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ABSTRACT 

This work proposes a methodology for the detection of 

rolling-element bearing faults in quasi-parallel machinery. 

In the context of this work, parallel machinery is considered 

to be any group of identical components of a mechanical 

system that are linked to operate on the same duty cycle.  

Quasi-parallel machinery can further be defined as two 

components not identical mechanically, but their operating 

conditions are correlated and they operate in the same 

environmental conditions. Furthermore, a new fault 

detection architecture is proposed wherein a feed-forward 

neural network (FFNN) is utilized to identify the 

relationship between signals. The proposed technique is 

based on the analysis of a calculated residual between 

feature vectors from two separate components. This 

technique is designed to reduce the effects of changes in the 

machines operating state on the condition monitoring 

system. When a fault detection system is monitoring 

multiple components in a larger system that are 

mechanically linked, signals and information that can be 

gleaned from the system can be used to reduce influences 

from factors that are not related to condition. The FFNN is 

used to identify the relationship between the feature vectors 

from two quasi-parallel components and eliminate the 

difference when no fault is present. The proposed method is 

tested on vibration data from two gearboxes that are 

connected in series. The gearboxes contain bearings 

operating at different speeds and gear mesh frequencies. In 

these conditions, a variety of rolling-element bearing faults 

are detected. The results indicate that improvement in fault 

detection accuracy can be achieved by using the additional 

information available from the quasi-parallel machine. The 

proposed method is directly compared to a typical AANN 

novelty detection scheme. 

1. INTRODUCTION 

The early and reliable detection of incipient faults in 

machinery is crucial for the feasibility of a condition-based 

maintenance program. The detection of these faults is often 

accomplished using vibration-based methods. Signal 

processing algorithms work to improve the signal to noise 

ratio (SNR) of raw signals and extract a set of useful 

features that best describe the current state of the machine. 

The classification step uses these features to classify the 

machine as either faulted or healthy (or diagnose the type of 

fault present). One challenge in using vibration-based 

techniques is their application to machinery that has time-

varying operational characteristics (nonstationary). These 

characteristics are most commonly the speed and load of the 

machine, however other factors such as ambient 

temperature, variables from human operators, process 

parameters and many others can also be considered. When a 

machine operates in a nonstationary manner, the measured 

vibration for the condition monitoring system undergoes 

frequency and amplitude modulation. These effects can be 

most clearly observed in the frequency variation of machine 

vibrations with respect to changing rotational speed or in 

cases where the signal is roughly modulated by the power 

delivered to the system. To illustrate this in an industrial 

context Figure 1 demonstrates the amplitude and frequency 

modulation of a gearbox of an electromechanical mining 

excavator. The lower half of the diagram represents the 

rotating speed of the gearbox.   

This variability in the raw vibrations is not tied to the health 

or condition of the machine and can hinder the signal 

processing steps, it can also create large variations in the 

features that can cause the boundaries between classes to 

overlap and reduce the classification accuracy. Many 

techniques have been developed to deal with nonstationary 

signals to be applied to both the classification and the signal 

processing steps. For example, order tracking is a widely 

accepted technique for demodulating the changes in 
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frequency with respect to angular speed that is often 

integrated directly into hardware (Randall & Antoni, 2011). 

However, this technique requires accurate measurements of 

speed which can be difficult to implement, particularly in 

industrial applications. Another technique is the treatment of 

signals as so called cyclo-non-stationary signals to deal with 

the interaction of time and angle dependent factors in the 

signals (Abboud et al., 2016). Alternatively, signals can be 

analyzed in the time-frequency domain using techniques 

such as wavelet analysis or empirical mode decomposition 

(Lei, Lin, He, & Zuo, 2013).  As effective as these 

techniques have been shown to be at increasing the SNR in 

cases where there are mild fluctuations in speed and load, 

there are a multitude of applications where machinery with 

widely fluctuating duty cycles create signals that cannot 

consistently be treated using these methods. 

 
Figure 1. Vibration Response of Excavator Gearbox under 

Unsteady Operating Conditions 

 

Another key technique for the detection of faults in 

machinery is using a method known as analytical 

redundancy relations (ARRs)(Staroswiecki & Comtet-

Varga, 2001). Analytical redundancy is a case where there 

are two possible ways to determine a variable, and one of 

which is in the form of an analytical model (Isermann & 

Ballé, 1997). When using ARRs as a basis to detect faults, 

the difference, or residual between the two estimates of a 

variable (measured and model-based) can serve as an 

indicator for the fault. In more complex systems with 

multiple possible faults, the ARRs can be structured such 

that they contain fault diagnostic information (Gertler, 

1997). In this case the number of possible ARRs is equal to 

the number of sensors on the machine.  Recently Gor et al.  

used ARRs for fault accommodation in quadruped robots 

(Gor, Pathak, Samantaray, Yang, & Kwak, 2018), and 

Willersrud et al. used ARRs to detect faults during oil and 

gas drilling (Willersrud, Blanke, & Imsland, 2015). 

Artificial Neural Networks (ANNs) provide an excellent 

solution for the classification of features from machine 

vibrations in condition monitoring systems. This is due to 

the ANNs ability to deal with the noisy and incomplete data 

sets that are typical of condition monitoring applications. It 

is often difficult to obtain complete representations of 

machine vibrations for every faulted condition across all 

operating states. ANN-based classifiers have been applied to 

bearing and gear fault detection in stationary machinery 

using statistical features with great success (Samanta, 2004; 

Samanta & Al-Balushi, 2003). More recently ANNs have 

been used along with time-frequency domain techniques to 

detect and diagnose faults  (Barakat, Druaux, Lefebvre, 

Khalil, & Mustapha, 2011; Bin, Gao, Li, & Dhillon, 2012; 

Xie & Zhang, 2017). Strdczkiewicz and Barszcz 

demonstrated that by utilizing a backpropagation ANN and 

simple statistical features (RMS and peak-to-peak) it is 

possible to detect incipient faults in highly non-stationary 

wind turbine gear boxes (Strczkiewicz & Barszcz, 2016). A 

good review of the application of machine learning and 

artificial intelligence to machine fault detection can be 

found in (Liu, Yang, Zio, & Chen, 2018). 

Recent trends have seen an increase in the application of 

deep learning (DL) approaches to condition monitoring 

problems. Due to the rapidly growing ability of 

computational and data collection systems DL approaches 

are becoming more practical for industrial applications.  DL 

approaches are a powerful tool for industry as they eliminate 

the need for application specific feature extraction 

techniques. Examples of DL applied to condition 

monitoring can be found in (Jia, Lei, Lin, Zhou, & Lu, 

2016; Jiang, Wang, Shao, & Zhang, 2017; Zhao et al., 

2019). 

Auto-associative neural networks (AANNs), sometimes also 

referred to as autoencoders, are a specific type of neural 

network that are trained to reconstruct the input at the output 

(Kramer, 1992; Kramer, 1991). The key feature of the 

AANNs structure is a bottle-neck in the center that forces 

the network to compress the data into a number of principal 

components that contain as much of the necessary 

information as possible for reconstruction. AANNs have 

been receiving much attention for their application to DL 

referred to as the deep auto-encoder (DAE). The typical 

implementation of a DAE involves sending raw sensor data 

into the input layer, passing it through a lower dimensional 

hidden layer and reconstructing the original data on the 

output layer (i.e. encoding then decoding the data).  Principi 

et al. demonstrated that unsupervised deep autoencoders 

could outperform one-class support vector machines for 

detection of electric motor faults (Principi, Rossetti, 

Squartini, & Piazza, 2019). However, it has also been 

shown that DAEs have some difficulty representing the 
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noisy non-stationary signals common in fault detection 

(Haidong, Hongkai, Xingqiu, & Shuaipeng, 2018; Shao, 

Jiang, Zhao, & Wang, 2017). 

AANN’s can also be used a novelty detector for one class 

classification, wherein the difference between the input and 

output (referred to as the reconstruction error) indicates the 

likelihood of fault. Using AANNs to perform one class 

classification eliminates the need to train the system using 

data from the faulted condition. One of the first 

implementations of an AANN as a novelty detector for fault 

detection was done by Japkowitz et al. (Japkowicz, Myers, 

& Gluck, 1995), where the authors were able to detect faults 

in helicopter gearbox vibration signals.  When the system 

remains healthy the reconstruction error is minimal because 

the input data closely matches the structure of the training 

data, however when a fault is present and the data changes, 

the networks reconstruction of the input will have 

significant error. This novelty detection approach allows the 

network to detect incipient faults without prior training on 

fault data that is often difficult to obtain. AANNs have been 

shown to be successful in detecting gear faults when 

coupled with wavelet analysis (Sanz, Perera, & Huerta, 

2007). Using a priori information about fault signatures, 

multiple AANNs can also be configured and trained to 

classify fault types, in this framework AANNs have been 

shown to outperform other novelty detectors (Gianluca, 

Fromaigeat, & Etienne, 2016). AANNs have also been used 

for novelty detection for online tool wear monitoring, where 

the reconstruction error of the network output can indicate 

the presence and severity of tool wear (Wang & Cui, 2013).  

While the AANN when applied as a novelty detector 

removes the need for training with difficult to obtain fault 

data, it remains sensitive to the changes in the operational 

conditions of the machine. Changes in operating conditions 

will change the structure of the input data resulting 

variations in the output that could easily be interpreted as a 

fault. This results in a balance of sensitivity issue where 

thresholds must be set to balance between false positives 

and false negatives. This can be visualized in well-known 

ROC (receiver operator characteristic) curves. 

Experimental feature residual analysis, first proposed in 

(Helm, Rose, & Timusk, 2016; Rose, Helm, & Timusk, 

2016) and further investigated in (Helm & Timusk, 2017; 

Helm & Timusk, 2019) is a method for detecting faults in 

connected parallel machinery by analyzing the residual or 

difference between vibration features in the parallel 

subsystems. When a fault is present the residual between the 

features of the vibrations from the parallel subsystem will 

increase. This is revealed by thresholding the Euclidean 

distance between the feature vectors of each parallel 

subsystem.  In the context of this method, connected parallel 

machinery is defined as identical mechanical subsystems 

that speed and load as well operating conditions at the same 

time (i.e., share the same forcing functions). By exploiting 

the relationship between the parallel subsystems, it was 

demonstrated that this method can reduce the fault detection 

systems sensitivity to non-stationary operation and improve 

classification results. This technique is similar to analytical 

redundancy as proposed in (Willersrud et al., 2015), 

however the redundancy is not in the form of a 

mathematical model but rather comes from the redundant 

hardware configuration. 

Experimental feature residual analysis as defined in (Helm 

& Timusk, 2017; Helm & Timusk, 2019) is limited in 

possible applications; this work looks to expand the possible 

applications to quasi-parallel machinery. Quasi-parallel 

machinery, unlike connected parallel machinery does not 

require the individual subsystems to be identical, nor do 

they have to have identical operating conditions, the only 

requirement is that they share a common forcing function. 

The operating conditions for each subsystem in quasi-

parallel machinery will be related by some transfer function 

due to the shared forcing function.  

The main contribution of this work is that it presents a new 

fault detection architecture that extends the work in (Helm 

& Timusk, 2017; Helm & Timusk, 2019) to be able to 

include connected machinery that does not necessarily 

operate in a perfectly parallel manner (quasi-parallel). This 

is accomplished through the addition of an FFNN to the 

experimental feature residual analysis technique to allow the 

utilization of the real time information from a connected but 

not strictly identical component to reduce the sensitivity of 

the system to fluctuations in speed and load. In this 

application the FFNN is setup to mimic the typical 

application of an AANN with the difference that the 

network is trained to reproduce the corresponding data from 

another subsystem rather than the input data. This allows the 

parallel method to be applied to a much wider range of 

industrial machinery.  

This work will focus on applying experimental feature 

residual analysis to gearboxes connected in series. This 

arrangement for components can be considered quasi-

parallel due to the relationship between the speed and load 

of the gear sets. Gearboxes are machine components that are 

critical for the transmission of power between actuators and 

loads. Gearboxes are used to change the speed and output 

torque of the machine. Consider the signal model for the 

vibrations of a healthy gearbox presented in (Abboud, 

Antoni, Sieg-Zieba, & Eltabach, 2017) (with an added term 

in the modulation function for variable load) which is 

shown in Eq. (1). 

𝑋(𝑡) = 𝑑(𝑡) + 𝑟(𝑡) + 𝑏(𝑡), (1) 

where d(t) is the deterministic component shown in Eq. (2), 

r(t) is the random component given in Eq. (3) and b(t) is the 

background noise given in Eq. (4). 

𝑑(𝑡) = [𝑀(𝜔(𝑡), 𝐿(𝑡))∑ 𝑎𝑖cos⁡(𝑧1𝑖 𝑖 𝜃(𝑡) + 𝜑𝑖)] ⊗ 𝐻𝑔
𝑑 ⁡ (2) 
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𝑟(𝑡) = (𝑀(𝜔(𝑡), 𝐿(𝑡))𝑊(𝑡) ∗  

∑ 𝑎𝑖cos⁡(
𝑧1

𝑧2
 𝑖 𝑖 𝜃(𝑡) + 𝜑𝑖)) ⊗𝐻𝑔

𝑟  (3) 

𝐵(𝑡) = 𝑊(𝑡)𝑀(𝜔(𝑡), 𝐿(𝑡))⊗ 𝐻𝑏, (4) 

where M is the modulation function, ω(t) is the input speed, 

L(t) is the load (input torque), ai and φi are the amplitude 

and phase of the ith Fourier coefficients respectively, z1 and 

z2 are the number of teeth on the input and output gears 

respectively, W(t) is white noise with unit standard deviation 

and each H is a linear time invariant (LTI) system that 

represents the signal transfer path for the different parts of 

the signal.  

When two gearboxes are connected in series, they both 

produce vibrations based on this model, however there are 

some strict relations between the two given that they are 

connected. These are given in Eqs. (5-9).  

 

𝜔1(𝑡) = 𝜔2(𝑡) ∗ 𝑁n  (5) 

𝐿1(𝑡) = 𝐿2(𝑡)/𝑁  (6) 

where 𝑁 = 𝑧1/𝑧2 (gear ratio of first gearbox), and since 

𝜃(𝑡) = ∫ 𝜔(𝑡)
𝑡

0
𝑑𝑡, then 𝜃1(𝑡) = 𝜃2(𝑡) ∗ 𝑁. 

All the components of the signals that are not time invariant 

will be strictly related between two gearboxes. Therefore 

time-invariant relationships can be identified between the 

two signals by using a technique such as a neural network. It 

is this relationship that the neural network used for the 

system difference identification step attempts to model. 

However, when there is a change in the structure of either 

signal (i.e., when a fault is present), the identified 

relationship will no longer hold true. 

2. METHODOLOGY 

The technique that is developed for the detection of faults in 

quasi-parallel machinery is defined here. The key point is 

that the two quasi-parallel subsystems share some relation 

between their operational states due to being linked 

mechanically or electrically (i.e. changes in operation are 

related by some transfer function). This relation between the 

subsystems operating conditions leads to relations between 

their vibrations which are most visible in the feature 

domain.  The feature domain here refers to the domain of 

values (features) that are extracted from the raw time 

domain signals that are likely to trend with a fault. Using a 

neural network, the system difference in the feature domain 

can be identified for healthy cases. By applying 

experimental feature residual analysis to the vibration 

signals and incorporating the neural network for one of the 

parallel data streams to adapt the data according to the 

identified system difference, faults can then be detected in 

either subsystem.  

Figure 2 is a block diagram of the computational steps for 

this method in a general case. First signals from the 

mechanical system to be monitored must be collected. 

Typically, transducers such as accelerometers are used 

however other signals such as temperature, nose, electric 

current or the control signals to the machine could also be 

used to indicate the health of the system.  

 
Figure 2. Signal Flow Diagram (red lines for training) 

Segmentation 

The raw continuous time series signals are segmented into 

short samples to be analyzed. The segments can be in even 

time increments or even angle increments (corresponding to 

the rotation speed of the system). A windowing function can 

be applied to each segment depending on requirements for 

feature extraction. When a windowing function other than a 

rectangular window is used (ex. Hanning window) the 

segments should be overlapped to eliminate loss of data.  In 
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this work, the signals were segmented at 8 shaft revolutions 

on the load side of the system. The segments were 

windowed with a Hanning window and overlapped by 50%. 

Feature Extraction 

In this step several features are calculated from each 

segment to represent key indicators of faults in the signals. 

Any number of commonly employed features could be 

utilized, such as frequency domain envelope features, basic 

statistical features or time frequency domain features (e.g. 

wavelet domain). However, in this work well-known 

autoregressive (AR) model coefficients are used to 

characterize the raw vibration segments.  The AR method is 

attractive due in part to its computational efficiency making 

it amenable to industrial applications. An AR model was 

generated for each data segment that closely models the 

vibrations characteristics. The form for this model is given 

in Eq. (10) where y is the model output, x is the input and 

a1-ap and b0 are the model coefficients. The models can be 

calculated using a linear least squares method that will 

minimize the total error between the model output and the 

raw data.  

𝑦(𝑛) = (𝑎1𝑦(𝑛 − 1) + 𝑎2𝑦(𝑛 − 2)…𝑎𝑝𝑦(𝑛 − 𝑝)+ 

𝑏0𝑥(𝑛)                                      (10) 

After a model is created for a segment, the coefficients (a1-

ap) are used as the signal features. These features have been 

shown to be sensitive to the health state of the machine 

(Cong, Chen, & Dong, 2012; Timusk, Lipsett, & 

Mechefske, 2008). AR models have also been demonstrated 

to be a useful tool for detection of fretting in non-stationary 

bearings (McBain, Lakanen, & Timusk, 2013). The order 

for the model (p in the given equation) determines the 

number of elements in the feature vector. The model order 

can be optimized using Akaike information criterion (AIC) 

(Figueiredo, Figueiras, Park, Farrar, & Worden, 2011; X. 

Wang & Makis, 2009). Other methods such as the one 

proposed by Chen and Mechefske could also be used (Chen 

& Mechefske, 2001). When evaluating the AIC over the 

same data used to fit the model, the AIC will always 

decrease as the model order increases (See an example in 

Figure 3). 

However, for classification higher model orders are less 

desirable due to the higher dimensional feature space. In this 

work AR models of order 10 were deemed acceptable and 

not optimized further. 

Fault detection  

The feature vectors calculated from each segment are used 

as inputs to the FFNN. The FFNN is trained using a set of 

healthy data to minimize the distance between feature 

vectors of each subsystem. This is done by using the vectors 

from one subsystem as inputs to the FFNN and the features 

calculated from the other subsystem at the same time 

segment as the targets to train the network. In doing so the 

network is trained to take a feature vector from one segment 

and reproduce the features from the same time interval on 

the other channel. Once the network is trained, data of 

unknown class can be passed through the network and in 

cases where the difference between subsystems remains the 

same, the residual between the network output and the other 

subsystem will remain unaffected. However, when the 

system difference is changed (i.e., in the presence of a fault) 

the residual will increase. A single residual score can be 

calculated by simply taking the squared sum of the feature 

space residuals (Euclidean distance of the feature vectors). 

Other options for the residual score could be other types of 

distance metrics such as Chebyshev or cosine distance, 

however this function should be the same as the cost 

function that was used to train the network. This allows for 

the use of a simple threshold for separation between the 

healthy and faulted classes. The proposed neural network 

functions in a similar way to an AANN when used for 

novelty detection however the key difference is that it is 

reconstructing a data set from a quasi-parallel signal rather 

than the same data. The difference between the 

reconstruction and the actual data can be used to indicate the 

presence of a fault. 

 

Figure 3. AIC with respect to model order 

In this work, the FFNN used had 5 layers with 10, 12, 6, 12 

and 10 neurons respectively. Several layouts were tested in 

the initial stages of this work and this layout was found to 

outperform the rest on the given test and validation data (see 

table 1), performance was evaluated based on the 

reconstruction error of the trained network. The chosen 

architecture generalized well without overfitting the data. 

While this architecture is not considered optimized the 

performance for this work was deemed acceptable and it 

was not optimized further. The transfer functions for the 

input and output layers were linear, while the rest were 

hyperbolic tangent sigmoid transfer functions, in order to 

model any possible non-linear relations. The network was 

trained using the Levenberg-Marquardt backpropagation 

algorithm as described by Hagan and Menhaj (Hagan & 

Menhaj, 1994). It was implemented using the Matlab Neural 
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Network toolbox. This training algorithm was chosen due to 

its performance on small networks (Hao & Wilamowski, 

2011). The network was trained using data from a random 

set of four of the healthy tests. Data from a single test was 

used for validation to stop overfitting, while the rest were 

left for testing. The results using the parallel FFNN are 

compared to a standard AANN architecture. This network is 

setup the same as the FFNN however it was trained to 

reproduce the same data at the output as the input. Figure 4 

illustrates the AANN reconstruction step that takes the place 

of the system difference identification step in Figure 2. 

 
Figure 4. AANN reconstruction step 

Data Collection 

Figure 5 shows the experimental apparatus used for data 

collection. Two ten-horsepower induction motors were 

used, one as a drive and one as a load. Both motors were 

controlled using variable frequency drive (VFD) motor 

controllers.   The drive motor used a closed loop speed 

control and the load motor was set up for torque control. 

Between the two induction motors two gearboxes were 

connected in series one with a 3:1 ratio and the other 1:1.  

 

 
Figure 5. Experimental Setup 

 

The gearboxes were connected via a shaft with two Hooke’s 

joints to accommodate misalignment. Figure 6, provides a 

schematic of the layout for the mechanical components in 

which the two gearboxes represent the quasi-parallel 

subsystems as described earlier. The gearbox speed and 

loads are directly related by the gear ratio of the gear-train 

but not identical.  Further complexity to the system was also 

introduced by employing gears of different pitch in each 

gearbox resulting in different meshing frequencies (even for 

same speed), stiffness and backlash properties. This leads to 

greatly different raw vibration signals from each gearbox 

even though they share common forcing functions. 

 
Figure 6. Arrangement of Mechanical Components 

The machine was run on a duty cycle that includes three 

different steady state levels of speed and load as well as 

several different run-up and run-down conditions. The 

complete duty cycle can be seen in Figure 7. 

 
Figure 7. Duty cycle with independently controlled speed 

and load 

The experimental data was collected from the machine 

using piezoelectric accelerometers (1mV/g sensitivity) and 

sampled at 10 kHz.  Figure 8 shows the time series vibration 

signals from the two gearboxes for one run through the 

given duty cycle. In this case, both gearboxes are healthy. 

However, the difference between the two signals can clearly 

be seen. Moreover, it should also be noted that the signals in 

figure 8 also roughly illustrate the relationship between the 

vibrations in each gearbox as their changes in amplitude 

follow the same general pattern. 

The accelerometers were mounted on the case of each 

gearbox, which is shown in Figure 9. The bearing trade 

number was 7616. Several different fault conditions were 

introduced into the bearings. These conditions were; rolling-

element surface defect, outer race crack, inner race crack as 

well as multiple combined faults. In total, seven healthy and 

eight faulted tests were conducted (where each test 

constitutes one run through the duty cycle). These faults are 

described in Table 1. 

 

 

 

 

Bellows 

coupling 

Gearbox 

3:1 
 

Torque 

Transducer 

10hp Drive 

motor 

Encoder 

Bellows 

coupling 

Gearbox 

1:1 
 

10hp Load 

motor 
Faulty bearing 
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Figure 8. Time Domain Vibration Signals from Quasi-

Parallel Gearboxes  

 
Figure 9.  Accelerometer and Encoder Mounted on Gearbox 

Fault type Label (For 

results section) 

Description 

Healthy H(1-4) No fault present, data 

used for training 

Healthy H(5) No fault present, used 

for validation to stop 

overfitting during 

training 

Healthy H(6-7) No fault present, data 

left for testing 

Inner race crack IR(1-2) 1-1.5mm in the inner 

race of the bearing 

Outer race 

crack 

OR(1-2) Cut through the outer 

race of the bearing 

Rolling-element 

surface defect 

B(1-2) 1-1.5mm fault on one 

of the balls in the 

bearing 

Combination of 

multiple faults 

C(1-2) 1-1.5mm fault in 

outer race, inner race 

and rolling-element 

Table 1: Fault Types and data set description 

3. RESULTS 

The results presented here illustrate the residual value for 

collected data segments. The residual value is taken as the 

normalized Euclidean distance between the network output 

and the second gearbox. Figure 10 shows a histogram of all 

residual values for all of the healthy and faulted data using 

the method described earlier.  These results show significant 

separation between the two classes of data however 100% 

separation was not achieved as there is some overlap 

between classes. These results can then be compared to 

figures 11 to 13.  Figure 11 provides the baseline 

comparison to a typical AANN. Whereas Figures 13 and 14 

are included to further demonstrate to the reader the added 

value of including the neural network in the architecture and 

the raw features can’t simply be compared to determine the 

health state of the system. 

 
Figure 10. Histograms of the Residual Values for all of the 

Healthy and Faulted Data 

 
Figure 11: Residual Value with Non-Parallel AANN 
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Figure 12. Histogram Parallel Residual Analysis Method 

(Without using an FFNN for system difference 

identification) 

 
Figure 13.  Histogram Non-Parallel Method (direct feature 

domain comparison to historical average) 

 

Figure 11 shows a histogram for the same data processed in 

a non-parallel manner. The data is processed using an 

AANN novelty detector as described earlier. The network 

had the same structure and training methods as was used 

with the parallel method however the data was taken from a 

single gearbox with the network trying to reproduce the 

inputs at the output. This method utilized the same features 

and residual score calculation as in the parallel technique. 

There is still separation between the data classes however 

there appears to be a little more overlap which represents 

increased potential for incorrect classifications. This is 

further quantified in the classification results presented later. 

This loss in performance is attributed to the loss in 

information due to analyzing the affected gearbox in 

isolation. 

The results for the same data when processed without the 

use of the neural network can be seen in Figure 12 and 

Figure 13. Figure 12 shows the histogram of the data when 

analyzing the residuals between the two subsystems without 

the use of the neural network using the method presented in 

(D. Helm & Timusk, 2017). Figure 13 illustrates the results 

where the residual value is taken to be the difference 

between the feature vector and the average healthy value for 

the subsystem (non-parallel). These results show no 

separation between healthy and faulted tests. This 

demonstrates the improved accuracy resulting from adding 

the neural network to account for the relationship between 

the two subsystems. 

To further quantify the effect of utilizing the proposed 

technique on classification results, the receiver operating 

characteristic (ROC) curve was generated for both the 

parallel FFNN and the non-parallel AANN methodologies. 

The ROC curve presents the fraction of healthy segments 

that lie below a threshold (targets accepted) versus the 

fraction of faulted segments have a residual score above the 

same threshold (outliers rejected). The ROC curves clearly 

show that the FFNN outperforms the AANN, see Figure 14. 

The area under the FFNN curve is 0.9836 and the area under 

the AANN curve is 0.9588. 

 

Figure 14. Receiver Operating Characteristic Curves 

A thresholding classification method was applied to the 

residual values for each individual test. These results can be 

seen for the proposed parallel method as well as a standard 

AANN applied to a single gearbox in Figure 15. The 

threshold was set to exclude all but the top ten percent of the 

healthy training data. The results for the faulted data show 

greater than 90 percent accuracy for all the faulted tests with 

marked improvement for the parallel method over the 

AANN. These results are simply a snapshot of a single point 
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on the ROC curves in figure 14. In a real industrial 

application this threshold would be set based on the actual 

application and the relative priority of avoiding false 

negatives or false positives. 

 
Figure 15. Thresholding Results for Parallel FFNN and non-

parallel AANN 

Another factor that was found to greatly influence the error 

rate is the length of the segments used for training and 

testing the neural networks. In all the previous results that 

length was set at 8 shaft rotations. The average error rate 

(over all the tests) can be seen to generally decrease with 

respect to the segment length in Figure 16. This may be 

expected as with longer segments there is less data and the 

results approach an average result over the entire test. While 

some of the segments will cover the short stationary parts of 

the duty cycle, others will contain variations in speed and 

load that will increase with the length of the segment. This 

increased variation does not appear to have negatively 

affected the results.  However, there is a drawback to this as 

the system may not respond as fast to quickly changing 

operating conditions that are present in some machinery. 

 
Figure 16. Segment Length vs. Error Rate 

4. CONCLUSION 

It has been demonstrated that by incorporating a neural 

network to identify the relationship being subsystems it is 

possible to extend experimental feature residual analysis as 

a technique for fault detection to systems that are not strictly 

parallel. It was also shown that in the case treated in this 

work by using a network similar to an AANN in 

conjunction with residual analysis, the detection accuracy of 

the condition monitoring system can be increased when 

compared to using an AANN directly as a novelty detector. 

The proposed method was demonstrated to be able to detect 

all of the fault types investigated here and provided a 

significant increase in accuracy for the inner race and 

combination fault compared to an AANN setup trained 

using the same data. These results show that by 

incorporating the data from parallel components into the 

fault detection scheme the error rate can be reduced. This is 

due to the forced relationship between the time varying 

parameters of the two subsystems allowing the fault 

detection system to remain insensitive to changes in the 

machine's operational conditions. While the potential 

benefits of the presented fault detection architecture have 

been demonstrated, it should be acknowledged that this 

method has some drawbacks. The proposed method is 

limited in possible applications and requires an extra signal 

channel that may not be presen. Furthermore, this method is 

limited only to fault detection and does not diagnose the 

type or location of the fault. This method also requires the 

generation of features from the raw time-domain signal.  

Further work in this area could look into the incorporation 

of deep learning, however the tradeoff between complexity, 

amount of training data required, and performance should be 

closely examined. Another potential avenue for 

improvement could be optimizing the network architecture 

using a genetic algorithm or the application of different 

feature extraction techniques that have shown good 

performance for non-stationary systems, such as time-

frequency domain analysis or cyclo-non-stationary 

indicators. 
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