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ABSTRACT 

This paper discusses the applicability of Visibility 

Algorithms to detect faults in condition monitoring 

applications. The general purpose of Visibility Algorithms is 

to transform time series into graphs and study them through 

the characterisation of their associated network. Degradation 

of a component results in changes to the network. This 

technique has been applied using a test rig of an aircraft fuel 

system to show that there is a correlation between the values 

of key metrics of visibility graphs and the severity of four 

failure modes. We compare the results of using Horizontal 

Visibility algorithms against Natural Visibility algorithms. 

The results also show how the Kullback-Leibler divergence 

and statistical entropy can be used to produce condition 

indicators. Experimental results show that there is little 

dispersion in the values of condition indicators, leading to a 

low probability of false positives and false negatives. 

1. INTRODUCTION 

Integrated Vehicle Health Management (IVHM) is aimed at 

reducing the impact of maintenance activities on operational 

cost and availability by detecting – and in some cases 

predicting – faults (Jennions, 2011). This is achieved by 

measuring physical parameters from a given system using 

sensors (e.g. pressure in different points of a hydraulic 

system, vibration of rotating equipment). These data are later 

analysed using mathematical algorithms to detect and isolate 

faults (diagnostics) or to calculate the Remaining Useful Life 

(RUL) of a component (prognostics). These algorithms can 

be developed using models of the physical phenomena that 

govern the failure mode (physics-driven methods) or using 

data analysis techniques to infer detection and isolation rules 

from large datasets (data-driven methods).  

The first generation of automated diagnostic tools was based 

on an engineering understanding of how each fault manifests 

different symptoms, and a set of thresholds and logical rules 

to detect and isolate the fault. Physics-driven methods have 

evolved from these principles. More recently, data-driven 

methods have also proven successful at developing 

diagnostic algorithms.  

Hybrid methods combine physics-based and data-driven 

techniques. A common application of hybrid methods is to 

use a physics-based model to generate datasets of healthy and 

faulty conditions when faulty data is scarce or missing. An 

example this approach is the prognostic tool for multiple 

wind turbine faults developed to calculate the RUL using a 

kinematic approach based on the Euclidean distance between 

clusters of faulty conditions and clusters of normal operation 

(Djeziri, et al., 2018).  

Hybrid methods can also be used to provide a diagnosis with 

incomplete information, like the hybrid hierarchical 

diagnosis method developed by Yawei, Mingqing, Zhao, Lei 

and Yajun (2018) or the technique based on the principle of 

analytical redundancy that Benmoussa and Djeziri (2017) 

demonstrated on a mechanical transmission.  

Data-driven methods used in diagnostics can be divided into 

the following categories (Stutz, 2010): 

• Classification techniques, which are used to generate a 

classification model from training data that can 

distinguish between healthy and faulty states as well as 

isolate faults. Some of the techniques included in this 

group are Neural Networks (NN), Gaussian processes, 

Bayesian classification, support vector machines, and 

rule-based classification. 
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• Nearest neighbour detection techniques, which work 

under the assumption that datasets form dense 

neighbourhoods of data points and that anomalies result 

in deviations from them, which can be analysed based on 

the distance to other neighbours and the density of the 

data points.  

• Clustering, which are unsupervised techniques aimed at 

classifying data into natural classes. Examples of 

clustering include, among many others, Self-Organizing 

Maps (SOM), k-means clustering, and probabilistic 

clustering via Expectation Maximization (EM) 

optimization 

• Classical statistical techniques, which work by 

approximating different phenomena to probability 

distributions whose parameters are calculated based on 

samples from the dataset. 

Another classification for data-driven methods is based on 

the nature of the dataset (Gao, et al., 2015): time-domain, 

frequency-domain, and time-frequency-domain.   

A new set of methods used to analyse time-domain signals 

and extract information from their changes are Visibility 

Algorithms (Lacasa, et al., 2008). Visibility Algorithms 

transform, according to a geometric criterion, time series into 

networks (named Visibility Graphs) which can later be 

analysed using graph theory to extract valuable information 

from the original time series. This technique has proven 

effective, for example, to detect periodicity (Núñez, et al., 

2011), measure fractality (Lacasa, et al., 2009), analyse 

irreversibility (Lacasa, et al., 2012) or distinguish between 

chaotic and stochastic time series (Lacasa & Toral, 2010). 

Beyond theoretical matters, Visibility Algorithms have 

recently been used to analyse seismicity (Aguilar-San Juan & 

Guzman-Vargas , 2013), frequency of hurricanes (Elsner, et 

al., 2009), diagnose Alzheimer’s disease (Ahmadlou & 

Adeli, 2010) or to characterise the texture of milled surfaces 

(Sanz-Lobera, et al., 2015). 

With their ability to analyse signals without focusing on 

changes suffered to their nominal value, Visibility 

Algorithms present a big potential to distinguish between 

healthy and faulty states. This paper presents the first 

application of Visibility Algorithms to develop diagnostic 

rules and the results. This technique has been applied to 

detect four typical faults of an aircraft fuel system: filter 

clogging, faulty pump, pipe clogging, and leaks. 

2. VISIBILITY ALGORITHMS 

2.1. Horizontal Visibility Algorithm 

The Horizontal Visibility algorithm (HVa) (Luque, et al., 

2009; Gutin, et al., 2011) assigns each datum of the series to 

a node in the graph. Two nodes are connected if a horizontal 

line can be drawn joining both points without intersections 

with any intermediate datum (see Figure 1). In other words, 

let {xi}i=1,...,N be a time series of N real data. Two nodes i 

and j in the graph are connected if the following geometrical 

criterion is fulfilled within the times series xi to xj. 

𝑥𝑖 , 𝑥𝑗  >  𝑥𝑛 , ∀ 𝑛 | 𝑖 < 𝑛 < 𝑗 (1) 

Figure 1 shows how the HVg can be applied to a time signal, 

where each data point is represented as a bar. Each datum in 

the series corresponds to a node in the graph (round blue 

points in the associated circular Visibility Graph) and the red 

lines represent links between data points (blue links in the 

Visibility Graph). 

 

Figure 1. Illustration of the HVa applied on a time signal 

signal x(t) from t=55s to t=60s.  

 

Figure 2. Graphic illustration of the HVa (a), and Natural 

NVa (b) applied to the same time series following the 

geometrical criterion (1) and (2) respectively. 

2.2. Natural Visibility Algorithm 

Like HVa, Natural Visibility algorithm (NVa) (Lacasa, et al., 

2008; Lacasa, et al., 2009) assigns each datum of the series to 

a node in the graph. In this case, two nodes i and j in the graph 

are connected if a straight line joining xi and xj can be drawn 

without intersections with any intermediate data point (see 

Figure 2b). In other words, i and j are two connected if the 

following geometrical criterion is fulfilled within the time 

series: 
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𝑥𝑛 < 𝑥𝑖 +
𝑛 − 𝑖

𝑗 − 𝑛
(𝑥𝑗 − 𝑥𝑖)        ∀ 𝑛| 𝑖 < 𝑛 < 𝑗 (2) 

The HVg derived from a given signal will have lower number 

of links than the associated NVg because its visibility 

criterion is more restrictive. In fact, the HVg will be a 

subgraph of the NVg, meaning that that NVgs are more 

sensible to long correlations. In contrast, the HVg is less 

expensive computationally and more tractable analytically 

(Lacasa, et al., 2009). 

Lacasa et al. (2008) have shown that time series structures are 

inherited in the associated graph, such that periodic, random, 

and fractal series map into motif-like, random exponential 

and scale-free networks respectively (Newmann, 2003) 

(Newman, et al., 2006). These findings indicate that the graph 

might capture the dynamic fingerprints of the process that 

generated the series. This suggests that Visibility algorithms 

might be able to extract additional information from signals 

regarding the operational conditions of the system. 

Consequently, these algorithms were put to the test and used 

to develop diagnostic rules for an aircraft fuel system. 

3.  USE CASE: AIRCRAFT FUEL SYSTEM 

The main function of an aircraft fuel system is to supply a 

given flow of fuel to the engines at a certain pressure. For 

aircraft of a certain size, the fuel system must also be able to 

transfer fuel between different tanks to ensure the aircraft’s 

centre of gravity is within specified limits. In some cases, the 

fuel can be used to dissipate heat from the oil used for 

lubrication.  

Detecting faults in a fuel system is essential to guarantee the 

safe operation of the aircraft. Isolating the component 

responsible for the fault is equally important since the aircrew 

must make critical decisions to respond in an appropriate 

manner. This information is also crucial for maintainers 

because troubleshooting can become a significant portion of 

the time dedicated to maintenance tasks. 

This use case focuses on four critical failures in fuel systems: 

• Filter clogging 

• Faulty pump 

• Leaks 

• Pipe clogging 

Whilst fuel systems can suffer other faults besides those listed 

here, this is a compilation of some of the most common. This 

approach is consistent with the work published by (Niculita, 

et al., 2012; Niculita, et al., 2013; Niculita , et al., 2014), who 

used the same test rig to develop and test different IVHM 

solutions for aircraft fuel systems.   

This analysis is not focused on a specific aircraft model and, 

consequently, it considers the effects of these failures on a 

generic fuel system. Such system must include: pumps, 

valves, filters, tanks, pipes, pressure sensors, and flow 

sensors. 

3.1. Test Rig 

Data for this study were collected using a scaled fuel test rig 

which proportional control valves to simulate the effects of 

each fault listed above (Figure 3). The rig measures the 

pressure on different locations as well as the volumetric flow 

through the exit nozzle. The rig uses water instead of fuel 

because it is safer to operate, although this does not affect its 

ability to be used as a demonstrator of how faults result in 

deviations of pressure and mass flows in the system.  

Filter clogging and pipe clogging induce a pressure drop in 

the system and therefore are replicated in the rig using 

proportional valves to increase the resistance to the flow of 

water. In the case of pumps, the main failures they can suffer 

are recirculation and leaking, both of which can be simulated 

by allowing part of the fluid to leave the main branch of the 

circuit and return to the tank. The same can be said for 

replicating a leak, which is achieved by allowing part of the 

flow to escape by opening a valve thus reducing the flow 

through the main circuit.  
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Figure 3. Diagram of the fuel system test rig. Failure modes 

(in red) are simulated using the valve indicated in each case. 

3.2. Description of tests 

The aim of the first set of tests was to collect data on steady 

state conditions for different faults with different degrees of 

severity. Each failure mode was tested independently, 

meaning that one valve was used to simulate the failure and 

the rest remained in their default position – consistent with a 

fault free system – during each test. Failures were simulated 

with increasing levels of severity by changing the position of 

the valve in intervals of 10%, with 100% being completely 

open, and 0% complete closed (Table 1). In total, this first set 

of tests include 41 different cases.  

Failure Mode Valve 

Range of valve positions 
No. 

cases Totally Healthy 
Maximum 

Failure Severity 

Filter clogging 1 100 % 0 % 11 

Pump failure 2 0 % 100 % 11 
Leaks 4 0 % 100 % 11 

Pipe clogging 5 100 % 10 % 10 

Table 1. List of failure modes for first set of tests. The 

position of each valve was modified by 10% on each test 
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Completely closing valve 5, with the rest remaining in their 

default position, would result in the pressure reaching values 

that could damage some of components of the rig. 

Consequently, tests for pipe clogging were stopped before 

reaching total failure conditions.  

The parameters measured during each test include the 

pressure of five different points of the circuit and the 

volumetric flow at the exit nozzle. Whilst the rotational speed 

of the pump was also captured, it remained at 400rpm in all 

of them. 

The sampling frequency of all sensors was 1 kHz. Signals 

were not filtered, or subjected to any kind of post-processing. 

Visibility algorithms tend to require datasets that have 10,000 

data points or more to be able to differentiate between 

different operating conditions (Lacasa, et al., 2009) (Lacasa 

& Toral, 2010). Consequently, each dataset corresponds to 

approximately 10 seconds of testing. This proved sufficient 

to discriminate between healthy and faulty conditions. Had 

this not been the case, the sample size would have had to be 

increased. 

Failure Mode Valve 
Valve position 

Healthy Faulty 

Filter clogging 1 80 % 30 % 
Faulty pump 2 30 % 70 % 

Leaks 4 0 % 50 % 

Pipe clogging 5 80 % 20 % 

Table 2. Valve positions for health and faulty conditions for 

second set of tests 

A second set of tests were conducted to get sufficient data 

points to analyse the probability distribution of results 

obtained for healthy and faulty conditions. These data are 

necessary to determine the accuracy of a diagnostic tool, i.e. 

the probability of getting a false positive or false negative. 

Table 2 shows the valve positions corresponding to health 

and faulty conditions of each failure mode (8 different 

conditions in total). Each of these conditions was tested 31 

times (248 tests in total) and each test collected 10,000 data 

points at 1 kHz. Developing diagnostic rules 

Each sensor produces a signal that is stored as a vector of data 

which is then transformed into a visibility graph using HVa 

or NVa. The visibility graph of a signal suffers changes if the 

operating conditions of the system are altered, i.e. the 

position of a valve changes. If a change to the visibility graph 

can be unequivocally linked to a failure mode, it is possible 

to develop a diagnostic rule. 

A technique that has proven useful in the past is to study the 

changes suffered by the probability distribution of the 

connectivity of the graph, P(k) (Lacasa, et al., 2008) 

(Newmann, 2003) (Newman, et al., 2006). This curve 

indicates what proportion of data has visibility k of the other 

data. Figure 4 shows how P(k) of the HVg and NVg from the 

time series measured by sensor P4 change shape as the 

severity of a pump fault increases.  

The next step is to define a Condition Indicator (CI) based on 

the changes experienced by these probability distributions. In 

this paper we will discuss two different approaches. The first 

CI uses the Kullback-Liebler divergence (Kullback & 

Leibler, 1951), DKL, to measure the difference between the 

probability distribution of connectivity for healthy 

conditions, PH(k), and that obtained with a different valve 

position, P(k): 

𝐷𝐾𝐿(𝑃𝑃𝐻) = ∑ 𝑃(𝑘)𝑙𝑛
𝑃(𝑘)

𝑃𝐻(𝑘)
𝑘

 (3) 

 

Figure 4. Faulty pump: evolution of the probability distribution of the connectivity of the HVg (a) and NVg (b) generated 

using the signal from sensor P4. Each curve corresponds to a test with valve 2 at a different positions with 20% intervals. 
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Figure 5. Evolution of the signal of sensor P1 (a) as valve 1 is closed to simulate the clogging of a filter (b), and the evolution 

of a dimensionless CI using the KL divergence applied to the HVg of the signal (c). 

Using DKL means that the CI is referenced against a healthy 

estate and its value can be interpreted as a measurement of 

the deviation between the system’s current state and its 

healthy state. 

The second CI used in this study uses the entropy, H, to study 

changes in P(k) [14,15]: 

𝐻 = − ∑ 𝑃(𝑘)𝑙𝑛𝑃(𝑘)

𝑘

 (4) 

Whilst H can be calculated for a probability distribution in 

isolation, a CI works better if it uses a reference to compare 

the current estate of the system to a healthy estate. 

Consequently, the second CI uses the entropy of a healthy 

state, HH, as reference and is calculated using the following 

formula: 

∆�̂� =
∆𝐻

𝐻𝐻

=
𝐻 − 𝐻𝐻

𝐻𝐻

=
∑ (𝑃(𝑘)𝑙𝑛𝑃(𝑘) − 𝑃𝐻(𝑘)𝑙𝑛𝑃𝐻(𝑘)) 𝑘

∑ 𝑃𝐻(𝑘)𝑙𝑛𝑃𝐻(𝑘)𝑘

 (5) 

These CI do not rely on changes in the amplitude of the 

signals. Instead, they highlight changes in the shape of the 

signal by using Visibility Algorithms. 

Figure 5a shows how the value of P1 changes as the filter 

clogging worsens, which is simulated closing valve 1 as 

shown in Figure 5b. Apparently, the pressure signal contains 

no information about the clogging state, as it changes less 

than 5% for the whole range of the valve positions. The graph 

at the bottom (Figure 5c) shows the result of applying a NVa 

to P1 and using the normalised value of DKL as CI. The value 

of CI(t) was calculated with 10,000 values of P1 using a time 

window from t-10s to t (hence the 10s gap at the beginning 

of the curve). This example illustrates how a CI based on 

Visibility Algorithms can be correlated with the severity of a 

fault and its value change more significantly than the signal 

on which it is based. 

4. RESULTS AND DISCUSSION 

4.1. Changes in the NVg of each signal for each failure 

mode 

Data from the first set of tests were transformed using NVa 

and changes in their P(k) analysed using the Kullback-Liebler 

divergence (Figure 6.) Experiments show that filter clogging 

and pipe clogging see the biggest change in absolute value of 

DKL thanks to the sudden increase of P4 and P5 with high fault 

severity. However, it must be noted that these sudden 

increases are the result of extreme system degradation: 

completely blocking the inlet of water to the system (by 

closing vale 1 completely) or almost completely closing the 

outlet (with valve 5 at 10%) whilst the pump continues to 

force water into the system. This produces shockwaves that 

travel through the system, distorting the signals, and leading 

to higher values of DKL. 

It is important to note that there are several examples of non-

linear behaviour for high levels of severity. For filter 

clogging the DKL of P4 and P5 drops starts dropping once the 

valve position drops below 30% and therefore are not a good 

basis for a CI. Similarly, pipe clogging sees a 35% drop in 

DKL of P3. Less pronounced is the non-linear behaviour of P3 

and Q for pump faults and leaks in the system. Since these 

non-linearities appear as the severity of the fault increases it 

is possible that shockwaves in the system are the cause. 

However, other sources of signal noise cannot be discarded.  
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In the case of filter clogging we see that P1, P3, and Q present 

a higher variation with the increasing severity of the fault. 

The change in value of DKL for these three signals is still 

significant enough to differentiate between heathy and faulty 

conditions. This is quite remarkable, because the sensor 

reading P1 is located upstream of the valve and yet the DKL of 

its associated NVg provides a better indication of degradation 

than P2, which is located downstream. 

Pump fault results are well correlated with the DKL of P3, P4, 

Q, and P5, although the variation of the latter is smaller than 

for the first four. All of these parameters see a sudden 

increase with the valve open at 30% or 40% and reach 50-

60% of their maximum value with a valve position of 50%. 

This means that this is a good indicator of early degradation. 

Filter clogging and pipe clogging are simulated by restricting 

the flow through the fuel rig at different points, hence the 

similarity between Figure 6a and Figure 6c. However, 

changes in the DKL of the NVg of each signal are noticeable 

for a narrower range of valve positions: between 30% and 

10% (the latter being a limit imposed by the configuration of 

the rig). Conversely, filter clogging shows clear indications 

of degradation since 40% until the valve is totally closed.  

Leaks reduce the mass flow and the dynamic pressure in the 

main branch of the fuel rig. This is a similar mechanism to 

the way pump faults are simulated, and yet P3 and Q show 

much greater changes than sensors located downstream from 

the leak (i.e. P4 and P5). This reinforces the hypothesis that 

dynamic effects such as shockwaves are being picked up by 

the visibility algorithm.  

These results indicate that for each failure mode there are 

signals whose NVg is highly correlated with the condition of 

the component and that Visibility Algorithms can be used as 

the basis of diagnostic algorithms. The next step is to identify 

which signals will be used as inputs to detect and isolate each 

fault. Comparing Visibility Algorithms and condition 

indicators 

4.2. Comparing Visibility Algorithms and condition 

indicators 

If a diagnostic system is to be used to monitor the condition 

of several components simultaneously, it is not possible to 

use the same CI for more than one type of fault. Otherwise, 

the system could not differentiate between two different 

failures, leading to false positives. Furthermore, to 

unequivocally link a CI to a particular failure mode, the CI 

cannot suffer a similar change for more than one failure 

mode. An example of this problem can be seen in the DKL of 

the NVg of Q, which is a clear indicator of a deviation from 

healthy conditions for every single failure modes (Figure 6) 

making it impossible to isolate a fault using this CI. 

 

Figure 6. Evolution of the Kullback-Liebler divergence applied to the NVg of each signal for each failure mode: filter 

clogging (a), faulty pump (b), pipe clogging (c),and leaks (d). 
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From a condition monitoring perspective, signals that show a 

smaller but consistent increase of DKL are more useful to 

develop diagnostic algorithms because they can be used to 

detect faults when they are less severe. An example of this 

phenomenon is how for filter clogging the DKL of the NVg of 

P4 has a spike when the filter is fully clogged (i.e. the valve 

is totally closed), but has a lower value than P1, P3, P5, and 

Q for less severe fault conditions. 

From a systems engineering perspective, using as few signals 

as possible means fewer sensors, less wiring, lower weight 

and cost, and a much simpler monitoring system. For this 

reason, even though it is not uncommon to use combinations 

of signals as a CI (e.g. the difference between inlet and outlet 

pressure of a filter), we decided to focus on CI that use one 

signal as input. 

Figure 7 shows the values of DKL and ∆Ĥ of both the HVg and 

NVg of signals chosen to detect each fault: P1 for filter 

clogging, P4 for pump failure, and P3 for pipe clogging and 

leaks. Whilst both pipe clogging and leaks use P3, it is still 

possible to differentiate between both failure modes because 

the entropy takes negative values for the former and positive 

values for the latter. The choice of signals as inputs for CI 

was made based on those listed above. 

These results show that both DKL and ∆Ĥare clearly correlated 

with all failure modes. However, there is no clear advantage 

of one over the other that can be generalised to other 

applications. Conversely, when looking at the results 

obtained using different Visibility Algorithms we see that 

NVa result in a greater differentiation between healthy and 

faulty conditions than HVa, although CIs calculated using 

HVa are still well correlated with each fault. This is the result 

of NVa producing graphs with more information about a 

given signal than HVa, although HVa requires significantly 

less computer power and might present advantages when 

processing power is at a premium. 

Looking at the values of P3 for Pipe Clogging and Leak in 

Figure 7 it is noticeable that the non-linear behaviour that was 

first noticed in Figure 6 appears here as well. This is not 

surprising for the DKL of the NVg because Figure 7 shows the 

normalised values of the data presented earlier. However, 

these graphs indicate that the transition in slope happens at 

the same level of degradation with data processed using NVa 

and HVa and post-processed with either DKL or ∆Ĥ  (the 

normalisation makes it less noticeable for Leaks processed 

with HVa but it still happens.) The explanation for this 

change in slope is that for P3 in Pipe Clogging and Leak the 

evolution of the probability distribution of the connectivity as 

the severity increases changes direction (see Figure 4).  

What these graphs also show is that non-linearities are 

independent of which Visibility Algorithm is used or how the 

visibility graph is post-processed. The fact that the changes 

in normalised values are higher for NVa is consistent with 

NVa resulting in a higher number of nodes with higher 

connectivity compared to applying a HVa to the same time 

series.  

 

Figure 7. Normalised values of DKL and  ∆�̂� using HVa and NVa for the value of P1 in filter clogging (a), P4 in pump failure 

(b), P3 in pipe clogging (c), and P3 in leaks (d). 
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4.3. Analysing the accuracy of diagnostic rules 

A diagnostic algorithm must be able to differentiate between 

a system that is operating as planned and deviations that 

indicate that a component has failed (the valve positions 

corresponding to each of these conditions are included in 

Table 2. This is done by setting a threshold for the value of 

the CI that, if reached, triggers an alarm indicating that the 

component has failed. So far we have proved that the values 

of CI based on Visibility Algorithms do change as the fault 

becomes more severe. 

Numerous factors contribute to fluctuations in the readings of 

any diagnostic system: sensor noise, changes to operating 

conditions, vibrations, hysteresis in actuators, numerical 

approximations, etc. These are the causes behind false 

positives and false negatives in IVHM systems. As a result, 

it is more accurate to assume that the value of any CI in either 

healthy or faulty conditions is better described as a 

probability distribution. 

The statistical analysis of the results generated with the 

second set of tests were used to compare the dispersion in the 

value of CIs calculated using both DKL and ∆�̂� for HVa and 

NVa (Figure 8.) This analysis has shown that CIs calculated 

using NVg have similar or lower standard deviation than the 

same CIs calculated using HVg.  

 

Figure 8. Box plots of the CI calculated using DKL and ∆�̂� on the HVg and NVg for faulty (F) and healthy (H) conditions. On 

each box, the red central mark is the median, the edges of the blue box are the 25th and 75th percentiles, the whiskers extend 

to +/–2.7σ, and outliers are plotted individually The valve positions corresponding to healthy and faulty states are in 

parenthesis. 
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Failure Mode Sensor CI Condition µ σ Dist. Threshold PFP PFN 

Clogged Filter P1 DKL of NVg Healthy 0.0067 0.0011 Weibull 

0.04 9∙10-11 5.16∙10-8 
Faulty 0.0814 0.0044 Weibull 

Pump Failure P4 DKL of NVg Healthy 0.0102 0.0037 Weibull 

0.02 4.4∙10-3 1.4∙10-3 
Faulty 0.0414 0.0052 Weibull 

Pipe Clogging P3 ∆�̂� of NVg Healthy 0.0149 0.0124 Normal 

-0.05 8.35∙10-8 9∙10-11 
Faulty -0.1419 0.0072 Normal 

Leaks P3 ∆�̂� of NVg Healthy 0.0178 0.0084 Normal 

0.1 2∙10-6 9∙10-11 
Faulty 0.1313 0.0068 Normal 

Table 3. Probability distributions of the CI chosen for each failure mode and their corresponding probabilities of false 

positive and false negative.  

These results confirm the entropy of P3 can be used as a CI 

for both pipe clogging and leaks, showing a clear 

differentiation between values for healthy and faulty 

conditions. In the case of filter clogging, DKL shows a small 

advantage over entropy since it has a smaller standard 

deviation in healthy conditions, which should result in fewer 

false positives. Pump failure has the widest spread of results 

of all the failure modes tested, with a clear overlap in the box 

plots of healthy and faulty values of CI based on ∆�̂�, hence 

the choice of DKL as CI for this failure mode as well.  

In order to determine the accuracy of a diagnostic tool based 

on Visibility Algorithms we must calculate the probability of 

getting false positives, PFP, and false negatives, PFN. The 

former is the probability of having a healthy component and 

a CI whose value has reached the threshold set for the alarm. 

The latter is the probability having a faulty component whose 

CI has a value equal or lower than the threshold. 

Unlike other data-driven techniques, the methodology shown 

here does not include an automated way to determine the 

threshold for the alarms. However, there is no inherent 

limitation in Visibility Algorithms to automate this step and 

there are multiple optimisations techniques available that can 

be applied to determine the optimal alarm thresholds. For this 

analysis, thresholds were set manually based on the results 

from experiments.  

The analysis of the statistical results represented in Figure 8 

where adjusted to probability distribution functions 

maximising the log-likelihood and checked using a chi-

square test with a confidence level set to 95%. As a result, the 

DKL of the NVg for clogged filter and pump failures were 

approximated to Weibull functions, and the entropy of the 

NVg of pipe clogging and leaks to normal distributions 

(Figure 9.) The parameters that characterise these 

distributions are included in Table 3.  

Using these distributions to calculate PFP and PFN showed 

that Visibility Algorithms can differentiate between healthy 

and faulty estates with a confidence level of at least 99.5%. 

Pump faults present the highest PFP and PFN as expected from 

the results shown in Figure 9, but all other failure modes 

present confidence levels of 99.9998% or higher.  

These values are likely to be lower under real flight 

conditions. However, whilst it must be noted that this analysis 

does not consider the effect of changing environmental and 

operating conditions that an aircraft fuel system experiences 

during a flight, these results show that CIs based on Visibility 

Algorithms can deal with other typical sources of uncertainty 

such as sensors noise, dynamic hydraulic effects, valve 

hysteresis, and vibrations.  

 

Figure 9. Probability Distribution Functions (PDF) adjusted 

to the experimental data for healthy and faulty conditions of 

each failure mode. 

5. CONCLUSIONS 

In this work we have applied Visibility Algorithms to study 

the data from a test rig of an aircraft fuel system, defining a 

CI based on the Kullback-Leibler divergence and the entropy 

of the probability distributions that the algorithms generated, 

and we have conducted a statistical study to validate the CI 

selected 

The results presented in this paper show that changes to the 

visibility graph associated to a sensor reading are correlated 

to changes in the system and can be used to differentiate 
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between faulty and healthy conditions. Since Visibility 

Algorithms do not require signal processing this can result in 

fewer steps between data acquisition and diagnosis 

generation 

Experiments show that CIs based on NVg experience greater 

changes between healthy and faulty conditions than those 

based on HVg. They also have similar or lower standard 

deviations, leading to more accurate diagnoses (i.e. lower 

false positive and false negative rates.) However, it is 

important to highlight that HVas demand fewer 

computational resources, which can be advantage in certain 

applications. 

Both the Kullback-Leibler divergence and ∆�̂� can be used as 

a CI, without any clear advantage of one over the other. Using 

different ways to calculate the value of a CI using the same 

signal as input can lead to using fewer sensors than the 

number of failure modes that have to be monitored. This is 

demonstrated by the fact that signals from 3 sensors (P1, P3, 

and P4) are used to detect 4 failure modes.  

The low values of the probabilities of false positives and false 

negatives indicate that Visibility Algorithms are not 

particularly susceptible to the inherent uncertainties in the 

system. Since the current noise level does not seem to affect 

the ability of Visibility Algorithms to distinguish between 

faulty and healthy conditions, this method could make signal 

filtering in diagnostics redundant.  

Future works should delve into the definition and utilisation 

of CIs in order to develop a set of CIs that extract maximum 

information from a given signal through the use of Visibility 

Algorithms. 

The choice of 10,000 data points was based on previous work 

published on visibility algorithms and proved to be enough to 

detect faults with a high level of accuracy. However, further 

work is needed to understand the sensitivity of diagnosis 

accuracy to the dataset size for each scenario and how to 

determine the optimal sample size.  

NOMENCLATURE 

CI Condition Indicator 

EM  Expectation Maximization 

HVa Horizontal  Visibility Algorithm 

HVg Horizontal Visibility graph 

IVHM Integrated Vehicle Health Management 

NN Neural Networks 

NVa Natural  Visibility Algorithm 

NVg Natural Visibility graph 

RUL Remaining Useful Life 

SOM Self-Organizing Maps 
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