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ABSTRACT

Wind turbine manufacturers have adopted condition
monitoring systems to monitor and report a turbine’s health
and operating parameters to ensure that the system operates
within its design specifications. While the present systems
use specialized condition monitoring hardware to detect
abnormal acoustic or vibration signals, it is not capable of
pinpointing the exact location of the fault apart from
isolating the system from which the signal originated. This
drawback can be attributed to the requirement of powerful
signal processors in order to decode the signal and efforts to
train a system to identify the signal emitted by a faulty
component. In the light of recent advancement of data-
driven approaches and signal processing, these drawbacks
can be overcome with increased computation power and
sophisticated algorithms that foray into every integrated
system. This paper reports such an investigation conducted
on a miniature wind turbine planetary gearbox subjected to
multi-component failures. The vibration signals were
acquired using two accelerometers placed inside the gearbox.
The speed of the gearbox was varied according to a
simulated wind flow pattern. The primary goal of the study
was to investigate the practicality of implementing data-
driven approaches to categorise multi-component faults
from a composite non-stationary signal. Short time Fourier
transforms (STFT) coefficients were used as attributes by a
set of data-driven algorithms to build machine learning
models. Each model built was tested with a randomised set
of instances which was reserved from the main dataset and
tested multiple times by means of cross validation. The
novelty in the paper entails a methodology which has been
devised to classify faults using a randomised vibration
dataset with little human intervention by means of machine
learning algorithms. The authors propose that this
methodology can also be used for real-time fault detection
and classification for various machinery and components.

1. INTRODUCTION

Wind energy, one of the popular non-conventional energy
harvesting methods has been around for a while and new
technological innovations for wind turbines on its
components have contributed to steady improvements
regarding its reliability. These turbines, during their service
life need to be maintained and monitored to ensure
longevity and effective utilization. A study by the NREL
has suggested that majority of the faults (about 65%) arising
in wind turbines occur within the bearings, predominantly
the high-speed shaft bearing of the wind turbine gear box
(Sheng, 2015).The other major component in which the
fault is likely to occur is a gear. These components can be
considered as the critical components and any further
reference to critical components in the paper will refer to
either bearings or gears. A thorough analysis and monitoring
of these critical components will ensure its safety and assure
longevity of the wind turbine. Vibration signal monitoring
and analysis is an effective way to pinpoint the occurrence
and location of the fault.

Figure 1 shows the schematic of a wind turbine. A wind
turbine comprises of a rotor assembly mounted on a hub
which houses the mechanism for controlling the rotor pitch.
This allows the turbine to vary the blades angle of attack to
maintain the speed of the low speed shaft. The low-speed
shaft connects the turbine to the gearbox. Most modern
turbines use a planetary gearbox. A planetary gearbox is
mostly a multistage gearbox having a gear ratio as high as
1:98 and is normally used for a megawatt category turbine
(Sheng, 2015). This gearbox is capable of providing high
transmission ratios within a small volumetric space when
compared to a fixed axis gearbox. It comprises of a ring
gear, planet gear(s), planet carrier and a sun gear. The ring
gear is bolted to the transmission casing which provides a
reaction force for the gear assembly to work. The planet
carrier acts as the input and the sun gear acts as the output.
The output shaft of the gearbox is the high-speed shaft. The
high-speed shaft is coupled to a generator for power
generation._____________________
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Figure 1. Schematic of Wind Turbine System Used

The design life of a wind turbine is about 20 years (Evans,
2012). However, reports have shown that they tend to
breakdown prior to the end of the designed life cycle
(Shuangwen Sheng and Paul Veers, 2011). Recent studies
have revealed that most common system to fail is the
gearbox. Gearbox failures can be attributed to bad
lubrication, cooling, misalignment, shock loads and
overloads (Shuangwen Sheng and Paul Veers, 2011).
Overloads can be caused by external factors outside the
gearbox such as a bad coupling, wind gust and
misalignment during installation (Haastrup, Hansen, and
Ebbesen, 2011). These can cause internal components to
wear prematurely leading to internal overloads. Recent
studies have attributed the primary cause of gearbox failures
to bearing failures particularly, the high-speed shaft
bearings and the planet bearings. The most commonly
observed bearing failures are bearing spall and thermal
distortion (Lu, Li, Wu, & Yang, 2009). The next prominent
component to fail is the gear (Sheng, 2015). The high-speed
shaft gear and planet gear tends to fail before the low speed
stage gears. The most common faults noted in gears are
pitting and scoring. A scheduled maintenance usually covers
minor defects and preventive maintenance may not always
be a viable option as it tends to be expensive and, in most

cases, prevents utilising the full design life of the
component. Hence, condition-based maintenance would
contribute greatly to utilising the design life of the
component and preventing unnecessary maintenance (Villa,
Reñones, Perán, and De Miguel, 2012). Fault diagnosis
entails methods to detect and isolate faults within a system
to prevent catastrophic failures and be deemed as the crux of
condition based maintenance (Yang, 2013). Fault detection
systems monitor critical parameters such as vibration,
temperature and acoustic levels in order to predict a possible
failure. Such systems require three basic components; a
sensor, a data logger and an output device which processes
the data and generates a meaningful human readable result.

The heart of any monitoring equipment is the signal
processing algorithm. Sophisticated devices use signal
processing methods such as Fast Fourier transforms to plot
frequency spectrums of the input signal, thereby providing
an in-depth information of the health of the machine.
However, when multiple components fail, the signals tend
to be complex (Feng, Lin, & Zuo, 2016). Moreover, the
signal acquired may not always be stationary in nature as
the speed of the machine may vary. This adds to the
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complexity and makes the signal non-stationary (Villa et al.,
2012). Simple methods such as statistical parameter-based
feature extraction may not always provide meaningful
results as the signal can vary significantly and corrupting the
statistical data. Also, analysing the frequency spectrum of
the acquired data alone may lead to inaccurate results as the
frequency emitted by the components during operations are
linked to their rotational speed. This means that a change in
the operating speed could cause shifting of the frequency
peaks. This can lead to cases where the frequency peaks of
the component being monitored may interfere with the
frequency of other components in its proximity (Bisoi &
Haldar, 2014). This may deter the machine learning
algorithms from building accurate models which reflect the
vibration patterns emitted by the machine or component
being monitored. Alternatively, short time Fourier transform
(STFT) can provide valuable insight into a signal as both the
time and frequency information are available for
correlation(Moosavian, Najafi, Ghobadian, and Mirsalim,
2017).

Many past researchers have investigated on various methods
to deal with acquired signals so as to decode the component
health encoded within the signal and have tried to address
the challenges with non-stationary loading. Gryllias, Andre,
Leclere, and Antoni (2017) proposed that when Cyclo-Non-
Stationary Indicators are used along with a multi-order
probabilistic methodology, it could pave way to angular
speed tracking instantaneously for the condition-based
monitoring of rotatory machines operating under varying
conditions. Cyclo-stationarity is a close approximation of a
non-stationary case, to avoid the errors that arise due to this
assumption, a study considering a case of non-stationarity
without assumptions is needed which has been discussed in
the present study. Zimroz, Bartelmus, Barszcz, and Urbanek
(2014) proposed a procedure for the estimation of
instantaneous speed and analysis of vibrations of planetary
gearboxes under non-stationary operating conditions. This
work focused on feature extraction by only statistical
measures and signal processing methods were not
implemented. Zhang, Han, and Deng (2017) proposed that
feature extraction can be carried out by using a scaled
spectrogram and subjecting it to a support vector machine
(SVM) algorithm for automatic heart sound classification.
Spectrogram features being extracted using a variance-based
approach and machine learning techniques being used for
speech recognition was demonstrated by Xie, Mcloughlin,
Zhang, Song, and Xiao (2016).Ozer, Ozer, and Findik (2017)
proposed a method to resize spectrogram images using the
Lanczos kernel and used the same for automatic sound
recognition and compared it using deep neural networks.
Moosavian et al., (2017) investigated the effect of piston
scratch on the vibration behaviour of an internal combustion
engine using STFT and CWT. This does not discuss fault
classification as it targets only a single type of fault obtained
from a piston scratch. Muralidharan & Sugumaran, (2013)

proposed feature extraction from multiple datasets using
wavelet transforms and classification using a decision tree-
based machine learning algorithm, the J48 for the fault
detection of a mono-block centrifugal pump. Again, this
consisted of only a single fault and multi-component faults
arising needs to be addressed and evaluated. Wang, Wang,
and Wang (2018) proposed a method in which a generative
adversarial learning deep neural networks can be used to
analyse the vibration signature patterns of a planetary
gearbox by combining Generative Adversarial Networks
and Stacked Denoising Autoencoders. Singh & Parey, (2017)
proposed applying angular vibration technique to both
vibration and sound signatures emitted by a gearbox to
estimate possible faults. Rajeswari, Sathiyabhama,
Devendiran, and Manivannan (2014) proposed gear fault
identification using wavelets and a variety of classification
algorithms. Elangovan, Sugumaran, Ramachandran, and
Ravikumar (2011) proposed SVM for the classification of
vibration signatures of a single point cutting tool. Lei & Zuo,
(2009) proposed using the algorithm pertaining to the
weighted K nearest neighbour classification to recognise the
level of gear crack in a system.

To the best of author's knowledge, past research on multi-
component fault classification when subjected to non-
stationary loading is rare. Despite efficient methods for fault
classification such as using STFT, CWT, a robust
methodology for automated classification of multi-
component faults from a non-stationary dataset with little
human intervention is needed for applications in real-time
fault detection and classification. This paper focuses on
realising and overcoming these drawbacks and aims to
incorporate a unique methodology for a non-stationary
dataset.

2. EXPERIMENTAL SETUP AND DATA ACQUISITION

A custom miniature wind turbine gearbox (see figure 1 for
schematic 2 for gearbox) was constructed to facilitate the
study. The details of the gearbox are shown in table 1. The
planetary gearbox used in the present study was designed
with a gear ratio of 1: 100. The design consists of three
stages. Two planetary and one parallel stage. Both the
planetary stages had a gear to speed ratio of 1:5 and the
parallel stage had a gear to speed ratio of 1:4. The Low
Speed Shaft was the input shaft. The imitation of the wind
rotating the turbine blades and in turn the rotor was
achieved by a series of belt and chain drives coupled to a
motor, controlled by a Variable Frequency Drive (VFD).
The speed reduction ratio of the section between the motor
and the gearbox was 100:1. Since the experiment was
tailored to mimic an actual wind turbine The Low Speed
Shaft (LSS) was operated between 12 to 18 RPM to
simulate an actual wind turbine in operation thereby limiting
the high-speed shaft (HSS) to an operation range of 1200 to
1800 RPM.
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Figure 2. wind turbine planetary gearbox test rig

A synchronous generator (230V, 50Hz) was coupled to the
high-speed shaft section to facilitate mechanical loading on
the gearbox. This was achieved by electrically loading the
generator using resistive loads which generated a
mechanical resistance in the armature coil proportional to
the electrical load (counter torque). The electrical load was
in the form of 100W bulbs coupled to the generator
assembly. Electrical loading was set to 100W which was
approximately 17% of the generator’s capacity. However,
the AC synchronous generator was required to be
maintained at a speed between 2500 RPM - 3500 RPM to
ensure stable operation. As such a belt and pulley
arrangement with a speed ratio of 1:2 was used for the
generator. Two tri-axial accelerometers were placed at two
distinct points on the gearbox Figure 3 depicts the raw
waveform acquired from the intermediate-speed stage while
being subjected to non-stationary loads.NI USB 4432 data
acquisition system was used to acquire data from the two
tri-axial accelerometers (PCB 356A43) mounted as shown
in Figure 4. The X and Y axis information from both the
accelerometers were collected simultaneously. They were
designated as low-speed stage X axis (LSS X-axis), low-
speed stage Y axis (LSS Y-axis), Intermediate-speed stage
X axis (ISS X-axis) and intermediate-speed stage Y axis
(ISS Y-axis).

Figure 3. Raw vibration data depicting acceleration
amplitude vs time

Figure 4. Planetary gearbox showing sensor placement

Property Value

Rated power 1.5kW
Rated speed 3000RPM (high speed shaft)
Gear ratio 1:100
Gear Stage 1 Ratio 1:5 Module-3 mm
Gear Stage 2 Ratio 1:5 Module-2 mm
Gear Stage 3 Ratio 1:4 Module-1.5 mm
Lubrication type Splash lubrication

Table 1. Planetary gearbox specifications

Figure 5. Bearing with single fault



INTERNATIONAL JOURNAL OF PROGNOSTICS AND HEALTHMANAGEMENT

5

Figure 6. HSS pinion with single fault

In order to study the behaviour of different faulty
components, defects were simulated using wire cut EDM.
The diameter of the wire was 0.2 mm. The components
chosen for the study were the high-speed shaft bearing
(model SYJ20TF) and a powder coated mild steel straight
cut gear of 24 teeth having a module of 1.5mm which was
used as the high-speed shaft pinion. Three bearing faults and
one gear fault were simulated. Seven cases of faults which
include multiple faults in combination were simulated.
Figure 5 shows the bearing with a single faults. Figure 6
shows the pinion with a single fault and figure 7 shows the
bearing with multiple fault. Components with more than one
fault were treated as a multicomponent fault for the study.
Table 2 shows the faults simulated for the study.

Figure 7. Bearing with multiple faults

Class Fault Code

1 Root crack HRC
2 Inner race fault IR
3 Outer race fault OR
4 Inner + outer race fault IO
5 Root crack + Inner race fault IRHR
6 Root crack + Outer race fault ORHR
7 Root crack + Inner + Outer race fault IOHR
8 Healthy Healthy

Table 2. Simulated faults

2.1. Simulation of Wind Speed

The motor speed was varied to replicate different wind
speeds encountered by the wind turbine. The gearbox was
run at varying speeds ranging from 1200RPM to 1800RPM
at the high-speed shaft (HSS), this being the rated speed of
an actual wind turbine (Shuangwen Sheng and Paul Veers,
2011). A simulated wind speed profile was used to set the
motor speeds. This was done by generating a reference
voltage for the VFD. A 0V is interpreted as 0% power and a
10V is interpreted as 100% power. The speeds were
obtained using a random number generator which gave
random values between 6 to 10 volts which corresponds to
60% and 100% of the VFD power respectively. The values
in the speed profile were converted into a set of analogue
voltages by means of a dedicated Micro-control unit (MCU),
where 1200 RPM was about 60% of the VFD power and
1800 RPM was the maximum allowable VFD power. This
speed profile generated can be considered equivalent to the
one induced by non-stationary wind loading. This
randomisation of the wind speed was done to ensure that no
human intervention was needed and to facilitate the
mimicking of an actual wind turbine scenario. The same
wind speed profile was used for healthy as well as faulty
cases. A sampling frequency of 22kHz was used so as to
capture every intricate information embedded in the signal.
The total time for which the vibration data collected from
the accelerometers were for eight seconds with a sample
length of 131072 data points which guaranteed that at least
one full rotation was acquired by the DAQ. Fifteen such
files were collected for the total duration of the wind load
profile so as to ensure the repeatability of the data. Raw
vibration signals acquired were uncompressed and stored as
acceleration values with time information. In-order to
extract useful information from the signal, feature extraction
must be performed on the raw data. The vibration data
acquired for the aforementioned cases (in table 2) was
analysed using Short Time Fourier transform (STFT).

2.2. Data Processing using Short Time Fourier
Transform

Short time Fourier transform (STFT) is employed as the
feature extraction method due to its advantage of providing
time as well as frequency information.



6

Figure 8. Spectrogram for healthy condition

The STFT is an assemblage of moving two-dimensional
frames of Fast Fourier transforms (FFT), where each frame
corresponds to an instant of time. The FFT computes an
array of complex numbers for different frequencies of the
signal. This is then computed multiple times at moving time
instances, based on the sampling frequency, giving rise to a
three-dimensional array of complex numbers possessing
both time and frequency information. The plot obtained
from these three axes is often referred to as a spectrogram.
The time information in the spectrogram is essential as the
location and occurrence of the fault can be predicted
enabling an accurate classification of the fault using the
extracted coefficients. Eq 1 Describes the general equation
for STFT. Eq 2 computes STFT for a windowed signal.
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Terms: S- signal, W- window, w- frequency, m- magnitude,
L- Number of frequencies, j- jump discontinuity, t1-time, p-
position.

Key parameters influencing the spectrogram are the window
length, the number of FFT points (NFFT) and sampling
frequency (Teng, Ding, Zhang, Liu, and Ma, 2016).
Relatively low window lengths offer a high resolution along
the time axis whereas a high resolution in the frequency axis
is obtained at very high window lengths. In the present
investigation an optimal value for the window length was
arrived at; considering the above trade-offs.

The choice of the window length has been discussed in the
next section. NFFT was chosen by the number of data
points in each file (131072) to avoid any loss of information.

Figure 9. Spectrogram for IOHR condition
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Sampling frequency as mentioned in the earlier section, was
maintained at 22kHz. Initially, a window length of 64 was
chosen and incremented in steps of 64 till 2048.
Spectrograms were plotted for all the aforementioned
window lengths and for all the four axes namely LSS-X,
LSS-Y, ISS-X AND ISS-Y axes for which vibration data
was collected. This was repeated for all fifteen files
corresponding to each experiment and then further repeated
for all eight experimented cases (see table 2).

Figure 8 and 9 are sample spectrogram plots of two datasets
namely healthy and a multi-component fault, IOHR (see
table 2). The input wind speed profile used for all the cases
were the same, as such a comparison between the two
spectrogram plots can be made. It can be observed that there
are variations in the amplitude between the healthy and
faulty cases.Spectrograms were used in earlier studies where
the loading/ operating speed was stationary, to visually
identify specific features between the healthy and faulty
conditions. In the present investigation, under the non-
stationary nature of loading, spectrogram plots of healthy
when compared with 'Inner and Outer Race fault with
pinion root crack (IOHR)' showed differences in amplitudes
between frequencies of 0.5-1 kHz, corresponding to the time
interval of 3-4 sec. However, when there are multi-
component faults in the system, visual examination of the
spectrogram plots may alone be insufficient to provide
reliable information in order to distinguish between healthy
and faulty conditions or between different faulty conditions.
Hence, the use of machine learning algorithms is adopted so
as to facilitate an automated process for fault classification.
For classification of these faults the extracted features are
given as an input to data-driven algorithms. The time
information obtained in the dataset was neglected for
training the algorithms so as to ensure that the algorithm
uses only the extracted statistical features from the STFT
coefficients as attributes for classification.

2.3. Data-driven approach Implementation

STFT was able to provide the information about the
interested range of frequencies occurring at a particular
instance of time. This signature arising from the spectrum of
frequencies was found to be unique for each case of the
induced fault and the extracted coefficients contained this
information. To condense the vast dataset of points,
descriptive statistics parameters, max, min, mean, median,
mode, standard deviation, sample variance, range, kurtosis,
RMS value, range, sum and skewness were taken for the
frequency coefficients (vectors) at a particular time instance
to minimise the size of the dataset. The statistics
information derived from each vector of the extracted
coefficient matrix was marked with its respective fault
generating a matrix comprising of statistical data of every
vector of the extracted STFT coefficients.

Figure 10. Methodology

This was culminated in a single file for every fault case.
This dataset when subjected to a machine learning algorithm
could be used to predict the type of fault. Figure 10 shows
the methodology followed for the current study. The
statistical parameters described above, computed from
STFT coefficients was subjected as an input to machine
learning algorithms. WEKA (Frank, Hall, and Witten, 2016),
an open source machine learning toolbox was used to train
and test the classification accuracy of the obtained datasets.
Four decision tree algorithms– J48, Random forest, REP
tree, and Random tree were chosen, as decision trees take
minimal time for classification. The J48 algorithm is the
C4.5 algorithm implemented in java and was developed by
Ross Quinlan (Quinlan, 1996). The C4.5 algorithm is
capable of building decision trees using a set of data
available for training by the implementation of the concept
of information entropy. The attributes are chosen by the
algorithm in such a way that at each node subsets can be
formed effectively. The splitting criterion is based on the
normalized information gain, a corollary of difference in
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entropy. The attribute having the largest difference in
entropy shall be chosen to make the decision. The random
tree algorithm evaluates multiple random features and builds
a decision tree. It randomises the data several times and
builds multiple trees. Random forest makes use of an
ensemble of multiple random trees and can be considered
the finest of the lot. REP tree uses the concept of
information gain and reduced error pruning. Pruning,
minimises the size of the tree by deleting attributes which
are of little use for classification and hence minimises the
classification time. REP tree minimises the errors arising
from variance by generating multiple trees with every
iteration and choosing the best of the lot (Frank et al., 2016).
The number of training instances varied from 24,576
(window length of 2048) to 7,86,432 (window length of 64).
Such a large number of instances coupled with K fold cross
validation was pursued as it would minimise the chances of
overfitting thereby constructing a valid machine learning
model which would cover the entier operating range of the
gearbox. Overfitting is a condition where an algorithm
builds a model and achieves a very high accuracy for one
supplied dataset but the model collapses when tested with
another dataset (Frank et al., 2016). This usually occurs if
cross fold validation is not used or if the dataset is very
small. A fold can be defined as a dataset generated by
shuffling the supplied data randomly by the algorithm. This
is an automated process where the algorithm randomly
reserves a portion of the dataset for training and another for
testing. A fold comprises of both training and testing
instances. The dataset consisted of all eight classes
mentioned in table 2 and were given as input to the
algorithm at the same time. Before training, the dataset was
tagged with the respective fault. The dataset was initially
subjected to a five-fold cross validation for all algorithms.
Five-fold indicates that the dataset was randomised five
times and validated using cross-validation.

3. RESULTS

The notable observations are presented in section 2.1.
Detailed discussion by choosing a suitable window length
and a suitable data-driven model is presented in section 2.2.

3.1. Observations

As mentioned earlier, window length was varied from 64 to
2048 in steps of 64 to obtain the coefficients of the
spectrogram. Among the algorithms used for classification
of these coefficients, the highest classification was obtained
at the lowest window lengths which is 64 for all four
algorithms (see figure 11). As the window length was
increased, the classification accuracy marginally dropped.
Among the four algorithms, it was observed that random
forest had the highest classification accuracy and the J48
algorithm performed slightly better than the random tree
algorithm in terms of classification accuracy. It can also be
observed that the classification accuracy of the REP tree at

higher window lengths dropped substantially. An accuracy
of 99.8% correctly classified instances was obtained at a
window length of 64 for all four algorithms and the lowest
was 93.6%, 75.2% ,75.7%, 62.4% for random forest, J48,
random tree and REP tree algorithms respectively at a
window length of 2048. As smaller window lengths possess
a very high resolution along the time axis, the identification
of fault location becomes more distinct and hence we obtain
a high classification accuracy. Smaller window lengths also
have a larger number of data points amounting to a higher
computational time. Despite obtaining very high accuracy at
smaller window lengths, the accuracy only marginally drops
for increase in window lengths. Hence a compromise should
be made between computation time and classification
accuracy to obtain an optimal window length.

Figure 11. Window length vs classification accuracy for
multiple algorithms

Figure 12. Classification time vs Window Length for
multiple algorithms

From figure 11 it can be observed that the accuracy of
classification of the random forest algorithm is the highest
but the time taken to build the model is significantly higher
than the rest ( figure 12). Hence, if a larger dataset needs to
be used to train the model, it can become computationally
intensive. It can also be observed that the classification
accuracy drops significantly for the REP tree algorithm at
higher window lengths hence making it fairly inconsistent.
Thus, it can be found that, for a window length of 576 and
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for the random tree algorithm, the classification accuracy
and the time for classification are optimal. The detailed
study in the next section shall correspond to feature
extraction using STFT at a window length of 576 and
classification using the random tree algorithm subjected to
an eight-fold cross validation. The algorithm shall be
discussed in detail in the following section.

3.2. Discussions

Property Value
Number of folds for cross-validation 8
Correctly Classified Instances 118856
Incorrectly Classified Instances 4024
Percentage of Correctly Classified Instances 96.725 %
Percentage of Incorrectly Classified Instances 3.275 %
Kappa statistic 0.9626
Mean absolute error 0.0082
Root mean squared error 0.0905
Relative absolute error 3.7426%
Root relative squared error 27.3589%
Total Number of Instances 122880

Table 3. Classification summary for Random tree

As chosen, the random tree algorithm was used to classify
the STFT coefficients at a window length of 576. Table 3
shows the summary of the classifier after training and
testing with eight-fold cross validation for STFT. A total of
122880 instances were taken out of which 118856 were

correctly classified. Thus, a very high classification
accuracy of 96.72% was achieved. The random tree
algorithm follows a set of default rules in order to handle
incompatible datasets.

 If it is seen that data in a particular list can be grouped
in the same class, the algorithm creates a leaf node and
the decision tree chooses that particular class.

 If no information gain is provided by any feature, the
features are most likely indistinguishable. Should such
a condition occur, the algorithm will create a decision
node higher up the tree using an approximate value of
the class.

 If an instance of previously-unseen class is
encountered, the algorithm creates a decision higher up
the tree using an approximate value.

Table 4 shows the detailed accuracy by class which can be
used to identify potential classes which could cause
inaccuracies during classification by increasing
misclassification for its own class or other classes. The TP
rate or true positive rate must approach 1 and the FP rate
known as the false positive must approach 0 (Frank et al.,
2016). Precision recall and F measure can be termed as
performance parameters of the algorithm. When it comes to
pattern recognition, retrieval of information and
classification, precision is the ratio of relevant instances to
the retrieved instances, whereas recall is the ratio of relevant
retrieved instances to the total number of relevant instances.

Table 4. detailed accuracy by class

TP Rate FP Rate Precision Recall F-Measure MCC ROC
Area

PRC
Area

Class

0.968 0.005 0.968 0.968 0.968 0.964 0.982 0.941 ORHR

0.964 0.005 0.965 0.964 0.965 0.960 0.979 0.935 OR

0.968 0.005 0.967 0.968 0.967 0.963 0.981 0.940 IOHR

0.969 0.005 0.968 0.969 0.968 0.964 0.982 0.941 IO

0.964 0.005 0.964 0.964 0.964 0.959 0.980 0.934 IRHR

0.973 0.004 0.969 0.973 0.971 0.967 0.984 0.947 IR

0.963 0.005 0.965 0.963 0.964 0.959 0.979 0.934 HR

0.969 0.004 0.971 0.969 0.970 0.966 0.982 0.945 Healthy
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Table 5. Confusion Matrix for Random Tree

The quality of the classification can be quantified by MCC
or Matthews’s correlation coefficient. The MCC produces a
value between −1 and +1. A coefficient of +1 represents a
perfectly correct classification, 0 which is nothing but a
random classification and −1 indicates a total disagreement
between classification and observation. A receiver operating
characteristic curve, i.e. ROC curve, is a plot that depicts the
ability to diagnose the classifier system.

The ROC curve is obtained by plotting the true positive
values against the false positive values whose corresponding
values have been shown in table 4. Both ROC and PRC
(precession recall rate) must be above 0.5 to ensure that the
classification process is not occurring randomly.

From Table 4, it can be noted that the TP and FP rate had
marginal changes which clearly indicates the faults did not
interfere with one another. An interesting observation was
that though the components involved in IOHR were located
close to each other, with the bearing fault being the weak
signature, the fault signature was not masked by the more
dominant HSS pinion signal. Table 5 shows the confusion
matrix provided by the classifier. The confusion matrix is
also known as an error matrix and is used to visualise the
performance of an algorithm.

In the confusion matrix the diagonal elements are the
correctly classified instances and the other elements are the
misclassified elements. Both the confusion matrix and the
detailed accuracy by class can provide valuable information
on classifier performance and possible misclassification due
to complex signals within a class.

4. CONCLUSION

The present study investigated the practicality of
implementing data-driven algorithms to categorize multi-
component faults from a composite non-stationary signal
which was achieved by extracting features using a popular
signal processing method, STFT.

 Coefficients of the STFT were extracted for multiple
window lengths and an optimum window length of 576
was arrived at as the classification accuracy and the
classification time was optimal.

 A detailed analysis of the dataset was performed using
STFT for a window length of 576 and classification
was performed using the random tree algorithm.

 An eight-fold cross validation was performed for the
same to ensure repeatability and avoid over fitting.

 Random tree algorithm scored an accuracy of 96.72%
and it was observed that the compound faults did not
interfere with each other.

The window length of 576 will be valid for a gearbox which
produces a vibration response with an identical frequency
spectrum. The response frequency primarily depends on the
operating speed but may also vary with other parameters
such as gear mesh frequency and material damping.
Furthermore, the window length will be valid only if the
sample rate is maintained at 22KHz. As such, the
conclusions are application specific and the corresponding
window length was arrived at as it gave the best
classification accuracy.

However, the automated fault detection process employed
here for detecting multi-component faults from a wind
turbine gear box subjected to non-stationary loading can be
extended to any gear box subjected to non-stationary
loading.
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