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ABSTRACT

Wind turbines generate a wealth of data which can be effec-
tively used to improve maintenance strategies and drive down
operations and maintenance (O&M) costs, which account for
20-25% of the cost of generation of wind energy. Data-driven
techniques for enabling prognostic and health management
(PHM) technologies have seen many successes in the space.
However, managing this data, particularly in the context of an
industrial facility which may have many other data streams,
is a challenge. This technical brief describes the schematic
of a proposed system for managing turbine data, ahead of an
implementation which will see PHM techniques applied to it.
The turbine in this case is attached to a manufacturing facility,
so the pipeline is designed to be modular and integrate well
with an existing pipeline at that facility.

1. INTRODUCTION

Operations and maintenance (O&M) of wind turbines accounts
for up to 25% of the levelised cost of electricity (LCOE) gen-
eration (International Renewable Energy Agency, 2018). In
order to stay competitive, these costs must be kept to a min-
imum. For large operators, this is usually achieved by mon-
itoring turbines through extensive dashboards and dedicated
teams. Availability contracts with the manufacturers are rig-
orously enforced, and any underperformance is investigated,
and any corrective maintenance is carried out (Hahn, 2017).
For smaller operators, e.g. manufacturing plants which make
use of one or more large turbines as a source of renewable en-
ergy, the resources may not be there to dedicate this amount
of effort in ensuring the turbine is running optimally. Hence,
the use of artificial intelligence methods to detect any incipi-
ent faults or underperforming turbines is of added value.

Wind turbines generate a wealth of data. Efficiently ingesting,
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storing, processing and accessing this data is therefore very
important in order to maximise its utility. By incorporating
this data into a data pipeline along with the rest of a manufac-
turing facility’s data, smart PHM apps can be easily built and
deployed. This allows researchers and innovators in the space
to work on building these apps, rather than cleaning and man-
aging the data underpinning them. This brief describes how
a previously developed wind turbine PHM app, described in
(Leahy, Gallagher, O’Donovan, Bruton, & O’Sullivan, 2018;
Leahy, Hu, et al., 2018), will be deployed using a modular
data pipeline. The pipeline itself is based on earlier research
in (Donovan, Leahy, Cusack, Bruton, & O’Sullivan, 2015).
This is intended to give researchers and industry profession-
als in this space a practical insight into how theoretical mod-
els can be deployed in reality.

In section 2, a brief overview is given of the various data
streams that a turbine generates. Section 3 gives an overview
of the developed PHM application. In section 4, an overview
of the data pipeline will be given, showing how the data is in-
gested and processed. This includes how the data is initially
ingested, how it is processed, and how live points are sent to
the trained machine learning model at the deployment stage.

2. OVERVIEW OF TURBINE DATA

The relevant turbine data sources here come from the super-
visory control and data acquisition (SCADA) system. These
are: 10-minute operational data, availability data, and alarms
data.

The operational data consists of various signals which are
generated at 10-minute timestamps, e.g. wind speed, power,
component temperatures and electrical signals. Each of these
is the average value over the previous ten minute period, but
can also include minimum, maximum or standard deviation.
A sample of some typical turbine operational data is provided
in table 1.

The availability data is also generated in 10-minute times-
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Table 1. 10 Minute Operational Data

TimeStamp Wind Wind Bearing Power
Speed Speed Temp Output
(avg.) (max.) (avg.) (avg.)
m/s m/s ◦C kW

09/06/2014 14:10:00 5.8 7.4 19.2 367
09/06/2014 14:20:00 5.7 7.1 19.3 378
09/06/2014 14:30:00 5.6 6.5 19.8 384
09/06/2014 14:40:00 5.8 7.5 20.2 426

tamps and contains counters displaying the number of sec-
onds the turbine spent in each availability category over the
previous 10-minute period. These categories include: gen-
erating, available but not generating due to weather or grid
conditions, downtime, and time spent in repairs/maintenance.

The turbine alarm system provides similar information, but
in a more granular fashion. Every time an event happens on
the turbine, e.g. its status changes from generating to not
generating due to low wind speed, or when the grid condi-
tions change and turbine power output is curtailed, or when
the turbine goes offline due to a system fault, an alarm mes-
sage is generated. These have different severities, ranging
from simply providing non-critical information to giving high
severity alerts where immediate maintenance action must be
taken. These messages are generated instantaneously rather
than in 10-minute intervals. Typical faults range from issues
like pitch motor control problems, which simply require the
turbine to be reset, up to main component failure which can
result in days or weeks of downtime. A sample of turbine
alarm system data is provided in table 2.

3. OVERVIEW OF PHM APPLICATION

In this work, a data pipeline is described which aims to deploy
a previously-developed PHM application. Classification is a
proven technique for turbine fault detection and prediction, as
described in (Godwin & Matthews, 2013; Leahy, Hu, et al.,
2018), and the particular technique used here is described in
(Leahy, Gallagher, et al., 2018).

This technical brief is intended to demonstrate how this PHM
application is deployed on an existing manufacturing site. It
was decided to integrate into an existing data pipeline at this
site. However, had there not been an existing framework for
data storage, the process described here would still be used.
This is because a scalable, integrable solution allows any fu-
ture turbines at this site or indeed turbines from other sites to
feed into a single data repository. Data can be shared across
PHM applications and the resources for these applications
can be scaled up or down as needed.

3.1. Training Set

In any machine learning classification problem, the training
data must be labelled. In this case, turbine alarms and avail-
ability data are used to identify periods of fault or fault-free
operation on the turbine. A series of rules are used to es-
tablish times in which the turbine was operating in certain
modes of operation, described in (Leahy, Gallagher, et al.,
2018). These include being purposefully curtailed due to
shadow or noise-curtailment restrictions, grid requirements,
weather conditions, or times when the turbine was manually
shut down for maintenance or planned repairs. These are in
contrast to fully nominal operation, and periods when the tur-
bine was shut down due to a fault condition. In the case of
the classifiers used in this app, this consists of the following:

1. Clean the alarms and operational data to remove any in-
correct or duplicate entries

2. Label the operational data for when the turbine was in
various different modes of operation

3. Remove any periods for which the classifiers are not be-
ing trained, e.g. non-fault related shut-downs or curtail-
ments

4. Label the ”pre-fault” samples, i.e. samples which oc-
cur leading up to a relevant fault-class sample within the
”pre-fault window”

5. Remove the fault samples, so that the only remaining
samples are (i) pre-fault and (ii) fault-free data

This methodology is largely automated once the rules for de-
termining which modes the turbine was operating in are es-
tablished. The methodology for building this training set is
described more fully in (Leahy, Gallagher, et al., 2018).

4. DATA PIPELINE

The data pipeline described in this study is intended to build
upon earlier work (Donovan et al., 2015; O’Donovan, Leahy,
Bruton, & O’Sullivan, 2015). These works describe a robust
data pipeline for use in large-scale manufacturing facilities.
Since publication, a version of the described data pipeline
has been implemented in a facility, and the implementation
described below builds on this in order to integrate the data
from a wind turbine installed at the facility.

The pipeline is split into three parts: (i) Loading Historical
and Live Data, which describes the data ingestion process,
both in terms of the initial historical data upload, and how
live data points are stored going forward; (ii) Building Initial
Model, which describes how the historical data is used to train
and store a machine learning model through which live data
will be run at deployment; (iii) Deployment, which describes
how live points are sent through the trained model and the
results communicated with the end-user at a local level.
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Table 2. Sample alarm system data from a given day

ts te Code Description Category Severity
02:13:38 07:56:14 a41 Normal Operation No Fault Information
07:56:14 08:37:32 a91 Low wind cut out Weather Information
08:37:32 23:44:02 a22 Normal Operation No Fault Information

Figure 1. Historian upload process

4.1. Loading Historical and Live Data

The initial data upload process can be seen in figure 1.

As previously discussed, the wind turbine generates opera-
tional data points once every ten minutes, while the alarm
system generates a new data point instantaneously when an
alarm message is generated. Every time a new operational
data point is generated, it is exported to a local folder in CSV
format. A separate CSV is sent holding all of the alarms gen-
erated in that 10-minute period. The python ingestion engines
are locally deployed scripts which monitor these local folders
for new files. When the script detects a new file, it uploads it
to Amazon S3, a file storage facility. This is shown in step 1
of figure 1. This is similar to the ingestion step described in
(Donovan et al., 2015).

An API gateway then communicates with AWS Lambda in
step 2, which is an event-driven serverless computing service,
typically used for light tasks and to send jobs to computing

resources. In this case, it simply transfers the data to a data
historian running on Amazon RDS step 3. These steps are
similar to the queue service communicating with the ”aggre-
gate and contextualise data for analysis” through a subscrip-
tion service described in (Donovan et al., 2015).

The first time this process is run, the entire local SCADA
database is exported and uploaded via CSVs. From then on,
the service uploads and adds to the historian every ten min-
utes as normal.

Figure 2. Data cleaning, labelling and training process

4.2. Building Initial Model

The framework for the cleaning and labelling of the train-
ing data, as well as of the actual training step for PHM apps
themselves can be seen in figure 2. SageMaker is a comput-
ing resource for the construction, training and deployment of
machine learning models. Amazon Eleastic Container Reg-
istry (ECR), meanwhile, is storage for the python machine
learning code, and a docker container image. Docker can be
thought of as a lightweight virtual machine, which can dy-
namically use CPU and memory from SageMaker according
to the model requirements, while RDS acts as the data store.

Step 1 in the process is that a local command is sent through
the API to point SageMaker to the location of the docker con-
tainer image and the python code which it will run, stored
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Figure 3. Deployment stage overview

on ECR. The docker container, stored on ECR, contains the
script and dependencies needed to initialise and run the python
code (also stored on ECR). The python code itself contains all
of the steps necessary to clean, contextualise and train on the
data. Docker also points SageMaker to the location of the
training data in RDS. The docker container script and python
code are step 2.

In step 3, the python code cleans and labels the training data
according to the requirements of the particular PHM applica-
tion. This is stored as a separate database in RDS in case any
future updates are needed to the model, or for other PHM
apps. In step 4, this labelled training data is fed into the
python model, which again uses SageMaker computing re-
sources to run the model. Finally, in step 5, the trained model
is stored in S3 so that live data points can be run through it at
the deployment stage.

4.3. Deployment

The deployment stage is outlined in figure 3. In step 1, CSV
files are sent up every ten minutes, as described in section 4.1.
Note that these are stored in the historian as per figure 1 (not
shown here for posterity). When these are added, the API
notifies SageMaker in step 2, which processes the CSV files
to get them into the correct training format, before importing
the stored model from S3 feeding the live points to it. In step
3, the result of this, i.e. whether or not a maintenance inves-
tigation is needed, is communicated back to the API gateway
which then sends the result back locally, such as to the inter-
nal maintenance management system or off-site to the turbine
maintenance provider. In this way, each step of the pipeline is
a modular, customisable process that can be changed as plant
requirements and maintenance strategies are updated.

5. CONCLUSION

This brief outlines a data pipeline and framework for man-
aging a wind turbine maintenance application. The pipeline
is based on cloud technologies which enable it to be mod-
ular and robust, allowing components to be easily changed
and updated, or adapted for other applications. This particu-
lar use-case involves a wind turbine attached to a manufac-
turing plant, so is designed to integrate with existing sys-
tems for lightweight decision making. A similar version of
this pipeline is currently implemented for a different piece
of equipment at a manufacturing site, and this application is
designed to plug into and extend that existing framework.
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