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ABSTRACT 

The modernization of industrial sectors involves the use of 
complex industrial systems and therefore requires condition 
based maintenance. This one aims at increasing the opera-
tional availability and reducing the life-cycle while increas-
ing the reliability and life expectancy of industrial systems. 
This maintenance also called predictive maintenance is a 
part of an emerging philosophy called PHM ‘Prognostics 
and Health Management’. 

In this paper, the PHM will be emphasized on the existing 
diagnostic methods used for fault isolation and identifica-
tion. This depicts an important part of the PHM as it ex-
ploits the data given by the signal processing step and its 
output is treated by the prognostic part. The diagnostic is 
mainly classified in three categories that will be highlighted 
in this paper. 

1.  INTRODUCTION 

PHM was widely considered by industrials as an approach 
for the health management of systems. Their main duties are 
the detection of incipient components, failure mode identifi-
cation and isolation, failure prognostics and health man-
agement (Atamuradov et al., 2018). PHM allows mainte-
nance to be performed more efficiently by integrating PHM 
data (eg. the RUL "Remaining Useful Life") from: 
- The health assessment derived from detection, mainte-

nance data (resources and inventories), logistical con-
straints and information on the planned mission. 

- The location and identification of failures resulting from 
diagnostic. 

- The prognostic of the state. 
 
 

The PHM is composed of a key milestone conditioning its 
success:  the diagnostic. This latter is defined as a process of 
detection and location of faults. The diagnostic represents 
the information obtained by sensors in a space composed by 
features. These features generate a representation space 
allowing the identification of faults (Jardine et al., 2006). 
The diagnostic of faults, while the system is running, avoids 
unplanned outages and at the same time reduces productivi-
ty losses. Therefore, the diagnostic of faults is a research 
topic that is of interest for the industry and has been the 
subject of extensive research to develop more effective 
methods. The diagnostic step can be modeled as described 
by fig. 1 (Elghazel et al., 2015). First, the fault is detected 
according to an anomaly observed on the system. Then, this 
fault is isolated so that the source of fault is defined.  

 
Figure 1. Flowchart of diagnostic. 

Diagnostic methods studied in (Alhelou, 2019; Gao et al., 
2015; Gertler, 2017; Hwang et al., 2010; Skliros et al., 
2019) can be classified into two categories: methods based 
on a physical model and data-driven methods. Besides, 
(Atoui et al., 2016; Benkouider et al., 2012; Ghosh et al., 
2011; Lin et al., 2004; Maurya et al., 2007; Siswantoro et 
al., 2016; Zhao et al., 2013) highlighted a new family called 
hybrid methods in order to optimize the diagnostic perfor-
mance. This new family is described in section 4. 

 The hierarchy of diagnostic approaches is shown in fig. 2. 

Fault detection Fault isolation Fault identification
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Figure 2.  General classification of diagnostic methods. 

Model based methods can be classified as qualitative or 
quantitative. The model is typically developed on the basis 
of the representation of the behavior of the system. In quan-
titative models, this understanding is expressed in terms of 
mathematical relationships between the inputs and outputs 
of the system. In qualitative models, these relationships are 
expressed in terms of qualitative functions. For the database 
methods, only the availability of a large amount of historical 
data on the system is assumed. These can be processed and 
presented as a priori knowledge to the diagnostic. This is the 
feature extraction process from the historical data of the 
system. This initial analysis will optimize the diagnostic 
process. When it is possible to model the system with a lack 
in historical data, it is more suitable to use Model-based 
models (Gao et al., 2015). 

2. MODEL BASED METHODS 

2.1. Quantitative methods 

2.1.1. Observers 

The diagnostic based on observers is applied on an observa-
ble system which means that their internal states can be 
deduced from their outputs. Furthermore, it is necessary to 
identify the system parameters. The principal objective of 
observer-based diagnostic is the generation of a set of resid-
uals allowing the detection and uniquely the identification 
of different faults (Alhelou, 2019). The differences between 
the measured output of the system and the values estimated 
by the model are used as a residue. A residue near to zero 
represents a system in a good health. However, a residue 
distant to zero indicates a discrepancy between the system 
output and the output predicted by the model. This differ-
ence allows detecting a fault in the system. Figure 3 shows 
the conceptual diagram of a residue generator based on an 

observer. Where yK is the measured output, ˆ
Ky is the esti-

mated output, UK  is the system input and K is the residue 
calculated at each discrete step time (K). 
 

 
Figure 3. Residues generator based on observer. 

Different observers have been developed in literature. For 
instance,(Eissa et al., 2019; Jlassi et al., 2017; Palak, 2017), 
used Luenberger observer introduced by Luenberger in 1966 
(see fig.4), where the observer can be presented by the fol-
lowing equations: 

1 d d obs
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With X̂ is the estimated state of the system and Ad, Bd and Cd 
are respectively the state matrix, the control matrix and the 
measurement matrix. Kobs is the gain of the observer. The 
observer is qualified as asymptotically stable if the observer 

error ˆ( ) K Ke K X X  tends to zero when K tends to infini-

ty. 

 

Figure 4. Structure of Luenberger observer. 

Another kind of observer was introduced by Kalman in 
1996 which is the Kalman filter. This observer is used for 
stochastic systems and consider the model uncertainty and 
the measurement noise by the following equation: 

1 d d

d
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X X WU

Y X V


   
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Where WK (the process noise) and VK (the measurement 
noise) are white noises and supposed non-correlated. (Sara-
vanakumar et al., 2014) proposed a bank of Kalman filter 
called dedicated observer scheme (DOS) and generalized 
observer scheme (GOS). The DOS and GOS detect, respec-
tively, simultaneous and multiple sensor faults.  
In DOS, each observer considers one sensor output corre-
sponding to the fault supposed to be detected (Alrowaie et 
al., 2014; Dey et al., 2015). A dedicated residual set is de-
fined as: ri ϵ{1,2,…,M} with M is the number of faults to be 
detected. Then, residues undergo a thresholding operation in 
order to ensure fault occurring and avoid false alarm : ri(t) 
>i  where I  are the thresholds for each residue ri   (Idrissi et 
al., 2017). For GOS, each observer considers all the sensors 
output except the monitored sensor. 
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Kalman filter (KF) is an optimal observer for linear systems 
and Gaussian disturbances. However, when the system is 
nonlinear and when the noise is still Gaussian, KF may not 
converge. To avoid this drawback, the extended Kalman 
filter (EKF) was proposed in (He et al., 2015). The EKF was 
used in (Yin et al., 2016) to diagnose the stator winding 
fault in the brushless wound field synchronous generator 
using the estimated rotor currents. Another alternative was 
proposed in (Ariola et al., 2015). It consists of developing a 
scheme based on an augmented stage Kalman filter (ASKF) 
with a bank of integrators. This model is composed by one 
observer and a bank of integrators where each integrator is 
related to the sensor fault detection. When system uncertain-
ties and noise disturbance are absent and all sensors are 
normal, the integrator outputs are equal to zero. Further-
more, when a fault occurs in the i-th sensor, only the i-th 
integrator changes its state which is presented by yi where 
yi=(y1,…, yi,….yn) are the outputs of the integrator bank. 
Moreover, the observer gain was calculated by linearizing 
the system model and is kept constant.  

More observers have been introduced to alleviate this draw-
back and can be applied to nonlinear systems and non-
Gaussian distributions such as particle filtering (PF) which 
is adaptable to any nonlinearity and any noise distribution. 
In (Souibgui et al., 2011), the authors presented sequential 
Monte-Carlo technique implemented in the PF in order to 
approximate the optimal filtering with sufficient number of 
samples. This method, used in (Saravanakumar et al., 2014) 
for sensor fault diagnosis, was also used in (Chen and Saif, 
2007) for actuator fault diagnosis. 

2.1.2. Parity space 

Parity space (PS) method was designed, first, for static sys-
tems. Then, it was extended to dynamic systems (Blesa et 
al., 2016). This approach consists of transforming the state-
space model of the system to generate analytical redundancy 
relations (static or dynamic) among the inputs and outputs 
of the system considered as measured variables. Analytical 
redundancy relations are obtained by eliminating unobserv-
able model state variables. Analytical redundancy relations 
are then used to construct fault indicators for diagnostic. 
Methods based on the parity space and observers are similar 
as shown in researches of (Hafaifa et al., 2015; Jiang et al., 
2018; Laamami et al., 2015; Vento et al., 2015; Zogopou-
los-Papaliakos and Kyriakopoulos, 2019). Figure 5 gives a 
conceptual scheme of the space parity for a residue genera-
tor (Ding et al., 2011). 

 
Figure 5. Residue generator by parity space. 

In (Yin et al., 2014), a scheme was developed for fault de-
tection in wind turbines. This scheme was proposed in 
(Ding et al., 2010) and consists of four steps. Initially, the 

parity space is directly designed from the measurements. 
Then, the parity vectors are determined by a performance 
index and an optimization criterion in order to make the 
residue generation independent of disturbances and sensitive 
to sensor faults. After this, n independent residual signals 
using observers are generated. Finally, the residuals signals 
are evaluated and compared with a threshold in order to be 
the input of decision logic. 

2.1.3. Parameter estimation 

Methods of parameter estimation were proposed by (Capo-
lino et al., 2015; Jiang et al., 2008; Kim et al., 2013), for the 
detection and diagnostic of faults. It is based on the assump-
tion that faults affect the physical parameters of the system. 
The occurrence of a fault can be detected by comparing 
estimated parameters with the real parameters of the system. 
Any difference between the two gives an indication about 
the presence of a defect. Figure 6 shows the conceptual 
diagram of the parametric identification for diagnostic. In 
this method, deviations (εK) from the reference model are 
used for faults detection and isolation, which can be also 
useful for fault analysis (Gertler, 2017). 

 
Figure 6. Schematic description of the parameter estimation. 

(Ding et al., 2016) presented a parameter estimation model 
applied to nonlinear systems and proposed a recursive least 
squares (RLS) algorithm. This algorithm aims at estimating 
parameters recursively by minimizing the square error be-
tween the observed and the estimated outputs of the system. 
Wang pointed out the parameter estimation problem in 
block-oriented Hammerstein systems (Ding et al., 2016), 
which are composed of a nonlinear static block followed by 
a linear dynamic block with multi-input multi-output struc-
ture. (Xu et al., 2015) developed a method for parameters 
estimation applied to transfer function of a second order. 
This method is based on Newton iterative algorithm based 
on minimizing a defined cost function. Results showed that 
this method gives satisfactory results. 

2.2. Qualitative methods 

2.2.1. Causal models 

The oriented graph allows connecting the fault causes (xi) to 
their symptoms (xj) by relations of cause and effect. The 
diagnostic consists of locating all possible sources of dis-
turbance by online sensors data. The cause-effect relation-
ships can be represented in the form of signed directed 
graphs (SDG). A directed graph is a graph with directed arcs 
between nodes (xi, xj). A SDG is a graph where nodes and 
variables are assigned by a sign (+, -, 0). These signs are 
obtained by comparing them to thresholds depending on 
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whether it is a normal value (0), too high (+) or too low (-). 
SDG is also represented by arcs related by signs (+,-). These 
signs express positive or negative relations between nodes 
(Yang et al., 2012). Methods based on directed graphs are 
attractive because little information is needed to establish a 
network of directed to make the diagnostic. In fig. 7, two 
examples of SDG are presented: in a) when xi is getting 
high, xj will decrease and in b) when xi is getting high, xj will 
not change its value suddenly but will decrease gradually 
and at a point of time it will increase.  

Signed oriented graphs (SOG) are built from nodes and 
directed branches representing the paths of causality in a 
system without faults. Nodes of the SOG correspond to state 
variables, state of alarm, or the origins of defects. It is as-
sumed that a fault affecting one of the root nodes of the 
SOG is the source of all disturbances. It is also assumed that 
the defect does not affect other pathways in the OG.  

 
Figure 7. Two examples of link in SDG. 

Recently, (Liu et al., 2016) introduced a method based on 
SDG for fault detection and diagnostic applied on nuclear 
power plants. It consists of combining a flow chart to the 
experience knowledge to solve online fault deduction. A 
status matrix is calculated and implemented to simulate the 
fault propagation path and its cause. Other works for fault 
diagnostic based on SDG can be found in (Gao et al., 2010; 
Hua et al., 2011). 

2.2.2. Fault Tree 

A fault tree describes all combinations of events leading to a 
fault. It translates the behavior of a fault in a visual diagram 
where a set of rules, logic and symbols provides a mecha-
nism for analyzing complex systems. Figure 8 shows the 
basic structure of a fault tree for the diagnostic of a fault. 
The upper portion (also called top event TE) of the tree is 
the defect to be analyzed. The lower part (called basic 
events BE) is connected to the upper through intermediate 
events (usually called nodes). This part shows how the de-
fect is propagated in the system part. Events in a level of a 
fault tree are connected to the events of the next level 
through logic gates (AND, OR, etc.). 
 

 
Figure 8. Basic structure of a fault tree. 

Recently, (Nouri.Gharahasanlou et al., 2014) used the fault 
tree analysis to assess the probability of a failure occurrence 
for certain equipments in the Azarabadegan Khoy cement 

plant. The study showed that there is a probability of a fail-
ure for crushing, conveyor systems, crushing and mixing 
bed hall department equivalent to 73, 64 and 95 percent 
respectively. In the same year, a study of Purba has been 
published in (Purba, 2014) about the application of the fault 
tree analysis for nuclear power plant probabilistic safety 
assessment. This analysis introduces a fuzzy approach to 
estimate failure probabilities from insufficient historical 
data. These probabilities are modeled by fuzzy membership 
functions. This method showed very satisfactory results by 
applying the fault tree in the case of insufficient historical 
data. 

Lately, Ruijters and Stoelinga established in (Ruijters and 
Stoelinga, 2015) the state-of-the-art in the modelization, 
analysis and tools of fault tree analysis. The fault tree analy-
sis was presented in its qualitative and quantitative use and 
some of their extends were also presented.  

3. DATA DRIVEN METHODS 

Contrary to model based approach where a priori knowledge 
on the system is necessary, in the data-driven approach, only 
the analysis of the recorded data is required. The objective 
of this approach is to develop diagnostic methods without 
modeling the system. Data-driven methods can be either 
qualitative or quantitative.  

Two of the main methods, which extract qualitative infor-
mation, are expert systems and qualitative trend analysis. 
Methods that extract quantitative information may be statis-
tical or non-statistical methods. Nowadays, data mining is 
one of the most active areas of research. The main ad-
vantage of fault diagnostic by data mining is the automatic 
generation of concise and accurate diagnostic models from 
historical data. 

3.1. Qualitative methods 

3.1.1. Expert system 

The expert system, as shown in fig.9, is defined by Angeli 
(Angeli and Chatzinikolaou, 2004) as "an intelligent com-
puter program using the knowledge base and an inference 
engine to solve the problems from human expertise". This 
knowledge base is combined to a rule base indicating the 
way of applying this knowledge to problems. These rules 
are IF-THEN statements. Many researchers worked on the 
application of expert systems for diagnostic problems. 
(Saludes et al., 2003) proposed an integrated framework 
including a SOM (self-organizing map) neural network 
subsystem and an expert system for fault detection and 
isolation in a hydroelectric power station. The expert system 
was developed in cooperation with technicians and engi-
neers of the power station. The neural network subsystem 
was trained with data collected from the power station over 
one year. The expert system and the neural networks sub-
system showed a good complementarity, where expert sys-


ix jx

jxix
(0, , ) 

a) b) 
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tem detects already known faults. Neural network subsys-
tem was able to detect unknown faults. The advantage of an 
expert system is its simplicity of implementation. However, 
it fails to detect new faults without known signatures and 
needs continuous updating (Guo et al., 2019). 

 
Figure 9. Architecture of an expert system. 

3.1.2. Qualitative trend analysis 

The qualitative trend analysis (QTA) is used to explain 
various important events occurred in a system. It uses in-
formation about trends present on sensor measurements via 
two steps: (i) the identification of trends in the measures and 
(ii) interpretation of trends in terms of fault scenarios. This 
allows fault diagnostic and prediction of future states. Many 
methods have been developed to represent the tendency of a 
system. Among them, the representation by triangular epi-
sodes and identification of primitives (episodes) by neural 
network and trends analysis by wavelet (Villez, 2014).  

Very recently, Zhou and Ye developed a novel method of 
QTA called polynomial fit-based methods for qualitative 
trend analysis in (Zhou and Ye, 2016). This method consists 
of complementing the model of trend analysis developed by 
(Dash et al., 2004) with four polynomial fit-based trend 
extraction algorithms aiming at automatically estimate the 
parameters such as thresholds and noise level. 

3.2. Quantitative methods 

3.2.1. Multivariate statistical methods 

Applications of multivariate statistical methods for the diag-
nostic of defects such as principal component analysis 
(PCA) have been widely reported in the literature. An over-
view of the use of PCA in the fault diagnostic has been 
given by (Ding et al., 2010; Jing and Hou, 2015; Yin et al., 
2014). The PCA, as shown in fig. 10, is a method of feature 
reduction. It minimizes the sum of squared error (Euclidian 
distance) between the observations and their projections 
(Harmouche, 2014). It transforms a set of n-initial features 
(health indicators) into a reduced set of uncorrelated fea-
tures, which explain most of the variations of the system by 
using tools of linear algebra (Eigen value decomposition) 
and statistical analysis (variance-covariance) to construct a 
representative model that can be used for the diagnostic of 
faults (Sliskovic et al., 2012). In (Pontoppidan and Larsen, 
2003), a novel method for health monitoring applied on 

diesel engines have been developed. This method uses Inde-
pendent Component Analysis (ICA) and probabilistic 
anomalies detection algorithm. By considering q independ-
ent and non-Gaussian vibration sources and N sensors that 
give N output signals recorded in the same time, the ICA 
dissociates independent sources linearly mixed in these 
signals by estimating the mixing ratios of the source signals 
in the recorded observations (Zuo et al., 2005). Another 
multivariate statistical method has been developed in (Wang 
and Nee, 2009) and (Duda et al., 2012) is the Fisher Linear 
Discriminant. This method reduces the dimensionality by 
seeking a projection that best describes the data according to 
least square error in order to keep the judicious information 
for discrimination. 

 
Figure 10. An example of PCA application. 

3.2.2. Neural network 

Neural networks (NN), used for fault diagnostic, can be 
classified according to the network architecture and the 
learning method (Liu et al., 2018). There are several papers 
dealing with the problem of fault diagnostic using neural 
networks. They can be applied to fault diagnosis using dif-
ferent approaches. Pattern recognition approach and residual 
generation decision making are the most common ones 
(Srivastava et al., 2014). Neural networks strength lies in the 
ability to combine multiple non-linearities to mimic virtual-
ly any input-output map without requiring the physical 
model of the system (Zappone et al., 2019). 

From an architecture point of view, the NN can have several 
forms. In (msaaf and Belmajdoub, 2015), authors presented 
a comparison between the most common NN architectures 
used in diagnosis, namely, multi-layer (MLP) perceptions, 
radial basis function (RBF) networks, Kohonen chart (self-
organizing map) and the random vector functional link 
(RVFL) network. 

First, the neuron is a mathematical modeling of the natural 
neural as described in fig.11 where the output (yj) is given 
by: 

          
 

1{1,2,..., }

 
n

T
j i ij j j

ij N

y x b W X b  


 
    

 
  (3) 

Where yj is the output (health status) corresponding to the j-
th input vector Xj jϵ{1,2,..,N}. N is the number of input vector. 
W denotes the vector of weight ωi, n is the number of health 
indicators. xij iϵ{1,2,..,n} is the value of the i-th health indicator 
of the input vector Xj. b is the bias and φ is the activation 
function. 
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Figure 11. Simple neuron. 
 
When the activation function is a sign function, then this 
form is called "perceptron" (SP), introduced by Rosenblatt 
in (Rosenblatt, 1958). By affecting a set of SP to successive 
layers, namely: input layer, hidden layers and output layer, 
we obtain the multilayer perceptron (MLP) (see fig. 12).  

 

Figure 12. An example of the MLP architecture. 

The computations performed by the SP with a single hidden 
layer of nonlinear activation functions and an output layer 
with linear functions can be written mathematically as fol-
lows: 

 
{1,2,..., }

j j
j N

y B AX a b


    (4) 

Where Xj is an input vector of n-health indicators and yj is 
the output vector. A is the matrix of weights of the first 
layer, a is the bias vector of the first layer. B and b are re-
spectively, the weight matrix and the bias vector of the 
second layer. The function φ denotes an element wise non-
linearity. 

The third architecture is the RBF developed in (msaaf and 
Belmajdoub, 2015) and introduced in (Broomhead, 1988). It 
consists of a neural network composed of typically three 
layers (see fig. 13). A radial basis function is used as an 
activation function. The output of the network is a linear 
combination of these functions, the inputs and neural pa-
rameters. 

The most common activation function of each input is the 
Gaussian function: 

                                
2

ij i

i

x

iRBF e








  (5) 

where µi is the center of the hidden neuron and σi is the 
standard deviation of the hidden neuron. 
When applying the activation function RBFi, it is noticeable 
that if the input vectors are exactly the center of the class 
then the function returns 1 and if the distance between them 
increases, the output decreases from 1 to 0. 

 

Figure 13. RBF network. 

 
This architecture has the advantage of locally representing 
the space of learning towards centers and also thanks to its 
nonlinear approximation property. Because of their univer-
sal approximation, more compact topology and faster learn-
ing speed, RBF networks attracted considerable attention 
and they are widely applied in many science and engineer-
ing applications (Kurban and Beşdok, 2009). 

Self-Organized Map (SOM) was used for fault detection and 
health monitoring of aircraft engines and bearing systems 
(Moshou et al., 2010). SOM or Kohonen map is an artificial 
neural network using low dimensional representation of the 
input space called a map (Cottrell et al., 2009). The theory 
of this architecture was presented in (Kohonen, 2001) by 
Kohonen. This consists of the training (setting up the map) 
and mapping (classifying a new input). SOM is composed 
of two layers, the input layer and the output layer. This layer 
is a two-dimensional space where each input of the vector Xj 

is connected to all the output neuron within weights noted 
ωℓi. ωℓi is the weight between the i-th input (xij) of the vector 
Xj and the ℓ-th neuron. This architecture is used for unsu-
pervised classification. This means that for a space of input 
elements, the SOM is able of grouping them in classes.  
(Urmos et al., 2013) presented the fourth steps of establish-
ing SOM. In the initiation step, random weights are affected 
to p defined connections. Then, in the competition step, for 
an input xij i={1,..,n} and a weight ωℓi affected to the connec-
tion between the i-th input and ℓ-th neuron (ℓ=1,…,p), a 
discriminant function for each neuron is given by: 

                             

2

1

( ) ( )
n

ij i
i

d X x 


    (6) 

which means that the chosen neuron has the nearest weight 
vector to the input vector. In the cooperation step, a decreas-
ing exponential function, depending on the distance between 
the chosen neuron and the other neurons, is defined. This 
takes into account the fact that when a neuron is chosen, 
their neighbors are also chosen with a topological neighbor-
ing that deceases exponentially in function of distance. In 
the adaptation step, as the neurons are self-organizing, the 
winner weight changes to resemble more to the sample 
vector and the neighbors weights change also but not in the 
same degree (see fig. 14). 
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Figure 14. The winner neuron (beige), the stimulated neighboring neurons 

(red). 

Neural networks can be used with other methods like the 
empirical mode decomposition. In (Ben Ali et al., 2015), it 
has been presented a novel method which consists of apply-
ing the EMD method to vibration signals of rolling element 
bearing and then selecting the most important intrinsic mode 
functions (IMFs) which have been used as input for the 
ANN. In this paper, it was proven that ANN is one of the 
most effective technique for automatic degradation assess-
ment of bearing. The ANN and the support vector machine 
(SVM) were used for fault diagnosis in (Yang et al., 2011). 
This method uses vibrations signals of a gearbox, extracts 
the pertinent features and then, a comparison is established 
between applying ANN and SVM which demonstrates that 
SVM is more effective than ANN. 

3.2.3. Classification 

The diagnostic of faults can be obtained by using the classi-
fication approach (Casimir et al., 2003a, 2003b; Ondel et al., 
2006; Soualhi et al., 2011). The goal is to classify measured 
data called observations (Xj j={1,..,N}) into classes (Ω1, Ω2, ..., 
ΩM) corresponding to the health status of the system (see 
fig. 15). Where M is the number of classes and N is the 
number of observations. An observation                         Xj= 
[x1j, x2j, ..., xnj] is composed by a set of n-features (faults 
indicators) xij i={1,..,n}. These features allow constructing a 
representation space allowing to distinguish patterns (clas-
ses). In the case of n-features, the observation Xj is defined 
in an n-dimensional space. 

 
Figure 15. Classification of the observation xi to one of the classes 
(Ω1,Ω2,…,ΩM). 

The classification problem was approached by pattern 
recognition methods (K-means, nearest neighbor…) in  
(Baraldi et al., 2016; Glowacz and Glowacz, 2017), and 
neural networks recently (Jia et al., 2018). There is two 
types of classification: supervised classification and unsu-
pervised classification. 

The supervised classification deduces a function from a 
training set of samples. Each sample is a pair of an input (an 
observation Xj) and a label noted "o" (the class membership 
of the observation Xj). A supervised learning algorithm is 
then used to produce a membership function between Xj and 
o. Then, this membership function will be used to classify 
new observations. Rejection options can be implemented in 
order to avoid ambiguous classification. 

The unsupervised classification analyses observations re-
gardless of their labels to highlight classes with similar 
observations. The "clustering" is a typical example of the 
unsupervised classification where observations are grouped 
into classes based on similarity measure between observa-
tions. Supervised and unsupervised classification are two 
ways to solve the problems of pattern recognition. The 
choice of the classification type depends on the availability 
of the training set. If a priori knowledge of class member-
ship is available, i.e. the health status of the corresponding 
system, we talk about supervised classification. Otherwise, 
we talk about unsupervised classification. 

In (Younus and Yang, 2012), Younus and Yang presented 
an intelligent fault diagnosis (IFD) of rotary machinery by 
using features processed and extracted from infrared thermal 
image. The IFD uses support vector machines (SVM) and 
linear discriminant analysis (LDA) methods as classifiers. In 
the field of machine learning, SVM are supervised classifi-
cation technique drawing a boundary between two classes in 
order to maximize the margin between them. The points 
employed to determine this distance are called Support 
Vectors (SV) (see fig. 16). A kernel can be used to classify 
nonlinear separable classes. 

Recently, Lu and Qiao proposed in (Lu and Qiao, 2013) a 
novel method of SVM-based classification used for fault 
diagnosis of drivetrain gearboxes functioning in variable 
speed conditions. The experimental results of a gear crack 
fault demonstrate the success of this method for fault identi-
fication.  

 
Figure 16. SVM applied on a set of observations. 

 

ωℓi

x1j x2j … xnj

Input vector Xj
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In the range of the unsupervised classification, many parti-
tioning algorithms were developed. They consist of defining 
gravity centers representing the centers of classes and then 
build classes by affecting each observation to the appropri-
ate class. The affectation in the case of fuzzy clustering is 
done by a membership function indicating the degree of 
similarity of an observation to each class. The fuzzy c-
means clustering algorithm which belongs to the C-means 
family has successfully been applied to a wide variety of 
problems (Leski, 2016). For this family, the gravity center 
of a class is the mean of all observations, weighted by their 
degree of belonging to the class. The assignment of an ob-
servation to a class is obtained by minimizing an objective 

function: 
2

1 1

min
N M

j j

j

arg X g
 

 






 

where each element jℓ  refers to the similarity degree of an 
observation Xj to the class Ωℓ. The algorithm returns gravity 
centers {g1,...,gM} and a similarity matrix W= jℓ	∈	[0,1], 
where j=1,…,N; ℓ=1,…,M; N is the number of observations 
and M is the number of classes. In  (Fontes and Pereira, 
2016), this algorithm was applied and verified for the clus-
tering of starting patterns in a gas turbine for fault detection 
purposes.  

3.2.4. Bayesian approach 

A Bayesian network (BN) represents a network of directed 
acyclic graph where nodes are considered as faults. This 
means that BN links between faults and their symptoms. 
The node of faults is often root node, which do not have any 
input arc but have prior probabilities. A descendent node 
has conditional probabilities that represents all possible 
combinations of their states and their parent nodes’ states 
(Zhao et al., 2017). In (Zhao et al., 2015), which is the se-
cond part of the latter paper, BN-method was used for diag-
nosing air handling units faults and the study showed that 
this method is powerful even with lack on information. 

4. HYBRID METHODS 

In order to enhance diagnostic performance, model-based 
and data-driven approaches have been combined. Methods 
created by combining more than one data driven technique 
remain a data driven approach. Hybrid methods aim to en-
hance the diagnostic accuracy by leveraging the advantages 
and avoiding the limitations of their consisting methods 
(Skliros et al., 2019). In (Luo et al., 2010), a hybrid ap-
proach which combines model-based and data-driven meth-
ods was investigated to obtain better diagnostic performance 
of a vehicle’s antilock braking system. First, parity equa-
tions and a nonlinear observer were combined to generate 
the residues. Then, statistical tests and the support vector 
machine were used for fault isolation. Finally, subset selec-
tion is used to accurately estimate the fault severity. In 
(Ghimire et al., 2011), a hybrid method was proposed to 

fault detection and diagnosis for a vehicle’s electronic pow-
er system. Model based methods were used for fault detec-
tion and data driven methods for fault isolation. Residues of 
the observed measurements to a predefined threshold were 
used for fault detection. Partial Least Square algorithm was 
used to dataset dimensionality reduction. The reduced di-
mensionality data was used to train machine learning algo-
rithms (support vector machine, probabilistic neural net-
work, and nearest neighbor) to classify different faults. 
Finally, SVM regression was used to estimate the fault se-
verity.  

5. CONCLUSION 

This paper reviewed the most methods used in the diagnos-
tic of faults in industrial systems. These methods reinforced 
by prognosis methods can lead to an effective reduction of 
unplanned outages and increase reliability and dependability 
of systems and thus reduces maintenance costs. The state of 
art proposed in this paper reveals that several methods can 
be classified in: model-based, data-driven and hybrid meth-
ods. In general, model-based approach is very reliable even 
with a lack in historical data but their applicability depends 
on detailed physical model whose coverage will necessarily 
be limited by their ability to integrate a physical understand-
ing of the failure process or system degradation. In addition 
to this, data-driven approach does not require knowledge of 
the system physics but it is based on the historical data of 
measurements and often actual observations in order to run 
the method online. Finally, the hybrid approach consists on 
gathering methods from model-based and data driven 
whether from the same type or heterogeneous. These com-
binations aim at reducing classification error in the case of 
diagnostic application 

Indeed, nobody can affirm that an approach is the best be-
cause the choice relies on the application and the type of 
inputs. However, in most of cases, the system modeling is a 
hard task for complex systems which makes data-driven 
methods either for diagnostic or prognostic more applicable 
in most cases. In the later researches, it is recurrent to find 
hybrid methods because a perfect single method does not 
exist. 

A comparison between the different methods used for the 
diagnostic of defects is shown in Table 1. The purpose is to 
identify the strengths and weaknesses of diagnostic methods 
mentioned above. Research conducted by (Venkatasubra-
manian et al., 2003) are used to define new features to judge 
a diagnostic method. 
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Methods 
 

Criteria 

Parity space 
or observers 

parametric 
estimation 

expert Systems SDG QTA PCA 
Neural 

Networks 
Classification 

Fast detection 
and diagnostic  X  ?     

Identification    X     

robustness  ?     ? ? 

Identification of 
new faults  X X  ?  ?  

None required 
physical model 

X X       

Identification of 
multiple faults     X X ?  

Easy to operate X X    X X  

Time calculation X X  ?   ? ? 

Adaptation X X X  ? X   

: Favorable                                               X : Not favorable                                ? : Depend on the situation 

Table 1. Comparison of different methods used for fault diagnostic. 
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