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ABSTRACT 

This paper presents an adaptive framework for prognostics in 

civil aero gas turbine engines, which incorporates both 

performance and degradation models, to predict the 

remaining useful life of the engine components that fail 

predominantly by gradual deterioration over time. Sparse 

information about the engine configuration is used to adapt a 

performance model which serves as a baseline for 

implementing optimum sensor selection, operating data 

correction, fault isolation, noise reduction and component 

health diagnostics using nonlinear Gas Path Analysis (GPA). 

Degradation models which describe the progression of faults 

until failure are then applied to the diagnosed component 

health indices from previous run-to-failure cases. These 

models constitute a training library from which fitness 

evaluation to the current test case is done. The final remaining 

useful life (RUL) prediction is obtained as a weighted sum of 

individually-evaluated RULs for each training case. This 

approach is validated using dataset generated by the 

Commercial Modular Aero-Propulsion System Simulation 

(CMAPSS) software, which comprises both training and 

testing instances of run-to-failure sensor data for a turbofan 

engine, some of which are obtained at different operating 

conditions and for multiple fault modes. The results 

demonstrate the capability of improved prognostics of faults 

in aircraft engine turbomachinery using models of system 

behaviour, with continuous health monitoring data. 

1. INTRODUCTION 

Prognostics and Health Management (PHM) as a field of 

specialization in engineering encompasses techniques 

employed to maximize the service life of various systems and 

equipment. It achieves this through continuous monitoring of 

key system parameters and operating conditions, assessing 

the current health state from these measurements and making 

predictions about the future health or the time-to-failure of 

critical components within the system. It therefore offers 

great potential for improved availability, reliability, optimum 

performance and ensured safety of the system to which it is 

applied, thereby reducing the chances of unforeseen 

downtime during operation (SAE 2013). 

Prognostic methods in general can be classified into 4 main 

types: (1) Knowledge-based methods, which employs the 

experience of domain experts in generating rule sets (DePold 

& Gass 1999; Biagetti & Sciubba 2004), (2) Data-driven 

approaches that apply statistical and machine learning 

algorithms to reveal underlying patterns in large CM data 

(Barad et al. 2012; Mosallam et al. 2016; Li & Nilkitsaranont 

2009), (3) Physics-based models that provide a mathematical 

relationship between system operating conditions and time to 

failure (Cubillo et al. 2016), and (4) hybrid methods that 

combine the benefits of two or more of the above mentioned 

types (Saha & Goebel 2011; Baraldi et al. 2013). 

Despite the recognized benefits and the large resource of 

proposed methods on the subject, there are some difficulties 

associated with the deployment of PHM systems in real-life 

industrial applications. The ease of adapting proposed 

prognostic methods to well-established and existing 

diagnostic schemes, and the availability of relevant run-to-

failure data for verification and validation of various 

prediction methods have been identified as two key limiting 

factors, especially in the energy and aviation industry where 

gas turbines play a key role (Sikorska et al. 2011; Saxena et 

al. 2008).  

To tackle the issue of validation data availability, the NASA 

Prognostics Centre of Excellence (PCoE) has provided a data 

repository for various engineering systems that would foster 

research in the field of prognostics. Most of the datasets 

comprise run-to-failure sensor data for training and testing 
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purposes in systems such as trebuchet, turbofan engine, 

MOSFET, transformer, Li-ion battery, etc. This approach has 

yielded significant returns in the number of prognostic 

methods that have been published based on these dataset. 

Some methods of worthy mention developed for the turbofan 

engine application include similarity-based approach (Wang 

et al. 2008), Kalman filter ensembles of Radial Basis 

Function networks (Peel & Gold 2008),  recurrent neural 

networks (Heimes 2008), general path model using a 

Bayesian belief theorem (Coble & Hines 2014), and logistic 

regression of a state-space model (Yu 2017). A 

comprehensive review of over 70 of these methods based on 

their performance is provided in (Ramasso & Saxena 2014), 

while a classification based on the information used is 

provided in (Coble & Hines 2008). 

While some of these methods have employed a form of 

sensor fusion and modelling in describing the degradation 

pattern, none has provided an investigation into the use of an 

engine performance model for prognostics. This could be 

attributed a number of reasons, not limited to the following:  

 the nature of the data provided comprises sensor 

readings for training and testing the algorithm, with 

little or no engine performance specification,  

 restricted access to the CMAPSS model and software 

used to generate the data, and  

 the rules of the PHM Challenge may have inferred the 

desire for a data-driven solution that could be readily 

applied to other case studies (Ramasso & Saxena 2014). 

On the other hand, some other proposed methods which have 

incorporated engine modelling however lack validation using 

externally-sourced data of the scale available in the PCoE 

turbofan data repository.  

This paper proposes a solution to the identified issues above 

by combining a validated diagnostic routine with the 

available historical condition monitoring data to perform 

prognostics of gas path faults in the engine. The approach is 

classified as model-based for two reasons; 

1. A performance model that describes the behaviour of 

the gas turbine components based on the 

thermodynamics of the working fluid is used to provide 

information about the configuration and operation of the 

real engine. 

2. The degradation model that describes the progression of 

fault over time is used to determine the fitness of 

previous failure data to the diagnosed component health 

parameters and perform RUL prediction on test cases. 

A key benefit of this approach is that it accounts for the 

peculiar behavior of the system to which it is applied – the 

gas turbine engine in this case. This is unlike a purely data-

driven method that focuses only on the acquired sensor data, 

in isolation from the system. The major contribution of this 

paper, thus lies in the fusion of both adapted engine 

performance and degradation models with historical run-to-

failure data from the same or similar engines in a fleet via a 

fitness evaluation function, to predict the remaining useful 

life of the currently deteriorating engine. This adaptive fusion 

improves prediction accuracy in a real-life scenario where no 

two engines, even of the same type and configuration, 

perform in the same way due to different manufacturing 

tolerances, installation variances and operating profiles. This 

method is also not limited to the gas turbine, but can easily 

be adapted to a different system, provided a performance 

model which describes its behavior is available. 

In the following Sections, the proposed methodology is 

described in details, a CMAPSS engine case study along with 

the underlying assumptions is provided, and the results and 

the performance metrics of the prediction algorithm are 

presented. Finally, the implication of the study and areas for 

further research are provided in the conclusions. 

2. METHODOLOGY 

Figure 1 shows a block diagram of the proposed adaptive 

model-based prognostic framework, with the most vital 

element being the engine performance model produced in the 

modeling phase. The techniques employed for each process 

in the framework is described in detail below. 

2.1. Engine Modelling and Adaptation 

A gas path performance model can provide useful insight into 

the behavior of gas turbine components and its overall output 

in terms of efficiencies, thrust, fuel consumption, etc. Such a 

model is therefore considered a true representation of the real 

engine if it accurately predicts the performance output as 

provided in manufacturer specifications or from actual 

measured data. Figure 2 below shows a schematic for a 

typical turbofan engine with some of the installed sensors 

provided in the dataset. 

Due to the proprietary nature of component performance 

maps, as well as individual differences between similar 

engine configurations arising from manufacturing or 

installation tolerances, the true component parameters at any 

operating condition are truly unknown. It is therefore 

necessary to carry out a performance adaptation to match the 

model output to the engine measured data. 
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Figure 1: Adaptive model-based prognostics methodology. 

 

 

 

Figure 2: Turbofan engine gas path model schematic showing 

bleed and sensor locations. 

A nonlinear form of the adaptation coefficient matrix (ACM) 

approach, which describes changes in sensor measurements 

∆𝑧 as a function of corresponding changes in component 

parameters ∆𝑥 as shown in Eqs. (1) to (3), neglecting higher-

order terms, was adopted. Here, an iterative procedure was 

applied to the linear ACM approximation in Eq. (3) until a 

predefined convergence criteria is achieved, thus accounting 

for the nonlinearity in engine behavior over large changes in 

measurements (Li et al., 2006). 

 𝑧 = 𝑧0 +
𝜕𝑧

𝜕𝑥
∆𝑥 + 𝐻𝑂𝑇𝑠 (1) 

 ∆𝑧 = 𝐺. ∆𝑥 (2) 

 ∆𝑥 = 𝐺−1. ∆𝑧 (3) 

Where G is the adaptation coefficient matrix, ∆𝑧 is the 

deviation of the model-simulated measurement from the real 

engine, ∆𝑥 is the corresponding change in component 

parameter need to match the model to the real engine, and 

𝐻𝑂𝑇𝑠 represent higher-order terms. 

2.2. Sensor Selection 

Although measured engine parameters from on-board sensors 

can provide crucial information on the state of the engine 

components and the presence of incipient faults, not all 

sensors might be relevant for a given fault case search. A 

three-step sensor selection process was therefore adopted to 

determine the optimum sensor subset required for isolation 

and quantification of all possible component(s) fault. This 

subset was chosen based on the criteria of maximum and 

unique visibility of engine health, while providing some 

redundancy to take into account the possible case of biased 

or faulty sensors. 

First, a sensor sensitivity analysis, where a unit degradation 

was implanted in each component health parameter to obtain 

the deviation in each available sensor, was performed. The 

sensitivity norm which describes the overall sensitivity of 

each sensor can then be expressed using Eq. (4) below 

(Jasmani et al., 2010). 

 ‖𝑠𝑖‖ = √∑(𝑠𝑖,𝑗)
2

𝑁

𝑗=1

 (4) 

Where 𝑠𝑖,𝑗  is the sensitivity coefficient, 𝑖 = 1, 2, … , 𝑀  is the 

sensor index and 𝑗 = 1, 2, … , 𝑁 the health parameter index. 

A correlation analysis was also carried out to reveal the 

sensors with identical fault signatures. The correlation 

matrix, whose elements are obtained by the multiplying the 

matrix of normalized absolute sensitivity 𝑛𝑖,𝑗, expressed in 

Eq. (5), by its transpose, was used to quantify this 

phenomenon (Chen et al. 2015). 

 𝑛𝑖,𝑗 = 𝑠𝑖,𝑗 ‖𝑠𝑖‖⁄  (5) 

When two or more sensors were correlated to one another, 

only the most sensitive was selected for further investigation. 
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Finally, a classification of the sensors according to their 

associated components, either by proximity/location in the 

engine or direct mathematical relationship was carried out. 

This enabled the selection of sensors associated with more 

than one component since they can provide a wider coverage 

for component fault detection. 

 

Figure 3: Venn diagram showing component-related sensor 

subsets. Fan speed (PCN1) is the engine handle parameter. 

2.3. Data Correction 

Sensor data from engine condition monitoring is seldom 

obtained at a fixed operating condition. The changing 

properties of air with ambient and flight conditions therefore 

makes it difficult to compare the sensor measurements 

acquired during the different phases of flight and in different 

flight cycles to their respective clean engine values. A data 

correction technique which refers each sensor data 

z𝐵1 obtained at conditions Y𝑏 to a pre-defined set of baseline 

conditions and power setting at Y𝑎 as shown in Figure 4 and 

using Eq. (6) was adopted for this study  (Li et al., 2002). 

 ∆𝑧𝐴1𝐴 = ∆𝑧𝐵1𝐵 − (∆𝑧𝐴𝐵 − ∆𝑧𝐴1𝐵1) (6) 

A

B
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Δ ZA1B1Degraded

Clean

 

Figure 4: Data correction schematic. 

2.4. Fault Quantification 

To identify the faulty component(s) and quantify the level of 

degradation present using the selected sensor set, the 

nonlinear form of the Gas Path Analysis (GPA) with 

component fault cases was used. The GPA is based on 

solving a linear system of equations which relate changes in 

each component health parameter to corresponding changes 

in sensors ∆𝑥 ∆𝑧⁄ , through an influence coefficient matrix. 

To account for the nonlinear relationship between ∆𝑥 and ∆𝑧, 

the system of equations is solved iteratively until the 

convergence criteria, which is the accuracy of the fault 

prediction, is attained. A schematic of the nonlinear GPA 

process is presented in Figure 5. 

Engine

GPA

Engine Model

Zp – Zm < a 

GPA IndexZmeasured

Zpredicted
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Ambient & 
operating 
condition

Degradation, 
ΔXactual

Yes
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Figure 5: Flowchart for the non-linear GPA procedure. 

In a multiple component fault case (CFC) analysis, a GPA 

index is calculated according to Eq. (7) and assigned to each 

combination of components evaluated, referred to as a fault 

case. The fault case with the highest GPA index therefore 

reveals the most accurate prediction of faulty components 

from the search space (Li et al., 2009).  

 𝐺𝑃𝐴 𝐼𝑛𝑑𝑒𝑥 =
1

1 + 𝜀
 (7) 

Where 𝜀 is a measure of the difference between the measured 

and GPA-predicted deviations in the measurement 

parameters as expressed below. 

 𝜀 =
1

𝑁
∑ |

𝛥𝑧𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑

𝑧𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑

−
𝛥𝑧𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑

𝑧𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑

|

𝑁

𝑖=1

 (8) 

2.5. Health Index Simulation 

Based on the GPA predictions of component(s) fault in terms 

of flow capacity and efficiency loss, a single health index 

(HI) that is representative of the overall engine health may be 

desirable. According to Saxena et al. (2008), this health index 

could represent deviations of fan, LPC or HPC surge margin 

by up to 15% or exhaust gas temperature deviations up to a 

2% limit. 

 𝐻𝐼𝑡 = 𝑓(𝑋𝑡
𝑒𝑓𝑓

, 𝑋𝑡
𝑓𝑐

) (7) 

Where 𝑋𝑡
𝑒𝑓𝑓

 and 𝑋𝑡
𝑓𝑐

 represent the efficiency and flow 

capacity health parameters respectively over time. 
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To obtain either of the above HIs, the GPA-predicted fault 

progression is implanted back into the engine model and 

simulated at the specified operating condition. The obtained 

health index is then normalized as shown in Equation 9, using 

the average value at the end-of-life, to a range of 0 to 1; where 

0 denotes failure and 1 signifies relatively clean/healthy 

engine condition. 

 𝐻𝐼𝑛𝑜𝑟𝑚 =
𝐻𝐼𝑡 − 𝐻𝐼̅̅̅̅

𝑛

𝐻𝐼0 − 𝐻𝐼𝑛

 (9) 

Where 𝐻𝐼 is the health index, and 𝑡 = 0, 1, 2, … , 𝑛 signifies 

the data time series indices for an engine unit, with 0 as initial 

and 𝑛 as the end-of-life index. 𝐻𝐼̅̅̅̅
𝑛 is therefore the average 

health index at end-of-life for all the units in a dataset. 

2.6. Degradation Modelling 

The underlying degradation mechanism determines the form 

of the HI trend for the faulty component(s) or system. 

According to Saxena et al. (2008), the prevailing mechanism 

can be represented by a generalized exponential wear 

degradation model of the form in Eq. (10) below.  

 𝐻𝐼𝑡 = 𝑐 − 𝑎. 𝑒𝑥𝑝 (𝑡𝑏) (10) 

Where 𝑐 is the initial health index, 𝑎 is the health index decay 

rate, 𝑏 is the exponential time-scaling parameter, and 𝑡 is the 

time in cycles. 

This wear model was used to fit the HI time series and the 

model parameters were obtained using the non-linear least-

squares regression approach, which minimized the errors 

between the model and the data. 

A second model of the form in Eq. (11) below, was also 

chosen to provide an alternative perspective to the trend 

analysis, based on the assumption of a linear time exponent. 

 𝐻𝐼𝑡 = 𝑐 − 𝑎. 𝑒𝑥𝑝 (𝑏. 𝑡) (11) 

The model coefficients for each training unit was used to 

create a degradation model library which describes the 

various possible gradual degradation patterns that a given 

engine unit might experience. In a real-world application, this 

pattern library would be updated when new run-to-failure 

data from the engine becomes available. 

2.7. RUL Prediction 

The process for the RUL prediction of an on-wing engine is 

shown in Figure 6 below. The methods described in sections 

2.1 to 2.7 transform the acquired multi-dimensional sensor 

data into individual engine component health indices which 

are aggregated, trended and used for prediction to the pre-

determined health index threshold. This threshold which 

signifies the component’s end-of-life could be determined 

statistically from previous engine operation, as the health 

index or combination of health indices values which lead to 

a maximum unacceptable reduction in engine performance 

that impact engine life, safe operation and operating (mission 

fuel burn) costs. This threshold could therefore be the 

maximum acceptable loss in component flow capacity and 

efficiency arising from recoverable degradation such as 

fouling, or irrecoverable degradation like erosion, corrosion, 

blade tip rubs or seal clearance damage. It could also be in 

line with the engine certification requirement, where the 

consumption of inter-turbine temperature (ITT) or exhaust 

gas temperature (EGT) margin signifies the end-of-life or 

determines time-to-failure. For this case study investigation, 

the threshold measure of minimum permissible component 

health parameter indices was adopted. 

Trends of heath indices from previous run-to-failure cases of 

the same engine or similar engines in the fleet form a 

degradation pattern library to which the current engine 

degradation scenario is compared.  Curve-fitting of the 

exponential degradation model to the test engine HI series 

produces the model parameters as coefficients and the 

measures of statistical fitness are used to evaluate the trends 

in the pattern library which best describes the history of the 

test case for prediction.  

The best fitting models from the pattern library is selected 

based on two criteria:  

1. The training models with initial HI values in the range 

of those for the test data are pre-selected,  

2. Two statistical goodness-of-fit parameters – root mean 

squared error (RMSE) and the coefficient of 

determination (R2) – which are expressed in Eqs. (12) 

and (13) below, are used for the final selection. 

 𝑅𝑀𝑆𝐸𝑖 = √∑ (𝐻�̂�𝑡 − 𝐻𝐼𝑡)
2𝑛

𝑡=1

𝑛
 (12) 

 𝑅𝑖
2 = 1 −

∑ (𝐻�̂�𝑡 − 𝐻𝐼𝑡)
2𝑛

𝑡=1

∑ (𝐻𝐼̅̅̅̅
𝑡 − 𝐻𝐼𝑡)2𝑛

𝑡=1

= 1 − 𝑛 ∙
𝑅𝑀𝑆𝐸2

𝑆𝑆𝑡𝑜𝑡𝑎𝑙

 (13) 

Where 𝑡 = 1, 2, … , 𝑛 is the time in cycles, 𝐻𝐼𝑡  is the 

computed test unit health index (observation), 𝐻�̂�𝑡 is the 

predicted HI by the fitting model 𝑖 from the training library,  

𝐻𝐼̅̅̅̅
𝑡 is the mean of 𝐻𝐼𝑡  and 𝑆𝑆𝑡𝑜𝑡𝑎𝑙  is the total sum of squares 

(proportional to the variance of the data). 

The final RUL of the test unit is therefore calculated as the 

weighted average of the RUL values obtained by subtracting 

the current time of the test unit from the end-of-life of each 

selected train unit as shown in Eq. (14). The weight is 

evaluated using an inverse of the RMSE in Eq. (15). 

 𝑅𝑈𝐿𝑗 = ∑ 𝑤𝑖(𝑒𝑜𝑙𝑖 − 𝑡𝑝,𝑗)

𝑛

𝑖=1

 (14) 

 𝑤𝑖 = 1 (
∑ 𝑒𝑘𝑖

2𝑇
𝑘=1

∑ ∑ 𝑒𝑘
2𝑇

𝑘=1
𝑛
𝑖=1

)⁄  (15) 
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Where 𝑖 = 1, 2, … , 𝑛 represents the selected training models, 

and 𝑘 = 1, 2, … , 𝑇 represents the time step in each data series. 

𝑤 is the corresponding weighting factor based on the 

deviation at each time step 𝑒𝑘, and 𝑒𝑜𝑙 is the final cycle. 𝑡𝑝,𝑗 

is the current/prediction time for the test unit 𝑗.

 

 

Figure 6: Flow chart for RUL Prediction

3. CASE STUDY 

The case study being investigated is a 2-shaft high-bypass 

ratio turbofan engine, propelling a civil airline aircraft. 

Simulated data for 21 sensors from multiple engines of 

similar configuration, belonging to a fleet for example, is 

available as a multivariate time series of engine operation in 

cycles, where one cycle may refer to a certain number of 

flights or flying hours. The data is grouped into 100 training 

and 100 test sets, and indicate different levels of initial 

deterioration and different trends of gradually increasing 

degradation over time (Saxena & Goebel 2008a).  

In the training dataset, the degradation progresses until a 

threshold is reached, where the engine is deemed inoperable 

or the affected component has failed. In the test set, sensor 

data is available until some point, assumed as the current time 

prior to engine component failure. Both training and test 

cases comprise data obtained at different operating 

conditions and for different fault modes, contaminated with 

random sensor noise. When the failure threshold is reached, 

the trend of the current engine HI is added to the pattern 

library such that the robustness of the RUL prediction of the 

system improves over time.  

3.1. Model Adaptation 

Thus, the thermodynamic model of the CMAPSS engine was 

first built using the Cranfield University gas turbine 

performance simulation and diagnostics software, PYTHIA. 

This model was then adapted to match the first set of sensor 

data in the FD001 training dataset – assumed as the clean 

engine output – using information available in (Decastro et 

al. 2008; Frederick et al. 2007) as initial component 

parameter specifications. Table 2 below shows the values of 

some of the target measurement parameters after design point 

adaptation.  

Table 2: Design point adaptation results. 

Measurement Parameter Symbol Target Unit 

Total temperature at Fan inlet T2 288.15 K 

Total temperature at LPC exit T24 356.57 K 

Total temperature at HPC exit T30 883.17 K 

Total temperature at LPT exit T50 778.11 K 

Total pressure at Fan inlet P2 0.9948 atm 

Total pressure in bypass-duct P15 1.4705 atm 

Total pressure at HPC exit P30 37.722 atm 

Total pressure at LPT exit P50 1.2933 atm 

Inlet air mass flow W1 1246.6 kg/s 

Combustor fuel flow Wff 3.1201 kg/s 

HPT coolant bleed W31 17.717 kg/s 

LPT coolant bleed W32 10.623 kg/s 

LP shaft speed PCN1 2388 rpm 

HP shaft speed PCN3 9046.2 rpm 

Corrected HP shaft speed CN3 8138.6 rpm 
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3.2. Optimum Sensor Selection 

The sensitivity analysis revealed the most sensitive sensors to 

a given health parameter fault as shown in Figure 7. The 

overall sensitivity of each sensor is summarized in the 

sensitivity norm in Table 3, where fuel flow is seen to have 

the highest value, hence the most sensitive parameter. 

In the correlation matrix in Table 4, a relatively high element 

value denotes a correlation between the two corresponding 

sensors. For example, it can be seen that HPC exit mass flow 

W30 is highly correlated to the bleed flows W31 and W32. 

Thus, the latter were discarded from further analysis without 

influencing the fault detection capability. 

A total of 7 sensors – T30, T50, P15, P30, P50, PCN3 and 

Wff – were selected as the optimum subset based on the 

above criteria. These correspond to sensors 3, 4, 6, 7, 9, 10 

and 12 respectively as denoted in the dataset., and share some 

similarity to those obtained using other methods in Xu et al. 

(2014), Ramasso (2014) and Wang et al. (2008). 

 

Figure 7: Measurement Sensitivity 

Table 3: Sensitivity Norm 

Sensor T24 T30 T50 P15 P30 PCN3 P50 Wff CN3 W30 W31 W32 

Sensitivity 

Norm 
0.455 0.820 2.137 0.589 2.038 1.504 0.794 3.081 1.664 1.546 1.544 1.571 

 

Table 4: Correlation Matrix 

Sensor T24 T30 T50 P15 P30 PCN3 P50 Wff CN3 W30 W31 W32 

T24 1.00 0.01 0.43 0.11 -0.23 -0.68 -0.13 0.21 -0.75 -0.45 -0.44 -0.44 

T30 0.01 1.00 0.49 0.53 0.75 0.35 0.67 0.67 0.31 0.41 0.39 0.40 

T50 0.43 0.49 1.00 0.52 0.20 -0.18 0.48 0.85 -0.23 -0.16 -0.17 -0.14 

P15 0.11 0.53 0.52 1.00 0.61 0.32 0.77 0.82 0.28 0.50 0.50 0.51 

P30 -0.23 0.75 0.20 0.61 1.00 0.66 0.80 0.59 0.63 0.78 0.76 0.78 

PCN3 -0.68 0.35 -0.18 0.32 0.66 1.00 0.64 0.26 0.99 0.85 0.83 0.84 

P50 -0.13 0.67 0.48 0.77 0.80 0.64 1.00 0.85 0.60 0.79 0.78 0.80 

Wff 0.21 0.67 0.85 0.82 0.59 0.26 0.85 1.00 0.20 0.36 0.35 0.38 

CN3 -0.75 0.31 -0.23 0.28 0.63 0.99 0.60 0.20 1.00 0.83 0.82 0.82 

W30 -0.45 0.41 -0.16 0.50 0.78 0.85 0.79 0.36 0.83 1.00 1.00 1.00 

W31 -0.44 0.39 -0.17 0.50 0.76 0.83 0.78 0.35 0.82 1.00 1.00 1.00 

W32 -0.44 0.40 -0.14 0.51 0.78 0.84 0.80 0.38 0.82 1.00 1.00 1.00 

Correlation 

Norm 
1.71 1.92 1.68 2.03 2.38 2.40 2.51 2.10 2.36 2.53 2.50 2.53 
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3.3. GPA Diagnostics 

Given 5 degradable components and a maximum of two 

simultaneously degrading components, a total of 125 possible 

fault combinations would have been analyzed if the actual 

faulty components were unknown. For this study however, 

only 3 fault cases were considered based on the disclosed 

potential faulty components – Fan and HPC. 

The average GPA indices for each fault case when applied to 

the FD001 dataset is shown in Table 5. Case 2 is seen to have 

the highest value as expected, since it was stated as the site 

of the implanted faults (Saxena & Goebel 2008b), while Case 

1 has a very low index value since it gives a wrong prediction 

when diagnosed. This validates the GPA method as a reliable 

means of isolating and predicting component faults in a 

multi-component diagnostic analysis. 

Table 5: Average GPA Indices for FD001 Unit 1. 

Fault 

Case 
Components 

Linear GPA 

Index 

Non-linear 

GPA Index 

1 Fan only 0.332 0.363 

2 HPC only 0.842 0.843 

3 Fan + HPC 0.835 0.835 

3.4. Predicted Health Trends 

Figures 8 (a) and (b) show the run-to-failure plot for the GPA-

predicted HPC efficiency values relative to the initial values 

of the reference engine unit, which has a starting value of 1.0, 

before and after applying the degradation model to all the 

training units. Despite the random noise implanted in the 

sensors, a gradual trend of performance loss is apparent in the 

health parameter over time in Figure 7a. It is also clear that 

while each case follows a different path from healthy engine 

to failure, they terminate at points normally distributed about 

a mean failure threshold. Applying the degradation model to 

each data trend generates model parameters which define the 

smoothened trends in Figure 7b, where the mean failure 

threshold was calculated as 0.9825. A similar data trend and 

model was also obtained for the relative HPC flow capacity 

index. 

 

 

Figure 8: Relative HPC efficiency index run-to-failure plots 

of (a) diagnosed and (b) modelled trends for the train dataset. 

A single health index was obtained from the normalized 

average of the relative HPC efficiency and flow capacity 

index degradation. This combined HI end-of-life value for all 

the training cases exhibited a skewed normal distribution 

about the mean value as shown in Figure 9, with a standard 

deviation of 0.058. 

 

Figure 9: Distribution of the normalized combined health 

index at end-of-life for FD001 training run-to-failure data. 

3.5. RUL Prediction 

The final RUL for each test case was calculated as a weighted 

sum of the RUL predicted by the best matching set of cases 

in the training model library as described in Section 5. 

Figures 10 to 12 show some plots of test instances and their 

corresponding training models for three most popular types 

of prediction encountered – long-, mid- and short-term 

prediction cases respectively, where tP is the time at which 

prediction is done and tEOL is the predicted end-of-life from 

the weighted summation of the identified training cases.  

It can be seen that more training data are required for fitness 

evaluation and RUL prediction of a test unit that has only 

operated for a short period of time (Figure 10) compared to 

one that has run for longer. This is because the limited 
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amount of data produces a trend which is not fully-formed, 

thus a larger number of training models might be considered 

as a match at the initial stages. The trend is however more 

visible for test units with longer time series data, resulting in 

fewer, more precise train models. Hence, test unit 25 with 

only 48 cycles of operation recorded 12 matching train 

models, test unit 51 had 7 matches, while for test unit 20 with 

184 spent cycles and only 15 cycles left to failure, the number 

of training models used for prediction was reduced to 6. 

Intuitively, the data available for unit 20 was sufficient to fit 

a degradation model without need for the training models.  

 

Figure 10: Training and test HI data series for unit 25. 

 

Figure 11: Training and test HI data series for unit 51. 

 

Figure 12: Training and test HI data series for unit 20. 

A comparison between the relative accuracy of the predicted 

RUL using the degradation progression model types 1 and 2 

is provided in the histogram in Figure 13. For both models, 

more than 85% of the predictions were within an error of 20 

cycles above or below the true RUL. It can therefore be 

inferred that a prior knowledge of the degradation mechanism 

parameters may not necessarily improve the prediction 

accuracy, as either model type when used consistently for 

both the training and test cases would produce similar 

outcomes. 

 

 

Figure 13: Distribution of RUL prediction errors for test cases 

using degradation models (a) 1 and (b) 2. 

3.6. Prognostics Metrics 

Using the inter-quartile range of the number of test data series 

for each unit compared to its overall life, it was possible to 

classify each case into short-, mid- and long-term prediction. 

Hence, in a short-term prediction, the number of data series 

would fall in the 4th quartile of the overall engine life, 1st 

quartile for long-term prediction and anywhere in-between 

was regarded as mid-term. It can be seen in Table 6 that the 

model-based approach is above 78% accurate across board 

for all prediction types. The reduced accuracy for the short-

term prediction could be attributed to the large uncertainty 

arising from implanted noise, which was found be of the same 

magnitude as the predicted RUL in some instances. 
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Table 6: Prediction accuracy according to prediction horizon 

for degradation model 1.  

Prediction 

Type 

Number of 

cases 

Prediction 

Accuracy (%) 

Short-term 4 78.3 

Mid-term 64 86.5 

Long-term 32 83.6 

 

A quantitative analysis of the predicted RUL accuracy 

compared with the true RUL using various error metrics is 

provided in Table 7. These metrics are relevant because they 

make it possible to compare various prognostics techniques, 

based on the datasets to which they are applied. The PHM 

score, which is based on a scoring algorithm developed 

principally for the PHM 2008 Challenge competition, to 

penalize late predictions more severely than early predictions 

is shown in Eq. 16.  

 𝑆𝑃𝐻𝑀 = ∑ 𝑆𝑖

𝑁

𝑖=1

 (16) 

 where    𝑆𝑖 = {
𝑒−𝑑𝑖 10⁄ − 1, 𝑑𝑖 < 0

𝑒𝑑𝑖 13⁄ −   1, 𝑑𝑖 ≥ 0
  

 𝑑𝑖 = 𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑 𝑅𝑈𝐿 − 𝑇𝑟𝑢𝑒 𝑅𝑈𝐿  

A final score of 1193 and 1355 was achieved for the FD001 

test case, both using degradation models 1 and 2 respectively. 

These scores represent a measure of the RUL prediction 

errors, hence a higher value infers less precise or inaccurate 

predictions.  

 

Table 7: Overall prediction scoring metrics of the test dataset for each degradation model.  

Deg. 

Model 
MSE MAE MAPE (%) MSPE (%) SD RP FPR (%) FNR (%) 

Accuracy 

(%) 

PHM 

Score 

1 335.94 11.97 17.94 2.57 18.33 0.912 52.0 46.0 82.8 1193 

2 279.82 10.68 15.98 2.37 16.73 0.981 53.0 46.0 86.6 1355 

 

4. CONCLUSION 

An adaptive model-based prognostic method for   predicting 

the remaining useful life of similar degrading gas turbine 

engines was proposed and validated using the CMAPSS 

prognostics dataset. This approach comprised distinct 

methods for optimum sensor selection, fault isolation and 

quantification, and health index estimation. The technique of 

matching the health index data for a test unit by statistical 

goodness of fit parameters to dynamic degradation models 

from a training library of previous run-to-failure cases was 

shown to provide accurate predictions of RUL, without need 

for further pruning of the results. The presence of random 

sensor and process noise was mitigated by applying an outlier 

exclusion algorithm to the normalized HI data. 

The approach showed capability for short-, mid- and long-

term RUL predictions, even in the presence of random noise. 

An average prediction accuracy of over 80% was achieved 

using the default degradation model. The accuracy only 

change slightly when a different model was used. Hence, the 

choice of fitting model, though important from the 

perspective of obtaining the degradation mechanism’s 

parameters, might not necessarily translate to significant 

changes in RUL prediction accuracy provided that the chosen 

model can fit the data properly. This is worth considering 

especially in real-life scenarios where multiple failure modes 

are in effect at any given time. 

Further work based on this study would involve providing 

more robust predictions by quantifying the uncertainty 

contributions from the various processes involved up to the 

final prediction step. Overall accuracy could also be 

improved by employing original engine performance 

information to build the model, using actual engine 

component maps during performance adaptation, and taking 

a methodical approach to random noise reduction, such as 

through non-linear state estimation filters. 

NOMENCLATURE 

CFC Component Fault Case 

CM Condition Monitoring 

CMAPSS Commercial Modular Aero-Propulsion System 

Simulation 

CN relative corrected shaft speed 

FNR false negative rate 

FPR false positive rate 

G adaptation coefficient matrix 

h altitude 

H influence coefficient matrix 

HI health index 

HP high pressure 

LP low pressure 

Ma Mach number 

MAE mean absolute error 

MAPE mean absolute percent error 

MSE mean squared error 

MSPE mean squared percent error 

P pressure 

PCN relative physical shaft speed 
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RMSE root mean squared error 

Rp Pearson’s correlation  

RUL remaining useful life 

s sensitivity coefficient 

SD standard deviation 

t time in cycles 

T temperature 

W air mass flow rate 

Wff fuel flow rate 

X component parameter 

Z measurement parameter 
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