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ABSTRACT 

The high-speed railway (HSR) transportation system in 
China has been growing rapidly during the past decade. In 
2016, the total length of HSR in China has reached to 22,000 
kilometers, and there are over 2,000 pairs of high speed trains 
operating daily. With the advancement of design and 
manufacturing technologies, the reliability and construction 
costs have been improved significantly. However, there is 
still great need for reduction of their operation and 
maintenance costs. With such incentive, a pilot project has 
been launched to develop a prognostics and health 
management system for rolling stock to transform the 
maintenance paradigm from preventive to predictive 
maintenance. Considering the high task variety and big data 
environment in HSR real-time monitoring system, a cyber-
physical system (CPS) architecture is proposed as the 
framework for its PHM system. This paper reviews the needs 
of predictive maintenance for the HSR system, and then 
present a concept design of the CPS-enabled smart operation 
and maintenance system. 

1. INTRODUCTION 

The high-speed rail (HSR) system in China has been growing 
rapidly since 2007. In 2016, there were over 2,000 pairs of 
high speed trains operating daily with total ridership of 1.4 
billion, making the HSR China most heavily used in the 
world. A recent survey conducted by Nomad Digital among 
rail operators shows that operation and maintenance costs 

have become the biggest concern (Feigenbaum, 2013), and 
China is no exception. For example, the maintenance 
paradigms of HSR in China is mainly preventive 
maintenance with large safety margin due to the high safety 
standard, which has caused considerable cost burden and 
challenges of sustainable growth of China’s HSR system; 
Meanwhile, many Europe countries such as Italy, France all 
have high safety requirements on their railway transportation 
systems and also encourage to reduce maintenance costs. 
Thus, it has attracted many attentions on new techniques for 
railway condition-based maintenance. These concerns have 
led to the development of Prognostics and Health 
Management (PHM) solutions in CRRC Group to transfer 
the condition monitoring data into desired information and 
knowledge to improve the life-cycle costs and service 
reliability (Lee, 2015).  
 
The enabling technologies to develop a PHM system involve 
condition monitoring, information and communications 
technologies (ICT), and more importantly predictive 
analytics technologies. The primary goal is to transform the 
invisible patterns of component degradation and loss of 
efficiency into health insights (Lee, 2015). A good example 
of PHM system practice in HSR is the TrainTracerTM 

launched by ALSTOM in 2006 for real-time remote 
monitoring of trains as reported by Worth et al. (2014). Lu et 
al. (2016) introduced another product named TrackTracerTM 
has also been developed by ALSTOM that is complementary 
to and integrated with TrainTracerTM to further enable 
predictive maintenance service for track infrastructures.  
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It has been has realized that manufacturing of rolling stocks 
solely has a predictable limit of market volume and profit 
margin. Therefore, predictive analytics and smart services 
have been introduced for enhancing the product competency 
and improving the sustainability of value chain. This paper 
discusses a framework design of predictive maintenance 
system based on the architecture of Cyber-Physical systems. 
 

2. PHM FRAMEWORK DESIGNED BASED ON 
CYBER-PHYSICAL SYSTEMS 

The concept of cyber-physical systems (CPS) has been 
defined as an engineered system in which the nature and 
human made systems (physical space) are integrated with 
computation, communication, and control systems (cyber 
space) in all scales (Incorporated, 2013). Lee, et al. (2013) 
proposed an implementation framework of CPS for 
predictive maintenance which consists of five levels. 
Inspired by the five-level architecture design of CPS, this 
paper proposes a framework for rolling stock predictive 
maintenance, which consists of the following elements, as 
seen in Figure 1. 

 
Figure 1: The PHM System Framework Design 

 
Data connection: There are various data sources from the 
rolling stock and the operating environment. Data sources 
related to operation conditions includes add-on sensors and 
controllers from critical subsystems, which include traction 
motor, power transmission systems, bogies and electronic 
systems. Railway infrastructure such as tracks, catenaries and 
point machines can also be sources of data that needs to be 
integrated in the onboard DAQ system.  
From data to health features: After connecting various data 
sources in the train, the data will be further converted to 
health related features in the onboard processing system. 
Signal processing, feature extraction, health assessment & 

diagnosis algorithms (such as self-organizing map, logistics 
regression, support vector machines, etc.) and predictive 
analytics are integrated in a train-based analytical server; The 
health information is then used to support the decision of 
drivers to be aware of the condition and potential risks.  
Data mining and modeling: The underlying features and 
selected raw data from fleets of trains are transferred to a data 
center. With a big data environment created, data mining for 
knowledge discovery and model development will be 
performed with advanced algorithms. Peer-to-peer 
comparison, information sharing, collaborative modeling, 
and time machine records of utilization matrix and health 
condition history will also be developed. Models created or 
improved in the data center is able to be deployed and 
updated to multiple fleets.  
Decision support Apps: In this level, the PHM analytics 
results of the railway system will be combined with the 
expert knowledge through their inputs for making optimal 
fleet management and maintenance decisions. The analytics 
results and decision support information will be shared in 
Web service APPs to different sectors, such as the HSR 
operators, OEMs, and service providers. 
 

3. A PREDICTIVE ANALYTICS INTERFACE TO CONNECT 
PHYSICAL AND CYBER SPACE 

For HSR systems, one could consider a variety of critical 
assets in the physical space, such as locomotive induction 
motor, bogies, wheelset bearings, and transmission gearbox. 
With various components and data sources, it urges to 
consider what hidden issues of the assets are of most concern, 
and what invisible information needs to be predicted and 
revealed in cyber space. For instance, the development of 
winding shortage is difficult to be measured directly, but 
could be monitored from sequence impedance features which 
are extracted from motor current and voltage signals. 
Therefore, appropriate features and analytical models need to 
be established in a cyber-physical interface to enable 
transparency of the hidden state in physical space as twin 
model representations in cyberspace, as indicated in Figure 2. 
The CPI introduces the concept of ‘Time Machine’ to convert 
the continuous and heterogeneous data source into structured 
data format for further computation. To improve data storage 
and computation efficiency, the snapshots of sensor data, 
controller data, and event data are all recorded instead of the 
raw time-series data. These snapshots are only taken in 
discrete time, and can be triggered by either fixed time 
intervals, or based on event such as change of operation 
regimes and health status. During the lifecycle of a machine, 
these snapshots will be accumulated to construct the ‘time 
machine’ history of condition changes of the assets. Each 
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snapshot record can be used as a twin model of a particular 
condition for peer-to-peer comparison and causal 
relationship modeling between the assets. 

 
Figure 2: Cyber-Physical Interface Platform for HRS 

Applications 
 

3.1. Introduction to Time Machine 

The Cyber-Physical Interface (CPI) first introduce the 
concept of ‘Time Machine’ to convert the continuous and 
heterogeneous data source into structured data format for 
further computation. To improve data storage and 
computation efficiency, snapshots of sensor data, controller 
data, and event data are recorded instead of the continuous 
time-series data. This step usually involves signal processing 
and feature extraction techniques in different domains. These 
snapshots are only taken in discrete time, and the can be 
triggered by either fixed time intervals, or based on event 
such as change of operation regimes and health status. During 
the life-cycle of a machine, these snapshots will be 
accumulated to construct the ‘time machine’ history of 
operation and condition changes of the particular assets. Each 
snapshot record can be used as a particular machine at a 
particular condition for peer-to-peer comparison and causal 
relationship modeling between the assets.  An illustration of 
Time Machine approach for cyber-physical interface is 
presented in Figure 3.  
 

3.2. Adaptive Clustering for Self-aware Machine 
Analytics 

A challenge for effective and efficient snapshot collection to 
construct the ‘time machine’ of monitored asset is to 
determine the state of each snapshot. The state could be 
defined as possible working regimes, machine condition, 
degradation pattern, and failure modes. In addition to classify 

the snapshots with known state, it should also identify new 
state that has not been observed to enable self-awareness and 
self-learning capabilities of CPS.  

 
Figure 3: Time machine approach for CPI 

For fleet assets that perform similar tasks under similar health 
conditions, the symptoms in the feature space should also be 
similar. Under this assumption, the snapshots of fleet assets 
over time should have clustering tendencies, where snapshots 
at similar state tend to gather together in feature space. 
Unsupervised learning algorithms such as self-organizing 
map, discriminant diffusion maps, and Laplacian Eigenmaps 
can be used for autonomously creating clusters for different 
working regimes and health conditions. The framework 
illustrated in Figure 4 provides an online updating 
mechanism for state awareness of monitored asset (Lee, 
2015).  The algorithm compares the latest snapshot with the 
existing clusters, and afterwards, the state is updated in two 
scenarios: (1) the snapshot is assigned to an existing cluster, 
and the is labeled as having the same state of the identified 
cluster; and (2) there is no similar cluster found, and the 
algorithm will hold this sample until it sees enough counts to 
generate a new cluster. 

 
Figure 4: Adaptive clustering for self-awareness of 

machine state 
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3.3. Fleet-based Analysis for Enhanced Prognosis 

Unlimited existence of twin models results in continuous 
accumulation of time machine records and consequently 
gathering clusters of identical components in time horizon. 
The time machine records in cyberspace are discrete and 
structured, which allows comparison and clustering from 
different dimensions. There are generally three dimensions 
of comparison between the time machine records. To 
compare the same unit in time horizon is the most widely 
adopted method for fault prognosis. In such process, the 
degradation of the unit is monitored by performing an 
objective comparison between the latest input vector and 
baseline model, and early warning of fault can be triggered 
when the variation has exceeded a given threshold. Beyond 
that, the comparison can also be performed between units at 
similar operation regimes. Based on similarities between 
machine conditions, clustering methods can be applied to 
group the machines under similar conditions to generate local 
baselines. Lapira (2012) investigated the use of clustering 
algorithms and peer-to-peer comparison approach for fault 
detection in a fleet of assets, such as wind turbines and 
industrial robots. Moreover, peer-to-peer comparison can 
provide performance ranking information to prioritize 
maintenance actions and balance load stress between a 
network of machines. Last but not least, the time machine 
trajectory can also be compared between units to improve the 
accuracy of RUL prediction and performance synthesizing. 
The goal is to accumulate a library of time machine 
trajectories, and when the time machine records over time of 
the current asset is obtained, prediction of future performance 
is done by measuring the pairwise similarity between the 
current trajectory and a snapshot of the trajectories in the 
library. The prediction of future trend for the current 
trajectory is a weighted ensemble of the best matching 
trajectories in the library. Successful implementation of this 
concept includes RUL prediction of jet engines (Wang, 2008) 
and performance prediction in manufacturing process (Liu, 
2007).  
 

 
Figure 5: Peer-to-peer comparison horizons and their 

purposes  
 

4. CASE STUDY 

Induction motor is one of the major component of the rolling 
stock. Winding insulation degradation is a critical failure 
mode in the health management of locomotive induction 
motors. In this case study, current and voltage signals from 
the three phases of the induction motors were collected from 
an in-service high-speed train. As the signature of the 
machines may differ significantly during different 
operational regimes, it is necessary to divide the data samples 
into clusters according to the working regime under which 
each sample data was collected. A frequency-domain based 
technique was used to estimate the motor speed during data 
collection. This was done by tracking the location of the main 
peak in the motor current spectrum, in which the frequency 
is related to the speed of the train.  
Negative-sequence impedance is an effective parameter for 
evaluating the symmetry of the current and voltage in a three 
phase system. It is calculated by computing the symmetrical 
components of both current and voltage in a three-phase 
system. In this case study, the negative-sequence impedance 
feature was calculated when the motors were in constant 
speed, and was used to derive the indicator to infer the health 
condition of motor winding. In terms of fault detection, peer-
to-peer comparison of the negative impedance features 
between the motor fleet is proved to have better detection 
accuracy.  Figure 6 shows the results of the analysis for 
motors of two locomotives, and the motor with winding fault 
damage is labeled in red. 
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Figure 6: Distribution of negative impedance of healthy and 

abnormal locative motors 
 

5. CONCLUSION 

In this paper, the experience of HSR condition monitoring 
and concepts of CPS are combined to consider a framework 
of PHM system architecture and discuss the elements in the 
framework. The PHM system architecture proposed in this 
paper is designed to meet the requirements and challenges in 
large fleets and big data environment. A train-based agent 
with smart analytics algorithms is used to collect data and 
convert them to health related information. The underlying 
features and selected raw data are further transferred to the 
data center for knowledge discovery, model development, 
and decision support. The health insights and decision 
references can be further used by different sectors of the HSR 
industry through App services to improve collaborative 
optimization and synchronization. 
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