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ABSTRACT 

From automobile manufacturers perspective, reduction of 
warranty cost leads to less expenditures, which then yields 
higher profits. Thus, it is crucial to leverage the available 
methods and tools to achieve such outcome. Connected 
vehicle data is one critical resource that can be a 
gamechanger, reducing the associated costs and improving 
the business profitability. This project uses Mode06 
connected vehicle data along with contextual data to early 
detect EVAP and purge monitors anomalies, yielding 
proactive fix of the detected issue through software (SW) 
and/or hardware (HW) upgrades (preventive maintenance 
and system quality improvement). Root cause analysis, 
which can be developed based on the anomaly detection 
outcomes and which is not within the scope of this paper, 
allows diagnostics of HW and/or SW related issues in a 
timely manner and eventually be prepared ahead of time for 
system failures. In this paper, statistics-based early anomaly 
detection models, based on vehicle data and fleet data, are 
developed. The proposed solution is a generic tool that 
doesn’t make assumptions on data distribution and can be 
adapted to other systems by tweaking mainly the data 
cleaning process. It also incorporates specific system 
definitions of abnormal behavior, which makes it more 
accurate compared to conventional anomaly detection tools, 
which are mainly affected by the imbalanced data and the 
EVAP and purge definition of an anomaly. When deployed 
with field data, the algorithm showed higher performance, 
compared to popular anomaly detection techniques, and 
proved that failures can be prevented through detection of 
the anomalies several weeks/miles before the actual fail. 

1. INTRODUCTION 

The condition of the EVAP system (Evaporative Emission 
Control System) is critical not only for gas engine-vehicles’ 
performance, but also for environment. It is also one main 
source of warranty costs (İbrahim, Altinişik, & Keskin, 
2015). The current procedure for repair and improvement of 
emission control system software and hardware is based on 
a corrective maintenance. An example is the monitoring of 
Diagnostic Trouble Code (DTC) rate for a given fleet. 
Consequently. the SW calibrations may be revised if the rate 
is alarming (i.e, higher than historical rate). Another 
example is the review of warranty claims to determine the 
main failure modes and assess the current performance of 
the designed system and the need for updates.  

The problem with such approaches is the delayed actions 
aiming to deal with the observed failures or to improve the 
system performance. In fact, an action based on higher 
failure rate means that the issue has been already propagated 
and that it affected a portion of the monitored population, 
which means higher warranty cost and lower level of 
customer satisfaction. 

In this paper, another approach is proposed to deal with 
emission control system performance by leveraging 
connected vehicle data. The approach is based on anomalies 
early detection, allowing to act proactively to improve the 
system before failure (preventive maintenance), which will 
then yield a reduction of the failure propagation rate. For 
example, a software over the air update (OTA) can be 
executed for vehicles with no sign of failure, based on early 
anomalies trends. Such OTA update allows avoidance of 
customer visits to dealership which will reduce warranty 
cost and improve customer experience/satisfaction. Another 
example is hardware improvement involving identification 
of specific parts as the failure root cause. Subsequently, the 
identified parts will be replaced during Job 2 phase based on 
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detected anomalies from Job 1 vehicles (Job 1 refers to the 
initial production of a given vehicle model year, while Job 2 
is related to the mid-model year production with updates). 

The designed early anomaly detection method processes 
emission system’s on-board monitoring tests results to 
develop a data-driven statistical model, which outputs a 
threshold to determine whether a test result is an anomaly or 
a healthy outcome. To this end, a fleet data-based model and 
a vehicle data-based model are introduced. The two models’ 
development flowcharts include data cleaning and pre-
processing using test specificities and feedback from the 
subject matter experts (SMEs). Next, cleaned data is 
filtered, using the Chebyshev filter, to remove noise which 
can affect anomaly detection performance and increase false 
positives and false negatives rates. Lastly, anomaly 
threshold is calculated based on the pre-processed data 
distribution and predefined upper and lower threshold 
limits. An anomaly score is then determined for the test 
results that exceed the deduced threshold, which 
consequently helps confirm or reject the anomaly (false 
positive/True positive). As a continuation of this effort, and 
for the detected anomalies with higher score, corresponding 
trip data might be investigated to understand the anomaly 
context and remove any false positives. Warranty data and 
software calibration versions might be also analyzed to 
assess the test performance and whether the anomalies are 
real or false positives. 

One advantage of the above approach for anomaly detection 
is that it is designed in a generic fashion since it doesn’t 
require a specific data distribution for the anomaly detection 
task. Algorithm tuning is required though, to adapt the data 
cleaning step to the monitored system. In addition, one 
challenge with EVAP and purge data is that data density-
based anomaly detection methods (and similar methods) 
assume that an anomaly is any point “away from the main 
cluster(s)” which represents the normal response of the 
system. Such assumption leads to high number of false 
positives given that the EVAP and purge tests of interest fail 
in one direction above/below a given test result threshold. 
Meanwhile, the proposed data-statistics based method is not 
affected. It is also robust to imbalanced data, which is 
another main characteristic of EVAP and purge system’s 
tests results. Those observations are detailed in Section 3.1 
of this paper.  

This paper is divided into 5 sections. In section 2, an 
overview of EVAP and purge monitors is presented. Section 
3 is dedicated to the description of the early anomaly 
detection methods. Outcomes of the developed methods are 
then discussed in Section 4. Finally, key findings and future 
work are discussed in Section 5. 

2. EVAP-PURGE MONITORS 

The Evaporative Emission Control System (EVAP) is a 
critical part of vehicles with gas engine. As its name 

suggests, the main function of this system is to control gases 
emissions to the atmosphere.  

During key-off periods, fuel vapors are contained within the 
fuel system, and stored in the carbon canister thus 
preventing them to escape to the atmosphere. During trip 
time, vapor stored in the charcoal canister are purged 
through the canister purge valve (CPV) to the intake 
manifold. 

Since gasoline vapors’ emissions control function is critical, 
monitors were developed to make sure that the system is 
efficient and that the vehicle is not polluting the 
environment as required by the regulations. One of the 
deployed monitors is EVAP monitor, which assesses 
whether the fuel system, illustrated in Figure 1, is leaking 
fuel vapor above the regulated leak size. Several tests are 
executed including small leak test (key-off leak size less 
than 0.02”) and medium leak test (key-on leak size is less 
then 0.04”). 

 
Figure 1: EVAP System Schematics 

On the other hand, purge monitor’s tests measure the 
integrity of the different fuel system components that are 
controlling fuel vapor purging function to the intake 
manifold. Leaky CPV is one of the purge monitor tests 
insuring that CPV is not purging when it is closed.    

Tests results, comprise test value (depending on the test, it 
could be pressure measurements, slope or ratio among 
others). Minimum threshold and maximum threshold are 
also part of the test results, which are reported as a test 
output and stored within the mode06 report (On-Board 
diagnostics reported tests results). Based on the reported 
data, test is labeled as a pass or a fail and corresponding 
diagnostic trouble codes (DTC) might be set along with the 
malfunction indicator light (MIL) depending on the 
corresponding requirements.  

3. ANOMALY EARLY DETECTION PROCEDURE 

Anomaly detection is used to capture trends toward failure, 
lower performance and other key indicators yielding a pro-
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active monitoring in terms of applying corrective actions 
and reducing maintenance and warranty costs.  

Several techniques have been introduced for anomaly 
detection. Statistics-based methods can be used to determine 
abnormal regions, such as multivariate normal distribution-
based analysis, Gaussian mixture model and box plot 
(Lauer, 2001). Another approach is to use supervised 
techniques, which require labeled data for model training 
purposes. Decision trees, Support vector machines (SVM) 
and naïve Bayes are among the most popular supervised 
techniques for anomaly detection. The main advantage of 
decision trees is its simplicity, while it requires large 
storage. SVM can be generalized to different use cases. 
However, its interpretability is not straightforward in 
addition to challenges related to optimal kernel selection. 
Naïve Bayes is known for its simplicity of implementation 
and its lower requirement for training samples. Its main 
disadvantage is that it handles the different features 
independently, and thus, cannot capture the inter-
dependence of the features of concern (Agrawal & Agrawal, 
2015) (Al-Garadi, et al., 2020). Semi-supervised methods 
have been developed to take advantage of both supervised 
and unsupervised algorithms. Multi-Layered Clustering 
(MLC) approach and Extreme Learning Machine (ELM) are 
two well-known semi-supervised techniques. One major 
challenge with such approaches is that they don’t provide 
the same detection accuracy that is achieved by supervised 
machine learning (Al-Garadi, et al., 2020). For our specific 
use case, implementation of the aforementioned supervised 
and semi-supervised techniques is challenging due to the 
lack of labeled field data.  

With regard to unsupervised techniques, K-means, Principal 
Component Analysis (PCA) and Density-Based Spatial 
Clustering of Applications with Noise (DBSCAN) are 
widely used unsupervised tools for data clustering. K-means 
generates K clusters with no need for labeled data, while is 
reported to be less effective than supervised techniques for 
anomaly detection based on previous studies (Zarpelão, 
Rodrigo, Cláudio, & Sean, 2017). PCA reduces the number 
of correlated features helping to reduce classification 
complexity. Meanwhile, it requires additional machine 
learning techniques to perform the clustering task. As for 
DBSCAN algorithm, and similar to the other unsupervised 
clustering methods, a common issue is that it is not 
optimized to detect the anomalies since the main goal is to 
define clusters. 

In this paper, the retained early anomaly detection method is 
a data-driven solution deploying statistical analysis to label 
the test result as either healthy, anomalous or failure. The 
method details and performance, compared to the above 
techniques, are illustrated in the subsequent sections. 

The first step for anomaly detection, using the proposed 
method, is data pre-processing to ensure that the consumed 
data is of good quality. Filters are considered to clean the 

data ranging from test specific filters, based on expected 
data range, to generic filters like data redundancy removal. 
Removing redundancy, and alike issues, is of particular 
importance to the anomaly detection method since 
redundancy for instance may skew the data and affect the 
distribution which consequently affects the model outcomes.  

Once the data is cleaned, test output is normalized for the 
early detection algorithm to be modular and applicable for 
any use case regardless of the test specificities. The main 
variable used for anomaly detection is the normalized test 
result (TestResult), which is the ratio of the test value 
(TestValue) divided by the corresponding threshold, which 
could be either the minimum threshold (ThreshMin), 
maximum threshold (ThreshMax) or both.  

Two approaches can be adopted for early anomaly 
detection, by leveraging either the vehicle data or the fleet 
data. To take advantage of both methods, a hybrid model is 
retained. This choice is justified by the fact that each 
method has strengths which may not be the case for the 
other approach as explained in Table 1.  

Challenge Analysis using 
fleet data 

Analysis using 
vehicle data 

Low number of 
tests per vehicle 

X  

Detection during 
training phase 

X  

Vehicle/Anomaly 
specificities 

 X 

Lower number of 
false positives 

X  

Anomaly speed of 
detection 

 X 

Table 1: Early anomaly detection approaches 

The model is hybrid in terms of results analysis and root 
cause analysis (which is an extension of the present work 
and not within the scope of this paper). In one example, 
using both approaches and based on the anomalies’ scores, 
the end user would have a better understanding of one 
particular vehicle performance through analysis of its own 
data in addition to the related fleet performance. Such 
analysis should help confirm an issue specific to the vehicle 
of concern or rule it out by observing a similar issue on the 
fleet level for instance. In another example, at early stages 
of data collection, vehicle data-based model might not be 
able to generate accurate anomaly thresholds because of 
lack of data readings. Fleet data should be used instead. 

The novelty of the proposed anomaly detection method is 
the design of a workflow allowing to leverage the EVAP 
and purge monitors tests’ results to assess the condition of 
the system components ahead of the failure event 
(preventive maintenance). The workflow is designed in a 
generic fashion which yields a framework applicable for 
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other monitors and systems, provided it is tweaked to 
account for the system specificities. 

Moreover, one challenge with Purge and EVAP monitors 
test results’ anomaly detection, is the distribution of the 
data, which is not normal in many cases. Also, data analysis 
revealed that the data wrangling and anomaly detection 
method for fleet data, doesn’t yield reliable results at vehicle 
level. Two different workflows are then considered for each 
scenario.  

Both fleet data driven model and vehicle data driven model 
use normalized test values (TestResult) to perform the 
anomaly detection task as illustrated in the below sections.  

3.1. Vehicle Data-Based Model 

This model aims to develop an anomaly threshold which 
depends on the vehicle data allowing to take into account 
the specificities of the vehicle equipment and the inside and 
outside conditions. It also allows to implement the model in 
the powertrain control module (PCM) if needed since it only 
requires vehicle data not fleet data. The first step of the 
model is to remove noise in order to calculate the anomaly 
thresholds accurately. Removed data points are reconsidered 
at a later stage when labeling the data. This first step is 
executed whenever a new data is collected for both training 
and test phases as will be discussed later. A Chebyshev 
filter, as illustrated in (Godwin, 1955), is used for noise 
removal and it is based on Chebyshev inequality as shown 
in Eq. (1). 

𝑃(𝑋 > 𝑀𝑒𝑎𝑛 + 𝑘 ∗ 𝑆𝐷 𝑜𝑟 𝑋 < 𝑀𝑒𝑎𝑛 − 𝑘 ∗ 𝑆𝐷 ) ≤
1

𝑘ଶ (1) 

In Eq. (1), Mean and SD are respectively the average and 
standard deviation of the considered dataset, k is a 
calibratable factor which is set to 10 meaning that the 
likelihood, P, of a point to be outside Mean±k*SD is less 
than 1%. An anomaly limit (ThreshSME) is used to control 
the filter outputs. This limit is set based on expected test 
results and recommendations from the SMEs.  

The resultant filtering thresholds are defined as below. 

𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 = min(𝑇ℎ𝑟𝑒𝑠ℎௌொ, 𝑀𝑒𝑎𝑛 + 𝑘 ∗ 𝑆𝐷) 

𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑௪ = max(𝑇ℎ𝑟𝑒𝑠ℎௌொ, 𝑀𝑒𝑎𝑛 − 𝑘 ∗ 𝑆𝐷) 
(2) 

In Eq. (2), min and max refer respectively to the minimum 
and maximum operators. Any point above ThresholdUp or 
below ThresholdDown is considered part of the noisy data and 
is subsequently removed. 

The effect of the Chebyshev filter is shown in Figure 2, 
where k-means is used for data clustering using data before 
applying the filter (bottom figure) and after applying the 
filter (top figure). The shown data represents the small leak 
test output (i.e TestResult), which is the normalized test 
value as explained previously. Features scaling is done 
using the z-score normalization, to ensure that the two 

variables have comparable “contributions” when running 
the classification algorithm.  

Knowing that the failure and anomaly regions are dependent 
mainly on the test result value, data clustering is expected to 
separate regions horizontally. From Figure 2, it is clear that, 
with the filter applied (figure on the top side), the clustering 
makes more sense, through removal of higher test results 
(noise), which are healthy and don’t add much information 
to the analysis.  

 
Figure 2: Chebyshev Filter Effect on Data Clustering 

Once noise is removed, anomaly thresholds are then 
determined through a training phase using a calibratable 
number of initial test points (NTrain) and are updated each N 
miles. Two approaches are considered to calculate the 
thresholds: The Individual and Moving Range (I-MR) charts 
and the Box plot technique. 

I-MR charts is a Statistical Process Control (SPC) method 
applied on vehicle data (i.e process data). It is an anomaly 
detection technique which includes a moving range (MR) 
chart for data cleaning and an individual I-chart for anomaly 
detection (Wheeler, 1995). Data normality is not required. 
The process includes dismissal of data outside a “normal” 
moving range limit (UCLMR) derived from the training 
dataset. 

𝑈𝐶𝐿ெோ = 3.72 ∗
∑ |𝑋(𝑖) − 𝑋(𝑖 − 1)|ேೝೌ

ୀଵ
𝑁்

 (3) 
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where X(i) the ith point of the train dataset arranged in a 
chronological order. Any point above UCLMR is considered 
abnormal and is dismissed from the anomaly threshold 
calculations in the I-chart as in Eq. (4). 

𝑈𝐶𝐿ூெோ_ = min(𝑇ℎ𝑟𝑒𝑠ℎௌொ, 𝑀𝑒𝑎𝑛ூெோ + 3 ∗ 𝑆𝐷ூெோ) 

𝑈𝐶𝐿ூெோ_௪ = 𝑚𝑎𝑥 (𝑇ℎ𝑟𝑒𝑠ℎௌொ, 𝑀𝑒𝑎𝑛ூெோ − 3 ∗ 𝑆𝐷ூெோ) 
(4) 

where 𝑀𝑒𝑎𝑛ூெோ =
∑ ()ಿೝೌ

సభ
ேೝೌ

 and 

𝑆𝐷ூெோ = 0.88 ∗
∑ |𝑋(𝑖) − 𝑋(𝑖 − 1)|ேೝೌ

ୀଵ
𝑁்

 

The EVAP and purge tests of interest could be upward or 
downward tests. An upward test trends upward when failing 
(meaning that the failure threshold is above the anomaly 
threshold). In contrast, a downward test trends downward 
when failing (meaning that the failure threshold is below the 
anomaly threshold). In Eq. (4), and for an upward test, if 
TestResult is above UCLIMR_Up, then data is labeled as 
anomaly. As for a downward test, if TestResult is below 
UCLIMR_Down, then data is labeled as anomaly. 

As shown in Eq. (4), I-MR chart deploys a non-
conventional formula for the standard deviation which is 
more robust to non-normality of data distribution. The 
formula is based on absolute moving range rather than the 
square of the distance from the mean, reducing then the 
impact of non-normal distributions. 

It is worth mentioning that the 3*SDIMR term is not derived 
based on data distribution assumption. It is rather based on 
experience (i.e empirical limits not probability limits) as 
shown in references (Shewhart, 1931) and (Wheeler, 1995), 
where Shewhart and Wheeler suggest that the vast majority 
of data for any SPC related distribution is within 
MeanIMR+/-3* SDIMR.  

Table 2 shows an investigation of the above assumption, 
using field data to prove the accuracy of this rule.  

Test Vehicle Test 
Data Count 

Points Outside 
Mean+/-3*SD 

Small leak test 1,961 0.48% 
Medium leak test 1,449 0.97% 

Table 2: IM-R Chart Assumption Verification 

I-MR charts is the default method for thresholds 
calculations since it is a well-established technique for 
statistical process monitoring. Meanwhile, it is observed 
that I-MR chart behaves poorly when data is scattered. A 
Quartile coefficient of dispersion (QCD) is then used to 
determine the dataset level of dispersion. QCD is defined as 
in Eq. (5). 

𝑄𝐶𝐷 =
𝑄ଷ − 𝑄ଵ

𝑄ଷ + 𝑄ଵ
 (5) 

𝑄ଵ =  𝑀𝑒𝑑𝑖𝑎𝑛 [𝑋ெ … 𝑋ௌ] 
𝑄ଷ =  𝑀𝑒𝑑𝑖𝑎𝑛 [𝑋ௌ … 𝑋ெ௫] 

Q1 and Q3 are the first and third quartiles, defined in Eq. (5) 
for a given ordered dataset (𝑋)ୀଵ→ெ , where X1 is the 
lowest value and XM is the highest value. 

A large QCD means that the data is dispersed. A threshold, 
λ, is defined in a way that if QCD is higher than λ, dataset is 
dispersed, and box plot is applied. If not, I-MR charts are 
considered. 

The reason for choosing box plot is its robustness to data 
distribution and data dispersion. The robustness is the result 
of the percentile calculation, used by box plot to determine 
the anomalies. In fact, an anomaly is located outside the 
25th percentile to the 75th percentile of data, where 
interquartile (IQR) is used to define the anomaly limits as 
below.  

𝐼𝑄𝑅 = 𝑄ଷ − 𝑄ଵ 

𝑈𝐶𝐿௫_ = min (𝑇ℎ𝑟𝑒𝑠ℎ𝑆𝑀𝐸, 𝑄ଷ + 𝐼𝑄𝑅) 

𝑈𝐶𝐿௫_௪ = 𝑚𝑎𝑥 (𝑇ℎ𝑟𝑒𝑠ℎ𝑆𝑀𝐸, 𝑄ଵ − 𝐼𝑄𝑅) 

(6) 

The box plot technique is chosen based on a comparison 
with other popular unsupervised anomaly detection 
techniques. In Table 3 is illustrated the performance metrics 
for several anomaly detection methods, using fleet data for 
the EVAP small leak test. The unsupervised models are 
trained with unlabeled data. Models’ metrics are derived 
using labeled data. The data labeling procedure considers 
upper and lower thresholds provided by the SMEs based on 
their experience and expectations. Considering that, for the 
small leak test, failures are test results that are below the 
DTC threshold, a healthy data is defined as any test result 
above the lower warning limit and an anomaly is defined as 
any test result below the upper warning limit. The region 
between the lower and upper limits is where the early 
anomaly detection algorithm will help provide more insights 
as there is no clear information about the correct data 
condition. Figure 3 illustrates the different thresholds for the 
small leak test, based on the Test Result value (i.e 
normalized test value using the associated test thresholds). 
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Figure 3: Small Leak Test Performance Regions 

To conclude, models training is done using data from the 
different regions in Figure 3. Meanwhile, yellow region data 
is excluded when performing models testing since data 
labeling can’t be accurately done. Features scaling, using 
the z-score normalization, is performed on data ingested by 
DBSCAN, k-means and One-class SVM. This ensures that 
the two considered features’ contributions (test result and 
odometer) have similar weights when running the 
classification methods. Data statistics-based methods don’t 
require features scaling since only one feature is considered 
(i.e Test result). 

Method Accuracy Precision Recall 
Mean+/-3*SD 0.99 1 0.89 
DBSCAN 0.004 0.98 0.003 
K-means 0.68 0.19 0.002 
One-Class SVM 0.003 0.98 0.003 
Box Plot 0.99 1 0.96 

Table 3: Anomaly Detection Techniques Performance 

For the EVAP and purge tests of interest, the definition of 
an anomaly is not solely based on data density/clusters. 
Hence, and considering that DBSCAN and one-Class SVM 
methods rely essentially on data clustering for anomaly 
detection, false positive and false negative rates are 
expected to be higher than other use cases.  

One challenge with the EVAP data is that it is imbalanced, 
meaning that healthy data is the majority class while 
anomalies and failures is the minority class. Considering the 
aforementioned labeling strategy for a given fleet of 

vehicles, 99.6% of the data is healthy while only 0.4% of 
the data are anomalies/failures. Such distribution yields a 
model which is trained heavily on healthy data, while poorly 
trained on unhealthy data, which would affect the model 
accuracy to predict anomalies. As shown in Table 3, data 
imbalance is severely affecting data density-based methods’ 
accuracy, while having no effect on data-statistics based 
methods. The relatively better performance of k-means 
method is due to the fact that it requires the number of 
clusters as an input, which helped improve the classification 
accuracy. 

Another challenge, that data-density based methods struggle 
with, is the fact that outliers are expected to have a separate 
cluster. In the present case study, anomalies represent the 
minority class, which could be then interpreted as noise. A 
trial-and-error process was required aiming for DBSCAN to 
define a cluster for the outliers. Meanwhile, the optimal 
parameters still define a portion of the outliers as noise, 
which explains the poor performance of the algorithm. 

Based on the overall methods performance in Table 3, Box 
plot and 3*sigma seem to be the best ones to deal with 
anomaly detection for the EVAP monitor tests where data is 
imbalanced and unlabeled. Looking at the Recall metric, 
Box plot does have the best score. An additional advantage 
of data-statistics methods is the computational cost and the 
number of tuning parameters. Meanwhile, it is important to 
mention that data-statistics based methods’ performance is 
related to the specific nature of data distribution for the 
considered system and how an anomaly is defined. Hence, 
for other use cases, box plot might not be the best choice, 
even though its computational cost will always be the 
lowest. 

The above results can be extended to the I-MR charts 
method since it is also a data statistics-based solution. 
Another advantage of using the I-MR chart is that it is a 
well-established method for SPC processes (vehicle test 
result evolution over time) and it doesn’t require normal 
distribution. It is also suitable for reduced data size unlike 
data density-based methods which require a fair amount of 
data to predict the anomaly and healthy clusters accurately. 

Finally, an anomaly scoring method is used to prioritize the 
investigation/root cause analysis (RCA) of detected 
anomalies for the different vehicles of concern. The lower 
the score, the higher the false positive likelihood is and vice-
versa. The anomaly score is based on four factors: 

 Trend: A trending anomaly toward failure increases the 
likelihood of a real positive (versus singularities). 

 Severity: A higher severity leads to higher urgency. 
Severity is defined as the distance from the lower limit 
to the anomaly, normalized by the distance from lower 
limit to Onboard Diagnostics (OBD) threshold. 

 Spikes: The likelihood of false positive is higher for a 
spiky dataset. 
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 Dispersion: Data dispersion increases the likelihood of 
having false positives. 

A convex combination is used to express the anomaly score 
for vehicle Veh and anomaly X(n) at time stamp n, as in Eq. 
(7). 

𝑆𝑐𝑜𝑟𝑒൫𝑋(𝑛)൯

= 𝛼ଵ ∗ 𝑆𝑎𝑡 ቆ
𝑋(𝑛) − 𝐿𝐿
𝑂𝐵𝐷 − 𝐿𝐿

ቇ + 𝛼ଶ ∗ 𝑆𝑎𝑡 ቆ1 −
∆𝑋(𝑛)

2 ∗ 𝑈𝐶𝐿ெோ
ቇ

+ 𝛼ଷ ∗ 𝑆𝑎𝑡 ൬
𝑁்ௗ

𝑁ே
൰ + 𝛼ସ ∗ (1 − 𝑄𝐶𝐷), 

(7) 

where  

 ∆𝑋(𝑛) = |𝑋(𝑛) − 𝑋(𝑛 − 1)| 
 The operator 𝑆𝑎𝑡(𝑌)  is the saturation operator which 

bounds the variable Y between 0 and 1 
 ∑ 𝛼

ସ
ୀଵ = 1 

 LL is the lower warning limit, as in Figure 3  
 OBD is the test failure threshold 

 The factor 2 ∗ 𝑈𝐶𝐿ெோ  keeps ∆𝑋(𝑛)
ଶ∗ ಾೃ

lower than 1 for 
cases where ∆𝑋(𝑖) > 𝑈𝐶𝐿ெோ (outlier in MR chart)  

 NTrend is the number of successive trending points  
 NNorm yields an upper limit to the contribution of NTrend 

to the anomaly score  
Table 4 shows the default weighting factors values. The 
choice of those values is explained by the fact that data gaps 
affect Spikes and Trend factors. To reduce data gaps’ 
impact, the corresponding factors’ weights are reduced.  

𝜶𝟏 
Severity 

𝜶𝟐  
Spikes 

𝜶𝟑  
Trend 

𝜶𝟒  
Dispersion 

0.4 0.1 0.2 0.3 

Table 4 Anomaly Scoring Weighting Factors 

3.2. Fleet Data-Based Model 

In a similar fashion to the vehicle data-based model, the 
fleet data model uses the Chebyshev filter to remove noise 
for mean and standard deviation calculations. Once Nosie is 
removed, the threshold is calculated as in Eq. (8), assuming 
that the data has a normal distribution, for a given fleet of 
vehicles with NFleet observations (XFleet(i)).  

𝑈𝐶𝐿ி௧_ = min(𝑇ℎ𝑟𝑒𝑠ℎௌொ, 𝑀𝑒𝑎𝑛ி௧ + 3 ∗ 𝑆𝐷ி௧) 

𝑈𝐶𝐿ி௧_௪ = 𝑚𝑎𝑥 (𝑇ℎ𝑟𝑒𝑠ℎௌொ, 𝑀𝑒𝑎𝑛ி௧ − 3 ∗ 𝑆𝐷ி௧) 
(8) 

where 𝑀𝑒𝑎𝑛𝐹𝑙𝑒𝑒𝑡 =
∑ ಷ()ಿಷ

సభ
ே𝐹𝑙𝑒𝑒𝑡

 and 

𝑆𝐷𝐹𝑙𝑒𝑒𝑡 = ඨ
∑ (𝑋ி௧(𝑖) − 𝑀𝑒𝑎𝑛ி௧)ଶே𝐹𝑙𝑒𝑒𝑡

ୀଵ
𝑁𝐹𝑙𝑒𝑒𝑡

 

To assess data distribution normality, Anderson-Darling test 
is then used. If data distribution is not normal, BoxCox 
transformation is used to attempt to transform the data 
distribution to be normal.  

The one-parameter BoxCox transformation (Box & Cox, 
1964), is a power transformation and is defined as in Eq. 
(9). 

𝑋௫௫ =
𝑋 − 1

𝜆
 𝑖𝑓 𝜆 ≠ 0 

𝑋௫௫ = ln (𝑋) 𝑖𝑓 𝜆 = 0, 
(9) 

where X is the original data and XBoxCox is the transformed 
data. 

If BoxCox transformation is successful, Mean+/-3*SD of 
the transformed data is then used. Otherwise, Box plot 
method is used to determine the anomaly threshold. Data 
statistics-based methods are chosen for fleet-data model 
based on similar performance reasons as illustrated in 
section 3.1 for the vehicle-data model. 

Anomaly scoring is then determined similar to the vehicle-
based model.  

Flowcharts in Figure 4 and Figure 5 summarize the main 
blocks that yield early anomaly detection using the two 
discussed approaches. 

 

Figure 4: Vehicle Data-Based Early Anomaly Detection 
Flowchart 
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Figure 5: Fleet Data-Based Early Anomaly Detection 
Flowchart 

4. EXECUTION 

Shown below in Figure 6 is an example of anomaly 
detection algorithm execution for a given fleet of vehicles 
using the fleet data-based model, applied to the medium 
leak test normalized test value (i.e TestResult). 

The x axis represents the mileage at which the test was 
executed, and the y axis represents the test result 
(TestResult). In this example, three performance regions are 
identified, namely:  

 Healthy region: Test passes and test result is far from 
the OBD/failure limit. The upper limit of this region is 
dependent on the data distribution and on SMEs 
inputted limit for healthy region. 

 Warning region: Test passes with test result closer to 
the OBD/failure limit. The lower limit is same as 
healthy region’s upper limit while the upper limit is 
dependent on the data distribution and on SMEs 

inputted limit for warning region. At this level, the 
system starts to behave abnormally. 

 Alert region: Test passes and test result is at an 
alarming level compared to the OBD/failure limit. The 
lower limit is same as warning region’s upper limit 
while the upper limit is dependent on the data 
distribution and on SMEs inputted limit for the alert 
region. At this level, the system is at a near fail stage. 

 Failure region: Test fails. The lower limit is same as the 
OBD threshold. 

 

Figure 6: Fleet Data Based Model Execution 

Based on the test count in each performance region, relative 
to the total test count, fleet performance for the selected test 
can be assessed and preventive actions can be taken. Root 
cause analysis can then be carried out if for instance a 
specific fleet is showing higher anomaly rate, or a given 
feature causes test to have more anomalies. Accordingly, 
preventive actions can then be taken such as Over the Air 
(OTA) updates to fix the identified root cause for the fleet of 
concern.  
As for the failure region information, only corrective actions 
can be considered, which shows the advantage of deploying 
early anomaly detection methods for quality improvement.  
Similarly, test performance and root cause analysis can be 
performed using vehicle data-based anomaly detection 
model by looking at the test result trends in a chronological 
order. Figure 7 illustrates medium leak normalized test data 
for a given vehicle, part of the fleet in Figure 6. 
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Figure 7: Vehicle Data-Based Model Execution 

Similar to fleet data-based model, three regions are 
considered for vehicle data-based model outputs labeling, 
namely healthy, warning, alert and failure regions. The 
advantage of the vehicle data-based model, over the fleet 
data-based model, is that the trends can be analyzed by 
considering an evolving process with time, allowing to 
apply SPC methods for trends monitoring as explained in 
the previous section. For instance, the anomaly, captured in 
Figure 7, can be investigated using contextual data for the 
test results and model performance before and after the 
anomaly event. One can analyze the internal and external 
variables of concern, like atmospheric temperature and 
barometric pressure, for correlations with the observed 
anomaly. Also, trends versus spikes can be investigated, as 
shown in the anomaly score calculation in Eq. (7).  

In another example shown in Figure 8, vehicle data-based 
anomaly detection algorithm allowed to capture first 
abnormal behavior of the EVAP medium leak test before 
around 40 days or 3,300 miles of test failure, by leveraging 
the normalized test value (i.e TestResult).  

 

Figure 8: Anomaly Detection Use Case 

It is worth mentioning that the vehicle diagnostic algorithm 
outputs either a test pass or fail, while the algorithm, 
presented in this paper, outputs three states (healthy, 
anomaly, failure). Anomaly often appears before the failure 
event, considering that failure is a continuous event where it 
is expected to detect a trend toward failure. Moreover, the 
medium leak test’s DTC is of type B, meaning that even if a 
failure takes place, a “pending” DTC is set, with no 
malfunction indicator light (MIL). If the test fails in the next 
diagnostic session, “confirmed DTC” and MIL will get set. 
Such logic results in an additional delay to the HW/SW 
issue detection process and consequently a delayed 
customer visit to the dealership. Meanwhile, the presented 
algorithm in this paper, and by leveraging vehicle 
diagnostic’s algorithms outputs, labels a test result as an 
anomaly once it gets above the anomaly threshold which is, 
as shown in Figure 8, is below the DTC threshold, enabling 
then an earlier detection. Finally, it is also important to 
stress on the fact that there are other reasons for the EVAP 
diagnostic algorithm not to show a failure. One of those 
reasons is test calibration (minimum and maximum 
thresholds). Also, missed failures, due to data 
collection/decoding process related issues, might be another 
reason, which is unlikely to happen based on extended 
experience with the process. Finally, the system might be 
well calibrated, and all data might be properly collected and 
decoded and only healthy response and/or anomalies and 
near failures are shown. 

In a real-world implementation, the algorithm can be 
deployed onboard in the powertrain control module (PCM) 
to analyze system performance in a real time fashion and to 
provide feedback either to the customer or to the 
engineering teams. The solution can also be implemented in 
cloud. Considering this approach, data would be analyzed as 
received based on a scheduled collection frequency. 
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5. CONCLUSION 

The presented work targeted improvement of EVAP and 
purge monitors performance monitoring by leveraging 
mode06 reports, which provide a “continuous” and 
chronological understanding of system performance 
progress, from an individual vehicle perspective, but also 
from a fleet overall performance perspective, when fleet 
data is considered. The developed solutions are generic and 
can be extended to other systems with a minimum level of 
calibration to adapt to the monitored system specificities. 
Meanwhile, one main challenge with the presented method 
is the false positives rate estimation. In fact, even though an 
anomaly is detected (below the failure limit), it may not 
necessarily turn into a failure in the near or long term, and it 
might be solely due to specific external conditions for 
instance. Such anomaly can then be justified since it is an 
abnormal system response. However, it shouldn’t be treated 
as a potential failure. It is then crucial to perform a root 
cause analysis based on the observed anomaly rate, which is 
a natural extension of this work. Such analysis should help 
provide more context to the observed anomalies’ trends and 
rates. Ultimately, the outcomes should be able to provide 
guidance to the end user with regard to the next steps to fix 
the HW/SW related issues.  

NOMENCLATURE 

CPV Canister Purge Valve 
DTC Diagnostic Trouble Code 
EVAP Evaporative Emission Control System 
HW Hardware 
I-MR Individual - Moving Range 
IQR Interquartile  
Job 1 Initial production of a given vehicle model year 
Job 2 Mid-model year production with updates 
MIL Malfunction Indicator Light 
MR Moving Range 
Mode06 On-Board diagnostics reported tests results 
OBD Onboard Diagnostics 
OTA Over the Air Updates 
PCM Power Train Control Module 
QCD Quartile Coefficient of Dispersion 
RCA Root Cause Analysis 
SD Standard Deviation 
SME Subject Matter Expert 
SPC Statistical Process Control 
SW Software 
UCL Upper Control Limit 
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