset can
be written as

D =

⇢✓
[z(i)t�LW+1, . . . , z

(i)
t�1, z

(i)
t ]|, y(i)t

◆

: i 2 [Ntrain], Lw < t  Ti

�
, (3)

where [·]| denotes the transpose of [·].

Regardless of the choice of data transformation method, in
the conventional regression problem, the objective is to train
a model M on D that mimics the relationship between in-
stances (independent variables) xi and targets (dependent
variables) yi, so that ŷnew := M(xnew) is close to ynew for
every new pair (xnew, ynew) 2 Dtest. Alternatively, conformal
prediction attempts to provide an interval C↵(xnew) ⇢ R�0

that contains ynew with a user-defined coverage rate 1 � ↵,
where ↵ is the error rate. Thus, the following coverage prop-

erty holds:

P
✓
ynew 2 C↵(xnew)

◆
� 1� ↵. (4)

In this paper, we concentrate on the split conformal predic-
tion (SCP) framework and two of its variants, namely con-
formalized quantile regression (CQR) and non-exchangeable
split conformal prediction (nex-SCP). The general procedure
of these methods is depicted in Figure 1. It is worth not-
ing that these methods are based on the setting of supervised
learning. They can be applied to the semi-supervised setting
where only a part of data is labeled (i.e., have known RUL),
as long as a single-point RUL estimator can be trained using
such data while putting aside a portion of labeled data for cal-
ibration. In the extreme scenario of having datasets with no
known RULs, these methods are no longer applicable.
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3.1. Split Conformal Prediction Framework

As its name suggests, SCP starts by randomly splitting the
original training data D into two disjoint subsets: a proper
training set Dtrain and a calibration set Dcalib. A predictive
model M is then trained on the proper training set and used
to obtain non-conformity scores for the examples in the cal-
ibration data. To this end, CP needs a non-conformity mea-

sure (aka non-conformity score function) f that takes a tuple
(x, y) as input and returns a real-valued score S = f(x, y)
as output. The latter is meant to indicate the “strangeness”
of the data point (x, y), i.e., to measure how non-conforming
(x, y) is with the model M — in regression, a natural mea-
sure of non-conformity is the absolute residual error between
the prediction ŷj := M(xj) and the observed outcome yj :

Sj = f(xj , yj) = |yj � ŷj | = |yj �M(xj)| . (5)

Applying the non-conformity measure f to each data point in
Dcalib, one obtains a set of non-conformity scores

{Sj : (xj , yj) 2 Dcalib} .

Let q be the d(1 + |Dcalib|)(1 � ↵)e smallest value of these
scores, where d·e is the ceiling function. Equivalently, q
is the (1 � ↵)-quantile of the empirical distribution of non-
conformity scores

1

|Dcalib|+ 1
�+1 +

X

(xj ,yj)2Dcalib

1

|Dcalib|+ 1
�Sj ,

with �x denoting the point mass at point x. This value can
be interpreted as follows: With high probability (namely, a
probability of at least 1 � ↵), the non-conformity of a “real”
data point (x, y), i.e., a data point sampled from the true un-
derlying distribution, is  q.

The basic idea of CP, then, is to “reject” any hypothetical data
point (x, y), the non-conformity of which exceeds q. In ac-
cordance with the logic of statistical hypothesis testing, the
probability of erroneously rejecting a real data point (con-
ducting a mistake of type 1) is upper-bounded by ↵. More
specifically, given a query instance xnew for which a predic-
tion is sought, a prediction region C↵(xnew) is constructed
by testing the hypothesis (xnew, ynew) = (xnew, y) for each
candidate value y 2 R, and only including those candidates
for which this hypothesis cannot be rejected. In the case of re-
gression with non-conformity measure (5), this simply leads
to the interval

C↵
SCP(xnew) =

⇥
ŷnew � q, ŷnew + q

⇤
. (6)

The SCP procedure can be summarized as follows:

Step 1. A regression model M is trained on Dtrain, using any

regression algorithm A:

M  A(Dtrain)

Step 2. The non-conformity scores Sj are computed for all
(xj , yj) 2 Dcalib, using the non-conformity measure (5).

Step 3. The critical non-conformity q is obtained as de-
scribed above, and a prediction interval

C↵
SCP(xnew) = [ŷnew ± q] = [M(xnew)± q]

is constructed for each xnew in the test data Dtest.

It can be easily observed that a lower value of ↵ results in a
higher value of q and, consequently, wider intervals. More-
over, the efficiency (i.e., narrowness) of the intervals gener-
ated by CP is dependent on the precision of the resulting point
estimator M– the higher (lower) the precision of the estima-
tor, the more (less) efficient the intervals become.

One limitation of this procedure is a lack of adaptivity: The
length of prediction intervals is always the same, namely 2q,
regardless of the query instance xnew. In contrast, one would
intuitively expect that the width of an interval is adapted to the
“difficulty” of the prediction. One way to tackle this problem
is to modify the non-conformity measure to account for the
difficulty of the data points (J. Lei et al., 2018). For example,
a normalized non-conformity measure can be defined as

Sj =
|yj � ŷj |
�(xj)

(7)

for calibration data (xj , yj) 2 Dcalib, where � is another re-
gression model trained on {(xi, |yi� ŷi|) : (xi, yi) 2 Dtrain}.
Given q as the d(1 + |Dcalib|)(1 � ↵)e smallest value of the
normalized non-conformity scores, the prediction interval at
xnew is formed as

⇥
ŷnew ± q�(xnew)

⇤
. (8)

In the following section, we introduce another approach that
achieves adaptivity in a different way.

3.2. Conformalized Quantile Regression Framework

The general procedure of the CQR approach is similar to SCP
except for the choice of the regression algorithm and the non-
conformity measure. Conventional regression algorithms es-
timate the conditional mean of the response variable given
its features (i.e., E[Y |X = x]). In ⌧�quantile regression,
on the other hand, we are interested in estimating a condi-
tional quantile of the response variable given its features (i.e.,
Q⌧ (Y |X = x)1). This can be accomplished by training a
regression model on a specific loss function, the pinball loss,

1Q⌧ (Y |X = x) := inf{y 2 R : F (y|X = x) � ⌧} where F (y|X =
x) := P

�
Y  y|X = x

�
is the conditional distribution of Y given X = x.
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which is defined as follows:

PL⌧ (y, ŷ) :=

(
⌧(y � ŷ) if y > ŷ

(1� ⌧)(ŷ � y) otherwise
. (9)

The procedure of CQR is as follows:

Step 1. Two quantile regression models are fitted on Dtrain
using any quantile regression algorithm A, one with
⌧low = ↵ and the other one with ⌧high = 1� ↵:

Q̂⌧low , Q̂⌧high  A(Dtrain)

Step 2. For measuring the non-conformity, the following
scoring function is used:

Sj = max
�
Q̂⌧low(xj)� yj , yj � Q̂⌧high(xj)

 
. (10)

Step 3. Let q be the d(1+ |Dcalib|)(1�↵)e smallest value of
the non-conformity scores on the calibration data. The
prediction interval for a new test instance xnew is then
constructed as follows:

C↵
CQR(xnew) =

⇥
Q̂⌧low(xnew)� q, Q̂⌧high(xnew) + q

⇤
.

(11)

The scoring function (10) has meaningful properties: The
score is positive if the actual response variable yj is out-
side the interval [Q̂⌧low(xj), Q̂⌧high(xj)], accounting undercov-
erage; otherwise, if yj is covered by [Q̂⌧low(xj), Q̂⌧high(xj)],
the score is non-positive, thereby handling the overcoverage
problem (Romano et al., 2019). Furthermore, the length of
C↵

CQR(xnew) varies with xnew, which represents adaptivity. It
is proved in (Romano et al., 2019, Theorem 1) that under the
exchangeability assumption of the data points in Dcalib[Dtest,
the intervals given in (11) satisfy the coverage property (4).

3.3. Non-exchangeable Split Conformal Prediction

The coverage property of CP, namely,

P
✓
ynew 2 C↵(xnew)

◆
� 1� ↵,

is guaranteed under relatively mild technical assumptions
(J. Lei et al., 2018). One important assumption that needs to
be satisfied, however, is the exchangeability of the underlying
data-generating process.

Assumption 1 (Exchangeability). Random variables

V1, V2, . . . , Vm are called exchangeable if their joint dis-

tribution does not depend on their order:

P(V1, V2, . . . , Vm) = P(V⇡(1), V⇡(2), . . . , V⇡(m))

for any permutation ⇡ : [m]! [m].

In the case of conformal prediction, the random variables of

interest include the data vj = (xj , yj) in the calibration data
Dcalib and the new test case vnew = (xnew, ynew).

Exchangeability is weaker than the common assumption of
independent and identically distributed (i.i.d.) data, i.e., the
former implies the latter but not the other way around. Nev-
ertheless, in the case of data with a temporal component,
even exchangeability will probably be violated. In the fol-
lowing, we describe a method proposed by (Barber et al.,
2022), which modifies the SCP framework to give valid in-
tervals even when the exchangeability assumption does not
hold.

Consider a new data point (xnew, ynew) in the test set and as-
sume that data points in Dcalib [ {(xnew, ynew)} are not ex-
changeable. Suppose we have an idea about the underly-
ing similarity between the distributions of (xnew, ynew) and
the points in Dcalib. In that case, we can assign weights
wj 2 [0, 1] for every (xj , yj) in Dcalib, with higher weights
indicating higher similarity. For instance, consider a time
series (x1, y1), (x2, y2), . . . , (xt, yt), (xt+1, yt+1) , with the
first t points being the calibration data and (xt+1, yt+1) the
test point. It would then be natural to choose weights w1 
w2  . . .  wt such that the more recent data points have
greater weights than the less recent ones.

Given calibration data (xj , yj) 2 Dcalib with non-conformity
scores Sj according to (5) and weights wj , we define normal-
ized weights

w̃j =
wj

1 +
P

j2Dcalib
wj

. (12)

These normalized weights can be used to modify the empiri-
cal distribution of non-conformity scores as follows:

X

(xj ,yj)2Dcalib

w̃j�Sj + w̃+1�+1 , (13)

with �x being the point mass at x, and

w̃+1 =
1

1 +
P

j2Dcalib
wj

.

The procedure of nex-SCP is similar to SCP except for the
last step. This time, q(xnew) needs to be calculated for ev-
ery (xnew, ynew) 2 Dtest separately and is defined as the (1 �
↵)-quantile of the empirical distribution of non-conformity
scores given in (13). Accordingly, the prediction interval at
xnew is constructed as follows:

C↵
nex-SCP(xnew) =

⇥
ŷnew � q(xnew), ŷnew + q(xnew)

⇤
. (14)

Without the assumption of exchangeability, the level of cov-
erage that can be guaranteed is reduced compared to the
exchangeable case; we refer to (Barber et al., 2022, Theo-
rem 2a) for more details on the theoretical properties of this
method.
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4. EXPERIMENTS

The main focus of this paper is on the CP algorithms and
how to conformalize any single-point RUL estimator, turn-
ing it into a reliable interval predictor. For this purpose, we
employ two existing single-point RUL estimators, Deep Con-
volutional Neural Networks (DCNN) and Gradient Boost-
ing (GB), and conformalize them using SCP, SCP with nor-
malized non-conformity measure (SCP+NNM), nex-SCP,
nex-SCP with normalized non-conformity measure (nex-

SCP+NNM), and CQR. Our implementation code is publicly
available on GitHub2 to enable the reproducibility of the pre-
sented results.

4.1. C-MAPSS Data

C-MAPSS is a software written in the MATLAB-Simulink
environment, which is capable of simulating a large com-
mercial turbofan engine with various tunable input parame-
ters to specify numerous operational profiles, environmental
conditions, initial wear degrees, degradations, etc. (Saxena,
Goebel, Simon, & Eklund, 2008) ran this simulation envi-
ronment multiple times with different parameter values while
collecting noisy data from many units, including twenty-one
sensor measurements and three operational settings. They
provided four datasets of multivariate time series, where each
dataset consists of a training and a test set. At the beginning
of each time series, the engine operates normally, and at a ran-
dom point during the series, it starts to degrade. For training
sets, a time series terminates when the engine failure occurs,
and the RUL at each time step is defined as the number of
time steps left until the end of the series. For the test sets,
a series ends at a random time before the failure, while the
actual RUL for its last time step is provided.

4.1.1. Data Preprocessing

The details of the four datasets of C-MAPSS are provided in
Table 1. For datasets #1 and #3, where the operating con-
ditions do not vary with time (stationary cases), we employ
a min-max scaler to map the sensor measurements into the
range of [�1, 1]. On the other hand, for datasets #2 and #4,
the operating conditions alter between 6 different operating
modes (nonstationary cases). However, the information on
engines’ operating conditions is only available through three
continuous-valued columns in the data – operational settings
1 to 3. To transform these continuous values into discrete
operating modes, we used the K-means clustering algorithm
with K = 6. Furthermore, to reduce the effect of nonstation-
ary operating conditions from the sensor measurements, we
used six separate min-max scalers (with the range [�1, 1]) to
normalize sensor measurements within each operating mode.
This technique can only be utilized when the learner has ac-

2
https://github.com/alireza-javanmardi/conformal

-RUL-intervals

Table 1. Description of the four C-MAPSS datasets.

Dataset # 1 # 2 # 3 # 4

# Training instances 100 260 100 249
# Test instances 100 259 100 248
# Operating conditions 1 6 1 6
# Fault modes 1 1 2 2

cess to the operating conditions and the number of operating
modes is finite and known beforehand. If any of the condi-
tions are violated, this approach is no longer applicable in its
present form.

Moreover, seven of the twenty-one sensor measurements have
zero (or close to zero) variances and provide no useful in-
formation. Hence, we remove these seven sensors with the
indices 1, 5, 6, 10, 16, 18, and 19.

A piecewise linear definition of RUL labels (aka rectified la-
bels) exists for C-MAPSS datasets that limits the maximum
value of the RUL (Heimes, 2008). These rectified labels can
be easily defined by modifying (1) as follows:

y(i)t = max

✓
RULmax, Fi � t

◆
(15)

for all i and t 2 [Ti], where RULmax is a fixed value cho-
sen on the basis of the observations. The intuition behind this
definition is that the system’s degradation begins after a cer-
tain degree of usage. Similar to (Li et al., 2018), we also set
RULmax to 125 for all four datasets.

4.2. Learning Algorithms

The following single-point RUL estimators are used in our
experiments:

• Deep Convolutional Neural Networks (DCNN) proposed
by (Li et al., 2018): For this method, the original datasets
are transferred using the windowing technique to be in
the form of (3). The window lengths are set to be 30, 20,
30, and 15 for the datasets #1 to #4, respectively. During
test time, we only use one data point corresponding to
the last recorded cycle for each engine unit.
We use the same architecture and parameters as in (Li et
al., 2018). The network is constructed by stacking four
identical convolution layers, each with ten filters of size
10⇥1, followed by another convolution layer with a sin-
gle filter of size 3 ⇥ 1, a Flatten layer, a fully connected
layer with 100 neurons, and a single neuron that outputs
the RUL estimation. Zero-padding is used in convolu-
tional layers to keep the data dimension unchanged. Ex-
cept for the last single neuron that uses a linear activation
function, the others use tanh. In order to prevent overfit-
ting, the Dropout technique with the rate of 0.5 is used
right after the Flatten layer. The Adam optimizer is used
for minimizing the mean squared error (MSE) as a loss
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function. Different from (Li et al., 2018), for the CQR
framework, we replace the MSE loss with the pinball loss
function to obtain quantiles, as explained in Section 3.2.
Models are trained for 250 epochs with a batch size of
512 samples. The learning rate is set to 0.001 for the first
200 epochs and 0.0001 for the last 50.

• Gradient Boosting (GB): The transformed datasets are in
the form of (2), e.g., the collection of all condition mon-
itoring data from all instances and their corresponding
rectified RULs. Once again, only one data point corre-
sponding to the last recorded cycle for each engine unit
is used at test time.
The default setting of the HistGradientBoostin-
gRegressor from scikit-learn (Pedregosa et al., 2011)
is adopted for training the model(s). Like in the case of
DCNN, the MSE loss function is replaced by the pinball
loss for quantile regression in the CQR framework.

4.3. Results and Discussion

For each of the C-MAPSS datasets and each learning algo-
rithm, we first divide the training data into (proper) training
and calibration sets such that the data points from the same
engine unit end in the same subset. The proportion of the
data to be included in the calibration set is fixed at 10%.
Using the learning algorithm, we train a regression model
and eight quantile regression models for the quantile set
{0.10, 0.15, 0.20, 0.25, 0.75, 0.80, 0.85, 0.90}. This way, we
are able to perform conformal prediction using multiple mis-
coverage rates {0.10, 0.15, 0.20, 0.25}. For CP frameworks
with normalized non-conformity measure (i.e., SCP+NNM
and nex-SCP+NNM), we realize � by training a Random
Forest regressor using the default setting of the scikit-learn
for RandomForestRegressor. For non-exchangeable
methods (i.e., nex-SCP and nex-SCP+NNM), we define the
set of weights for every data point (xnew, ynew) in the test set
as

wj = 0.99|t(ynew)�t(yj)| ,

8(xj , yj) 2 Dcalib, where t(y) denotes the time index of
recording y (Barber et al., 2022).

Figure 2 illustrates the prediction intervals with ↵ = 0.1 for
the test units of C-MAPSS dataset #1. By looking at the
dashed lines of this figure, one can realize that single-point
RUL predictions get more accurate for data points closer to
failure times3. Hence, these data points can be considered
easier than those with actual RULs far from zero, and we can
expect to observe shorter prediction intervals for them, which
is exactly how adaptive methods should behave. Moreover,
since DCNN works better than GB in terms of single-point

3The 0.5�quantile regression model (aka median regression) is used as the
single-point RUL estimator in the CQR framework.

prediction preciseness, its prediction intervals are also shorter
on average.

We run the experiments with 15 random train-calibration
splits for each C-MAPSS dataset and each learning algorithm.
In Figure 3, the average coverages and interval widths are
shown for all four datasets using DCNN as the underlying
learning model. Similar results are provided in Figure 4 when
GB is the learning model. The horizontal dashed lines indi-
cate the nominal coverage levels (i.e., 0.75, 0.80, 0.85, and
0.90). On average, non-exchangeable frameworks outper-
form other frameworks in terms of average coverages, while
CQR has the best performance in terms of average interval
widths. As expected, the average interval widths decrease as
the miscoverage rate increases. Using the normalized non-
conformity measure often improves the results, especially for
nonstationary cases.

It should be noted that the coverage guarantee of conformal
prediction is marginal and only holds on average across all
data points. This implies that the coverage might exceed the
expected value in certain regions of RUL while falling below
the expected value in other regions. Therefore, we cannot
draw any conclusions about the validity of the prediction in-
tervals at different regions of RUL.

5. CONCLUSION

This paper makes the conformal prediction framework
amenable to the remaining useful lifetime estimation prob-
lem. This allows for specifying the uncertainty of RUL
predictions by constructing prediction intervals that include
the actual value with a user-defined probability. We reviewed
some of the existing CP frameworks and showed how to turn
any single-point RUL estimator into an interval predictor.
Using deep convolutional neural networks and gradient-
boosting algorithms as underlying regression models, we
confirmed the validity and evaluated the effectiveness of CP
frameworks on the popular C-MAPSS datasets.

Needless to say, there is still scope for improvement. First,
the performance of conformal prediction heavily depends on
the precision of the underlying single-point predictor. In-
deed, a more precise model results in lower errors on calibra-
tion data and, accordingly, a smaller quantile q. This results
in shorter prediction intervals while satisfying the coverage
property under the exchangeability assumption. Therefore,
it is always beneficial to increase the accuracy of regression
models for the RUL estimation problem. Moreover, there
is also still room for developing better conformal prediction
methods for the non-exchangeable case or even a framework
specifically tailored to the RUL estimation problem.
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(a) DCNN (b) GB

Figure 2. Sorted RUL labels of test instances of dataset #1 with their predicted intervals from five CP methods.
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(a) dataset #1.

(b) dataset #2.

(c) dataset #3.

(d) dataset #4.

Figure 3. Average coverage and average prediction interval width of different CP frameworks for C-MAPSS datasets, using
DCNN as the underlying regression model.
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(a) dataset #1.

(b) dataset #2.

(c) dataset #3.

(d) dataset #4.

Figure 4. Average coverage and average prediction interval width of different CP frameworks for C-MAPSS datasets, using
GB as the underlying regression model.
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