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ABSTRACT 

Methodologies for prognostics usually centre on physics-

based or data-driven approaches. Both have advantages and 

disadvantages, but accurate prediction relies on extensive 

data being available. For industrial applications this is very 

rarely the case, and hence the chosen method’s performance 

can deteriorate quite markedly from optimal. For this reason, 

a hybrid methodology, merging physics-based and data-

driven approaches, has been developed and is reported here. 

Most, if not all, hybrid methods apply physics-based and 

data-driven approaches in different steps of the prognostics 

process (i.e. state estimation and state forecasting). The 

presented technique combines both methods in forecasting, 

and integrates the short-term prediction of a physics-based 

model with the longer-term projection of a similarity-based 

data-driven model, to obtain remaining useful life estimation. 

The proposed hybrid prognostic methodology has been tested 

on two engineering datasets, one for crack growth and the 

other for filter clogging. The performance of the presented 

methodology has been evaluated by comparing remaining 

useful life estimations obtained from both hybrid and 

individual prognostic models. The results show that the 

presented methodology improves accuracy, robustness and 

applicability, especially in the case of minimal data being 

available. 

1. INTRODUCTION 

Prognostics and Health Management (PHM) is a 

comprehensive technology, enabling many disciplines within 

an integrated framework, aimed at achieving effective 

maintenance and operation planning. PHM has significant 

advantages in reducing support and operating costs, leading 

to more effective planning and operational decision making. 

An unexpected one-day stoppage in the machinery industry 

may cost up to £160,000 (Peng et al., 2010). Another 

example, from the return on investment for companies, is the 

investment of £9,500 on monitoring the condition of systems 

to prevent £315,000 of maintenance costs per year 

(Kothamasu et al., 2006). Hecht (2006) also states that 

prognostics for avionics is essential in future aircraft due to 

the increasing complexity of electro-mechanical components 

and possible shortage of technicians capable of servicing 

them.  

In PHM, real-time sensory data obtained from equipment is 

analysed continuously to detect and forecast the health states 

and to plan maintenance based on the forecasted health.  

Prognostics is a challenging technology within PHM 

involving identification of the current health level, 

extrapolating it to a predefined failure threshold, and 

estimation of the remaining useful life (RUL). RUL is the 

duration between the current time and the time at which the 

forecasted health level reaches a predefined threshold that is 

assumed to be an intolerable state of the failure.  

Prognostic models can be categorised into two major 

categories: 1) Physics-based models (PbMs), and 2) Data-

driven models (DdMs). PbMs, also called model-based 

prognostics, consist of mathematical abstractions of a 

degradation path derived from engineering principles. DdMs 

employ historical run-to-failure data to construct a statistical 

or artificial intelligence based model aimed at capturing the 

degradation process and predicting the RUL of a system. 

Approaches in both categories have their own advantages and 

disadvantages in real life applications. DdMs require a large 

amount of failure degradation data, which may be difficult to 

obtain. PbMs, on the other hand, require expertise in the 

application field and tend to be computationally prohibitive 

to apply at a system level. Approaches under both data-driven 
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and physics-based categories require many conditions to be 

met. Added to this there is no universally accepted best model 

to perform prognostics, due to the variations on limitations of 

data availability, application constraints, and system 

complexity (Liao & Kottig, 2014). As a consequence of these 

observations a hybrid prognostic approach has been 

developed and is reported here. It aims at leveraging the 

advantages of both approaches, compensating for their 

limitations. The hybrid prognostic approach in this paper 

integrates PbM and DdM in order to enhance the RUL 

estimation results and to increase the applicability of 

prognostics in real applications. 

The hybrid prognostics concept has been discussed in many 

previous works (Liao & Kottig, 2014). Several ways of 

combining physics based and data-driven approach have 

been reported, and which will be discussed in the literature 

review below. The hybrid model presented in this paper 

analyses the failure degradation (i.e. progression of health 

states) in two phases: short term and long term progression. 

Forecasting of degradation for the short term is performed by 

the physics-based method (PbM). Then, a data-driven 

method (DdM) is used for RUL estimation for the long term 

progression based on the short term forecast. To the best of 

the authors’ knowledge, this is the first time PbM and DdM 

have been integrated within the forecasting process through 

short and long term forecasting. 

The hybrid prognostic model has been applied to two 

engineering systems: fatigue crack propagation and filter 

clogging datasets. The first dataset is the ‘Virkler Dataset’ 

(Virkler et al., 1979) and the second one has been reported in 

(Eker et al., 2016). The RUL estimation results from PbM, 

DdM and hybrid prognostic model are reported and 

compared, both for rich and sparse data sets. 

This paper is organised as follows: Section 2 presents the 

literature review, while Section 3 details the novel hybrid 

prognostic methodology. Section 4 briefly introduces the 

dataset used in the implementation phase and presents the 

results. Section 5 concludes the paper.  

2. LITERATURE REVIEW 

Diagrammatically, the fields of diagnostics and prognostics 

are shown in Figure 1. Prognostics involves two phases, with 

the first one overlapping with diagnostics: an assessment of 

the current health status. Severity detection, health 

assessment, and degradation identification are the terms used 

for describing this phase in the literature. The second phase, 

which is the actual prognostics, aims to predict the failure 

time by forecasting the degradation trend leading to an 

estimate of RUL. Prognostics implies forecasting of the 

system’s/component’s future health level by propagating the 

current health level to a failure threshold.  

In general, a prognostic model can be categorised into one of 

four classes: 1) DdM, 2) PbM, 3) Knowledge-based model, 

and 4) Hybrid models. Here the emphasis is on classes 1 and 

2 and their combination in class 4. The various approaches 

used in these three classes are now described in this order. 

 

Figure 1. Prognostic and diagnostic phases 

DdMs employ routinely collected monitoring data and/or 

historical event data. They attempt to track the degradation of 

an asset using extrapolation or projection techniques (e.g. 

regression, exponential smoothing, or neural networks) or 

match similar patterns in the history of relevant samples to 

infer RUL. They also rely on the past patterns of deterioration 

to forecast future degradation. Usually operational variations, 

manifest as system or loading inputs, are not involved in data-

driven prognostic modelling. An assumption for models in 

this category is that the future system inputs or operational 

profile remains constant, or consistent with the past data. 

Since data-driven prognostics have no engineering 

information related to the asset or system, they are considered 

to be black-box operations (Zhang et al., 2009). DdMs are 

divided into two categories: Statistical models and Artificial 

Intelligence-Based (i.e. machine learning) models.  

Statistical approaches construct models by fitting a 

probabilistic model to the data without knowledge of any 

engineering or physical principle. These approaches rely on 

statistical models and observed data to support the 

forecasting of the RUL of equipment. A comprehensive study 

on statistical DdMs for RUL estimation was conducted by (Si 

et al., 2011). Hidden Markov Model variants (e.g. HMM, 

HSMM) (Kwan et al., 2003), Wiener and Gamma processes 

(Wang & Carr, 2010), and Auto-Regressive Moving Average 

variants (Marjanovic et al., 2011) are examples of statistical 

DdMs. 

Artificial Intelligence (AI), or machine learning, models 

attempt to recognise complex patterns and make intelligent 

decisions based on the empirical data. Machine learning 

approaches are adaptable to situations where problem 

solutions require knowledge that is difficult to specify, 

however plentiful data or observations are available. 

Artificial Neural Networks, Self-Organising Maps, and 

decision trees are common examples of machine learning 



INTERNATIONAL JOURNAL OF PROGNOSTICS AND HEALTH MANAGEMENT 

3 

approaches to be used for supporting detection and 

diagnostics as well as prediction processes (Gebraeel & 

Lawley, 2008).   

Both statistical and machine learning methods employ the 

degradation patterns of sufficient samples representing 

equipment failure progression. This requirement is the major 

challenge in data-driven prognostics since it is often not 

possible to obtain enough samples of failure progressions. 

Predominantly, industrial systems are not allowed to run until 

failure, due to undesired consequences. However, the quality 

and quantity (sample size) of system monitoring data has a 

big influence on data-driven methods. Virkler et al. (1979) 

report that a crack propagation dataset should contain at least 

fifty samples in order to be considered for meaningful 

analysis. Sample sizes of prognostic datasets found in the 

literature range from ten to a hundred (Baruah & Chinnam, 

2005). Another challenge for DdMs is the computational 

complexity of modelling, due to the large number of 

statistical calculations necessary. In the absence of prior 

knowledge about the failure mechanism, determining the 

failure threshold is considered to be another challenge.  

Similarity-based Prognostics (SBP) is a generic type of DdM 

based on similarity measures between degradation data 

collected from other samples and the test specimen signal. 

The SBP approach is a powerful method for RUL estimation, 

notably when the historical training sample size is relatively 

large. In addition, it is suitable for cases where the 

degradation path is not necessarily exhibiting a monotonic 

propagation pattern, which is difficult to model using 

parametric approaches (Wang, 2010). Zio & Di Maio (2010) 

developed a similarity-based prognostics methodology for 

estimating the RUL of components in nuclear systems. The 

presented hybrid model in this paper is based on similarity 

based prognostics (SBP).  

Mahalanobis distance based principal component health 

index has been used in (Wu et al., 2018). Switching state 

space model has been proposed in (Peng et al., 2018) to 

characterize the degradation path.  

PbMs involve describing the physics of the failure 

progression mechanism (Daigle, 2014). In order to provide 

knowledge rich prognostics output, a PbM attempts to 

combine defect growth formulas, system specific 

mechanistic knowledge and monitoring data. These models 

assume that an accurate mathematical model for degradation 

can be constructed from first principles. Model parameters 

may be identified using empirical data obtained from 

specifically designed experiments (Liao & Kottig, 2014).  

Particle filters, also called ‘Sequential Monte Carlo 

Estimators’, have been used widely in prognostics, 

particularly integrated into physics-based models. Some of 

the examples found in the literature are: fatigue crack 

propagation modelling for various engineering structures 

(Zio & Peloni, 2011), battery capacity modelling (An et al., 

2013), centrifugal pump degradation modelling (Daigle & 

Goebel, 2013), thermal processing unit degradation (Butler 

& Ringwood, 2010), pneumatic valve modelling (Daigle & 

Goebel, 2010), DC-DC converter system level degradation 

modelling (Samie, 2014), Isolated Gate Bipolar Transistor 

degradation modelling (Saha et al., 2009), Proton Exchange 

Membrane Fuel Cells life modelling (Jouin et al., 2014), and 

Lumen degradation modelling for LED light sources (Fan et 

al., 2015).  

PbMs are considered to be more accurate if an accurate 

mathematical model representing the degradation process can 

be found. However, PbMs are component or system specific 

models which means they cannot be applied to other types of 

component or system in which the physics of failure 

mechanism differs. Another disadvantage is that the PbMs 

are costly compared to other approaches (Heng et al., 2009). 

A summary of the advantages and disadvantages of the PbM 

and DdM prognostic approaches is shown in Table 1. A 

highly detailed comparison of prognostic models from an 

industrial point of view can be found in (Sikorska et al., 

2011). 

 Advantages Disadvantages 

P
h

y
si

cs
-B

a
se

d
  More accurate compared 

to other approaches 

 Higher precision 

 Requires less data  

 Suitable for creation in 

design phase 

 More difficult to model  

 Sensitive to the design 

and material properties 

 Insight of the failure 

mechanism  

 High cost  

D
a

ta
-D

ri
v

en
  

 Easier to develop 

 Flexible and adaptable 

 Suitable to component 

and system levels 

 Robust to changes in 

material or design  

 Low cost 

 Need data representing 

the failure progression 

 Computational 

complexity  

 Difficulty in 

determining of the 

failure thresholds 

Table 1. Comparison of prognostic approaches 

It has been found difficult to predict the trends of all 

characteristic parameters by using an individual prognostic 

approach, since the parameters are diverse in real world cases 

(Peng et al., 2010). Wang (2010) reports that the examples of 

successful prognostic applications in complex engineering 

systems are still scarce. Such complex systems exhibit 

immensely stochastic and non-linear degradation profiles 

which make them difficult to model accurately. Therefore, 

prognostics is considered the Achilles’ heel of condition 

based maintenance (CBM) and PHM (Vachtsevanos & 

Valavanis, 2009). Both, DdM and PbM approaches have 

different requirements in order to capture the degradation 

process and predict the RUL of a system. 

Hybrid prognostic modelling combines multiple prognostic 

approaches in order to leverage the strengths of individual 

methods, leading to an enhanced prognostic outcome. 

Prognostic datasets that can be efficiently employed for a 
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DdM, as well as for a PbM, are remarkably sparse in the 

literature (Eker et al., 2012). The datasets either lack 

sufficient data samples or are missing efficient physical 

modelling in most cases. Thus, development of a DdM and 

PbM for the same system and their integration is a great 

challenge. However, the use of hybrid prognostic techniques 

is a relatively new area and offers a promising line of 

research. The hybrid prognostic approach has several 

advantages, some of which are: 

 Compensation for the imperfections of individual 

approaches. 

 Improvement of prediction accuracy. 

 Computation complexity due to extensive data 

processing required in DdM may be reduced with 

the support physics-based models. 

 Combining approaches can compensate for lack of 

data, the main thrust of this paper. 

Hybrid prognostic models found in the literature (Liao & 

Kottig, 2014; Zhang et al., 2006) are application specific and 

combinations of these models is achieved by using one 

method for health state estimation and another for the RUL 

prediction. For instance, Huang et al. (2007) presented a 

hybrid methodology in which the health state of the system is 

estimated by a Self-Organising Map baseline, supported by 

using Minimum Quantisation Error, and RUL prediction is 

performed by a trained Back Propagation Neural Network. A 

number of researchers have used a DdM to infer the 

measurement model, and use a physical model to predict 

RUL. The measurement model maps the sensory data to the 

underlying system state, which is not measured. In other 

words, PbM and DdM approaches are used in different steps 

of the PHM process, such as health state identification and 

forecasting (Jardine et al., 2006; Huang et al., 2007; Baraldi 

et al., 2012; Wang et al., 2018).  

There are studies that combine DdM and PbM in the state 

forecasting process (Liao & Kottig, 2014; Goebel et al., 2006; 

Goebel et al., 2007). These methods run the DdM and PdM 

independently and combines their results using fusion 

techniques such as Dempster-Shafer theory.   

In (Zhao et al., 2018), an integrated method has been 

presented that combines Bayesian update with Archard's 

wear model. The presented method is unique to the given 

wear model. There is no hybrid prognostic approach in the 

literature that integrates a given PbM and DdM approaches 

in the forecasting process that interact with each other. In 

other words, the forecast of one affects the forecast of the 

other. This research aims to contribute to the literature by 

filling this gap, as well as demonstrating good accuracy with 

scarce data. In addition, the hybrid model requires the output 

of the physics based model and can be applied with any 

physical model.  

3. METHODOLOGY 

The hybrid method assumes that the current health state has 

already been identified and focuses only on the forecasting of 

the health state (failure) progression. The integration of 

physics based and data-driven method is performed in the 

forecasting process. Physics based methods are good in 

forecasting within the short time period whereas data-driven 

methods may reflect the long term patterns in the forecasting 

process. The forecasting process is divided in two phases: 

Short-term Forecasting and Remaining Useful Life (RUL) 

estimation with long term forecasting.  Physics based method 

performs the short term forecasting first. Then, the last 

forecasted time point by physics based method is assumed to 

be the current time by the data-driven method. The forecast 

by the data driven method starts in the time point after the end 

of the forecast of the physics based method. In other words, 

data driven method relies on the forecast of the physics based 

method. The following subsections discuss each of these 

phases in detail. 

This section is concluded with a subsection stressing on the 

particle filters. 

3.1. Short-term Forecasting 

This step is achieved through the physics-based approach. 

This requires an equation to define the health state 

progression between the health state at time t-1 and the health 

state at time t. Hence, the health state at time t can be 

estimated using the health state at time t-1 in the equation. 

There are many physical models in the literature for different 

scenarios representing the failure degradation; crack growth 

and filter clogging are examples of just two of them. Any 

physical model with inputs and outputs can be presented as 

shown in Figure 2.  

 

Figure 2. Input and Outputs of Physical Model 

Observations affected by the health states and model 

parameters have been used as input. The forecasted health 

states have been obtained as an output. Crack growth and 

filter clogging failures have been selected for demonstration 

of the presented hybrid model and their physical models are 

discussed in the next two subsections. 

3.1.1. Paris Law for Crack Growth Failure Mode 

Physics-based modelling of fatigue crack propagation is a 

widely studied research area. The simplest and most 

commonly used fatigue crack propagation model is the Paris 

Law (Paris & Erdogan, 1963). It is shown in Eq.      (1), and 
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expresses the relationship between the crack growth rate per 

cycle ‘da dN⁄ ’; and the previous crack length ‘a’.  

𝑑𝑎

𝑑𝑁
= 𝐶(∆𝐾)𝑚      (1) 

𝑑𝑎  : Crack growth  

𝑑𝑁  : Cycle change 

𝑑𝑁/𝑑𝑁 : Crack growth per cycle 

𝐶  : Material Constant 

𝑚  : Environment and stress ratio 

∆K  : Stress intensity factor during cycle 

Where: 

∆𝐾 =  ∆𝜎√𝜋𝑎   (2) 

𝑎 : Crack length  

∆σ : Range of stress amplitude  

For sufficiently small ‘ dN ’, the Paris Law can be 

approximated into a discretised state transition function as 

follows: 

𝑎𝑡 = C(∆𝜎√𝜋𝑎𝑡−1 )𝑚𝑒𝑤𝑡𝑑𝑁 + 𝑎𝑡−1 (3) 

at : Crack length at time t (dynamic state parameter) 

wt  : Process noise (wt~N(0, σw
2 )).  

Derivatives of this well-known equation are widely used in 

the prediction of fatigue life (Liu et al., 2015). Refer (Eker, 

2015) for a detailed literature review on crack propagation 

modelling and estimation approaches. 

3.1.2. Filter Clogging 

Severity of filter clogging is the main parameter used to 

identify a replacement time for a filter. Direct measurement 

of severity may not be possible during the usage of the system 

and so the aim of the physical model is to calculate the 

severity of filter clogging using the measured parameters. 

Pressure drop across the filter, volumetric flow rate, cake 

thickness, and porosity are the main dynamic parameters 

revealing the clogging severity of the filter. It may be feasible 

and easy to measure some of these parameters. If direct 

measurement is not possible for some of them, some other 

measures may be used to derive them. The well-known Ergun 

equation formulates the relationship between pressure drop 

and the other clogging parameters and is a detailed version of 

the renowned Kozeny-Carman equation. Tien & Ramarao 

(2013) claim that the Ergun equation is the most commonly 

used model capable of describing the pressure drop and flow 

rate correlation.  

A modified version of the Ergun equation (Eker et al., 2016) 

that incorporates effective filtration area rate (i.e. ‘a’) in the 

filter is used in this study. Effective filtration area rate, the 

new parameter in the equation, accommodates the effects of 

the latest stages of filtration. The modified version of the 

Ergun equation is given as Eq. (4). 

∆P =
10AVsμ(1−ϵ)2L

Dp
2 ϵ3a

+
B(1−ϵ)ρVs

2L

ϵ3Dpa
   (4) 

∆P : Pressure drop 

Vs : Superficial (empty-tower) velocity 

μ : Viscosity of the fluid 

ϵ : Porosity of the bed (or cake) 

L : Total height of the bed (e.g. cake thickness) 

ρ : Liquid density 

Dp : Diameter of the spherical particle 

A, B : Constants 

The formula given in Eq. (4) cannot be used for prognostics 

purposes directly. The dynamic rate of change in the pressure 

drop will be more useful for prognostics purposes. In other 

words, a dynamic state transition is required for modelling 

the degradation behaviour of the system. If the severity of the 

filter clogging increases, then the pressure drop changes 

accordingly. Thus, the presented equation is transformed into 

a dynamic state transition equation to be able to serve for 

prognostics purposes. The rate of change in pressure drop in 

a small time (‘dt’) can be formulated as:   

∆Pt+dt ≅ ∆Pt + ∆Pt
′dt + wt (5) 

Eq. (5) represents a nonlinear pressure drop across an 

incremental step. ′wt ′ in the equation represents the process 

noise whereas the ‘∆Pt
′’ term can be obtained by taking the 

first derivative of the equation given in Eq. (4):  

∆P′ =
10AVsμ

d2aϵ3 [
ϵ(1−ϵ)2L′−(1−ϵ)(3−ϵ)Lϵ′

ϵ
+

(1−ϵ)2La′

a
] +

BρVs
2

daϵ3 [
(2ϵ−3)Lϵ′

ϵ
+

(ϵ−1)La′

a
+ (1 − ϵ)L′] (6) 

Filter clogging severity is identified based on the pressure 

drop across the filter. If all the parameters on the right-hand 

side of the Eq. (6) are known, then the pressure drop can be 

calculated by adding the pressure drop increase rate to the 

previous pressure drop value. A Particle Filter (PF) is 

employed for estimation of the parameters within the state 

transition function. Refer (Eker, 2015) for a detailed literature 

review on porous medium clogging modelling and estimation 

approaches. 

3.1.3. Particle Filters 

In general, dynamic systems can be modelled in the form of 

a state transition equation, which describes the evolution of 

its state through time (Paris & Erdogan, 1963). The system 

state and measurement models underpinning Particle Filter 

processes are given in Eq. (7) and (8). A system state model, 

represented in Eq. (7), formulates the state of a system at time 

𝑘  is based on the system state at time 𝑘 − 1 ; the future 

progression of the states is estimated based on the current 

state. In the case studies presented in this paper dynamic filter 

clogging and crack propagation models are used as state 

transition equations.  
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𝑥𝑘 = 𝑔𝑘(𝑥𝑘−1, 𝜃𝑘−1, 𝑤𝑘−1)   (7) 

𝑧𝑘 = ℎ𝑘(𝑥𝑘 , 𝑣𝑘) (8) 

𝑔𝑘: : Dynamic state transition equation 

𝑥𝑘, 𝑥𝑘−1: State vectors at discrete time points k and k-1 

𝜃𝑘 : Model parameter vector 

𝑤𝑘 : Process noise 

ℎ𝑘: : Measurement equation 

𝑧𝑘 : Measurement at time point k 

𝑣𝑘 : Measurement noise 

Particles, evolving in the system, can be represented as 

‘{𝑥𝑘
𝑖 , 𝜃𝑘

𝑖 , 𝑤𝑘
𝑖 }𝑖=1

𝑁 ’, where ‘𝑁’ symbolises the total number of 

particles and ‘𝑖’ is the particle index. Each particle has a state 

variable ‘𝑥’, model parameters ‘𝜃’, and a process noise value 

‘ 𝑤 ’, which evolves through time. This means that the 

degradation distribution will be constructed with N particles. 

Generally, the higher number of particles used in the 

construction of a parameter distribution the better the system 

is represented. Therefore, a reasonably high number for ‘𝑁’ 

in the modelling of degradation is selected. However, 

excessively higher numbers for ‘ 𝑁 ’ will increase the 

computational complexity, which may be burdensome when 

dealing with higher numbers of system parameters. The 

model parameters are symbolised in ‘𝜃’ which encapsulates 

the state transition equation parameters, the state transition 

equations are based on the physical equations representing 

the degradation. ‘ 𝑥 ’ and ‘ 𝑧 ’ are the state variables and 

measurement values, respectively.  

In particle filters, the posterior distribution filtering process 

usually comprises three recursive steps: 1) Prediction, 2) 

Update, and 3) Resampling. In the prediction step, the system 

state is predicted using the previous step’s updated 

parameters, via the state transition equation. Then the 

predictions are updated for the current time step by using a 

likelihood function shown in Eq. (9). Likelihood functions 

assign weights to particles according to the closeness to the 

measurement at each time point. In the resampling step, the 

particles with lower and higher weights are eliminated and 

duplicated, a process called the inverse CDF (cumulative 

density function) method (An et al., 2013). This filtering 

process is called Sequential Importance Resampling (SIR) 

particle filters. 

𝐿(𝑧|𝑥, 𝜃, 𝜎) =
1

√2𝜋𝜎
𝑒𝑥𝑝 [

1

2
(

𝑧−𝑥(𝜃)

𝜎
)2]  (9) 

𝜎 : Standard Deviation 

The parameter learning process is performed using the data 

collected until the current time at which point the forecasting 

will start based on the learned parameters. In the 

extrapolation phase where the parameter learning has 

stopped, the state parameter vector (i.e. ‘𝑥 ’) is projected 

continuously by using the state transition equation (with the 

fixed parameter distributions) until it reaches the failure 

threshold. In this way, ‘𝑁’ trajectories give the distribution of 

RUL estimations. The mean or median of the RUL 

distribution is generally used for visualisation of the 

estimated RULs. Detailed discussion on the model can be 

found in (Eker et al., 2016). 

3.1.4. Remaining Useful Life Calculation 

The RUL calculation is performed using the data-driven 

approach. The fundamental idea of the RUL calculation in the 

presented approach is that the asset under observation should 

degrade in a similar manner to previously degraded assets. In 

an extreme case, if there exists a perfect match with the health 

state progression for the asset under observation and one of 

the previously degraded assets, then the asset is expected to 

continue degrading the same way as the previously degraded 

asset has degraded. Thus, one can focus on the RUL of the 

previously degraded asset rather than forecasting the health 

state progression of the asset under observation. In general, it 

is not expected to find a perfect match in health state 

progressions due to the natural variance between assets. 

Thus, RUL calculations are based on the weighted sum of 

RULs of previously degraded assets. The similarity measures 

of the health state progression of the asset under observation 

and the health state progression of previously degraded assets 

are employed instead of weights, as shown in Eq. (10) in RUL 

calculation.  

RULt
𝑢 =

∑ (𝑠𝑖RUL𝑡𝑖,𝑠
𝑖 )𝑁

𝑖=1

∑ 𝑠𝑖
N
i=1

 (10) 

RULt
𝑜 : Remaining Useful Life of the asset under 

observation (o) at time t 

𝑁 : Number of previously degraded assets  

𝑠𝑖 : Similarity of the health state progressions of the 

asset under observation and asset i  

RUL𝑡𝑠
𝑖  : Remaining useful life of asset i at time  𝑡𝑠 

𝑡𝑖,𝑠 : The time where the most similar segment of 

health progression of the asset i to the health 

progression of asset under observation starts 

 

Similarity ( 𝑠𝑖 ) is used as the main criteria for long term 

forecasting and is calculated based on the function given in 

Eq. (11) 

𝑠𝑖 = e−
(di

min)2

λ  (11) 

λ :  Gaussian variable of the similarity function 

di
min : Minimum distance of the segments of health 

progression of asset 𝑖 to the health progression of the asset 

under observation 

The minimum distance measure ( di
min ) quantifies the 

distance of the most similar segment of health progression of 

asset 𝑖  ( zi ) to the health progression of the asset under 

observation (z0). The middle health state progression with the 

star sign at the current time in Figure 3 represents the health 

progression of the asset under observation (z0), whereas the 
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two solid line progressions on the sides of z0reaching to the 

threshold represent the health state degradation of previously 

degraded assets (z1, z2). The health progression of the asset 

under observation ( z0 ) includes two segments: past 

progression and short-term forecasted progression. Past 

progression (‘n0’ segment) represents the recent past health 

state progression until the current time (zt−𝑛𝑜,…,t
o ). The second 

segment (‘ n1 ’ segment) is the forecasted health state 

progression obtained in short term forecasting (zt,…,t+𝑛1
o ), 

which is obtained from PbM. Star sign in the health 

progression of the asset under observation (z0) shows the 

current time. Thicker lines on the left and right sides of the 

current time (star sign) in z0  represent the n0  and n1 

segments, respectively.  

The similarity calculation for the data-driven approach is 

based on both of these segments: recent past health 

progression and short term forecasted health progression. The 

forecasted values bring the failure point closer, which is 

expected to increase the estimation accuracy. The time series 

data of health state progression of the asset under observation 

includes a total of T = n0 + n1 + 1 data points. The accuracy 

of the physics-based model, selection of the number of 

forecasted points (n1) and the number of past data to be used 

(n0) are the elements affecting the hybrid performance; their 

effect on the results is explored later, in Section IV. 

The second time series data in the similarity calculation is the 

health state progression of one of the previously degraded 

assets (zi). The previously degraded assets are expected to 

include full health state failure progression from brand new 

to failure. Since the length of the time series of z0 is less than 

the length of the time series of zi (zt−𝑛0,…,t+𝑛1
o  vs z1,2,…,K

i )), 

multiple parts of the longer time series can be compared with 

z0. The shorter time series (z0) can be compared to the longer 

time series (with zi) and similarities calculated.  The part of 

the health progression of asset i that is most similar to 

zt−𝑛0,…,t+𝑛1
o will be used to quantify the similarity of the asset 

i. 

The basic time series similarity calculation requires an equal 

number of data points from both time series. There are 

complex methodologies to calculate the distance between 

two time series data with different number of data points such 

as dynamic time warping. The presented approach is based 

on the similarity calculation of time series data with the same 

number of points in order not to increase the computational 

complexity. The most similar segment within the health state 

progression of previously degraded asset i is defined as the 

similarity of the health state progression of the asset under 

observation (zt−𝑛0,…,t+𝑛1
o ) and the health state progression of 

previously degraded asset i as shown in Eq. (12). The 

equation checks different length of segments as well as 

different data starting points for the segments.  

di
min = min(𝑑1,𝑇

𝑖 , 𝑑2,𝑇
𝑖 , … , 𝑑𝛼,𝑇

𝑖 , … , 𝑑𝑓−𝑇𝑚𝑖𝑛,𝑇𝑚𝑖𝑛

𝑖 )     (12) 

𝑑𝛼,𝑇
𝑖  : Distance of health progression of the asset under 

observation to the health progression segment starting from 

data point 𝛼 with of 𝑇 number of data points from asset i 

𝑇 : Number of data points in the health progression of asset 

under observation, T = n0 + n1 + 1 

𝑇𝑚𝑖𝑛 : Minimum length of time series data to be used in 

similarity calculation 

The distance calculation between two segments with the 

same length is given in Eq. (13).  

𝑑𝛼,𝑇
𝑖 =  √∑ ‖zα+j

i − zt−𝑛0+j
o ‖

2𝑛0

j=0 + ∑ ‖zα+𝑛0+k
i − zt+k

o ‖
2𝑛1

k=1   

(13) 

A demonstration of the RUL estimation integration 

mechanism is shown in Figure 3. In the figure, the RUL 

calculation is performed for a test specimen at the 140th 

second, shown in a curve with triangle markers where the 

future measurements are not known. The other two solid run-

to-failure trajectories represent the training samples. Note 

that, for simplicity in the illustration, two out of 56 training 

signals are shown. It is assumed that the sample is failed 

when it reaches the predefined threshold shown in the 

horizontal dashed line ( ∆P  =15). Thick line extension 

(starting from the current time) is the ‘n1’ number of time 

point predictions to the future, obtained from the physics-

based model (i.e. Particle Filter and Ergun integration).  

 

Figure 3. Hybrid integration scheme demonstration 

Similarly, for the crack propagation case study, future crack 

levels are predicted using the discretised Paris Law and 

particle filter combination. The current time is indicated with 

a star marker for the test signal. Every possible ‘ n0 +
n1 long ’ segment for each training is involved in the 

similarity calculation and similarity values are assigned to 

each segment. The most similar segment for each training 

segment is detected and it’s RUL and similarity values are 

used in the final RUL calculation demonstrated in Figure 3. 
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For instance, ‘s115
1 ’ and ‘rul115

1 ’ represents the similarity and 

RUL values of the most similar segment for training sample 

one. This means that the first training sample’s 115th second 

reference point is the most similar point to the current time of 

test specimen. Similarly, for the second training specimen, 

the 195th second time point stands out as having the highest 

similarity. 

The presented hybrid approach conjoins the future 

estimations in the similarity calculation, which is anticipated 

to enhance the prognostic results compared to the distinct 

usage of physics-based or data-driven approaches. The 

results of this hybrid approach are discussed in the next 

section. 

4. RESULTS AND DISCUSSION 

4.1. Scenarios 

In each of the two use cases, the integration of the DdM and 

the PbM approaches is analysed in five different scenarios. 

The first two scenarios represent the case of using only one 

of the models (PbM, DdM) assuming that all of the 

requirements (statistically sufficient available degradation 

data, sufficient knowledge about the physics of the failure, 

etc.) have been met. For the remaining three scenarios, the 

DdM and PbM approaches are combined in the hybrid model 

described in Section III, but fed with limited amounts of data 

to observe how the hybrid method performs. In scenarios 

three and four both models are used, but only the 

requirements of one of the models is fully met. The other 

model is degraded, as explained in detail below. Lastly, the 

fifth scenario represents a real-world prognostic application 

case where both models are supplied with limited data.  

In the third scenario, the data-driven model (DdM) is 

identical to the second case whereas the physics-based model 

is weakened on purpose to observe the compensation effects 

on the hybrid results. The physics-based model is crippled by 

starting with poor initial parameters for the particle filter 

modelling. These modifications are anticipated to result in a 

weakened prognostic capability of the physics-based model. 

Similarly, in the fourth scenario, the DdM is weakened by 

reducing the number of training samples. Training samples 

are the historical run-to-failure data observations to be used 

in the training of the data-driven model. Reducing the data 

implies insufficient training of the model, resulting in poor 

prognostic results. 

The first four scenarios assume that the requirements of one 

of the models have been fully met. In other words, they are 

representative of the conditions where the data sources 

feeding the data or physical model are exceptionally rich to 

provide remarkably precise prognostic outputs. However, it 

is often difficult to model system/component degradation 

profiles completely due to many reasons which have already 

been discussed. Therefore, these perfect modelling cases are 

here labelled as unrealistic. The fifth scenario is, by contrast, 

realistic. 

The RUL estimation results obtained under these scenarios 

are compared based on Prognostic Horizon (PH), 𝛼 − 𝜆 

performance, Relative Accuracy (RA), and Convergence 

metrics (Saxena et al., 2008). PH is defined as the range in 

between the point where the predictions fall under the 

allowable error bound (defined by 𝛼) for the first time and the 

end-of-life time point. The 𝛼 − 𝜆  performance metric 

determines whether the predictions fall within the shrinking 

accuracy cone (defined by 𝛼) around the actual RUL values. 

The output of the metric is binary. However, it can be 

converted to percentage values if the metric is implemented 

at multiple time instances. RA is similar to the 𝛼 − 𝜆 

accuracy measure. Instead of inspecting whether the 

predictions fall within the boundaries, cumulative relative 

accuracy (CRA), the weighted average of the RA values for 

the time instances of prediction points, is used. Convergence 

is the final metric to be verified in the hierarchical design. 

The following subsections present the results for the two 

applications.  

4.2. Crack Propagation Modelling 

The Virkler dataset consists of 68 crack growth trajectories 

collected under well-controlled fatigue loading experiments. 

The experiments were conducted under constant amplitude 

fatigue loading and controlled environmental conditions. 

Several preliminary tests were conducted for determining the 

actual load levels for the material type. The specimens aged 

in the experiments were 2024-T3 aluminium alloy plates 

which were drilled in the centre to form a 2.54mm initial 

notch.  

During the aging process, samples were subjected to cyclic 

tensile loading at 𝑅 = 0.2 stress ratio with ∆𝜎 = 48.28 𝑀𝑃𝑎 

stress range levels. Throughout the experiments, cycle 

numbers were recorded at fixed increments in crack lengths 

(i.e. ∆𝑎 = 0.2𝑚𝑚 ) until the crack reached its predefined 

final length of 49.8mm. Note that in the final stages of data 

collection, cycles were recorded at 0.4mm and 0.8mm 

increment levels as well. Each signal in the dataset contains 

164 measurement points throughout its degradation path. 

Table 2 gives the details of the scenarios for the crack growth 

dataset.  

A visualised comparison of the first two scenarios (i.e. 

physics-based and data-driven model) is depicted in Figure 4. 

The x-axis is the life period of the specific sample, whereas 

the y-axis stands for the corresponding RUL values. In this 

figure, the dashed linear line represents the actual RUL 

values. Actual RUL values for a specimen are calculated by 

subtracting the current cycle from the End of Life (EoL) 

value specific to the specimen. The small alpha cone gives 

visual confirmation of the accuracy of the rich models; the 

results from a single test specimen show that both models 
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stay within a 10% error bound predominantly throughout the 

degradation process.  

Scen

arios 

Details 

1 Physics based model for crack propagation with a rich 

data source and optimised initial model parameters. 

2 59 out of 68 samples (i.e. ~85%) are selected to be used 

in the training of the modified SBP model while the 

remaining nine samples (i.e. ~15%) are left for testing 

the algorithm. 

3 The physics-based crack propagation model is crippled 

by initialising the model parameters poorly. The data-

driven model has identical conditions to that in Scenario 

2. 

4 In order to limit the capabilities of the data-driven 

model, the number of training samples is significantly 

reduced (i.e. training sample size is dropped to 7). The 

physics-based model has identical conditions to the one 

in Scenario 1. 

5 Poor conditions for both physics-based and data-driven 

models, which have identical conditions to the ones in 

Scenario 3 and 4 respectively. 

Table 2. Description of scenarios for crack growth 

modelling 

 

Figure 4. PbM vs DdM RUL visualisation on a crack 

growth sample 

Table 3 gives the prognostic evaluation results for all 

scenarios. PbM(c) and DdM(c) indicate complete model 

results with all requirements satisfied. Prognostic evaluation 

metrics PH, 𝛼 − 𝜆  performance, CRA, convergence, 

normalised root mean squared error (nRMSE) results are 

given in the table. nRMSE metric results are obtained by 

normalising the RMSE results with mean lives (run-to-

failure) in the relevant conditions. The results highlighted in 

bold in the tables indicate the highest performance for 

scenarios in which the hybrid scheme is used.  

As shown in Figure 4 and illustrated by all the various 

performance metrics in Table 3, both PbM(c) and DdM(c) 

results are very good when supplied with all the data. 

 Scenario 

1 2 3 

PbM(c) DdM(c) PbM Hybrid 

PH (%) 95.33 93.26 75.47 93.6 

𝛼 − 𝜆 (%) 58.16 68.86 12.71 67.13 

CRA (%) 85.99 88.42 61.64 88.85 

Convergence 0.55 0.53 0.57 0.52 

nRMSE (%) 5.97 4.63 22.46 4.47 

 

Scenario 

4 5 

DdM Hybrid PbM DdM Hybrid 

PH (%) 29.22 52.04 76.63 21.19 89.95 

𝛼 − 𝜆 (%) 5.9 15.19 11.28 6.25 18.63 

CRA (%) 60.36 72.14 61.26 56.03 65.18 

Convergence 0.73 0.65 0.59 1.16 1.02 

nRMSE (%) 15.43 13.07 23.09 16.56 13.3 

Table 3. Performance metrics comparison for crack 

propagation case study 

Comparing scenarios one and four, the complete PbM 

(scenario 1) and its hybrid use with a degraded DdM 

(scenario 4), the PbM is expected to perform best and indeed 

does. On the other hand, for scenarios two and three, the 

complete DdM (scenario 2) and its combination with a 

degraded PbM (scenario 3), the complete model DdM was 

expected to perform the highest. However, the hybrid model 

produced very close results to the mature DdM model, with 

some parameters showing even better results. It was because 

the integration scheme is based on the similarity-based data-

driven model. Hence, the PbM future estimations add value 

rather than corrupt the model. Integrating these future 

estimations do not enhance the immature SBP model. 

The fifth scenario is the reason for developing the hybrid 

scheme, since it is considered as the real-life prognostic 

scenario, where both PbM and DdM are immature. If one 

further investigates the tables for both cases, the hybrid 

model outperforms the other methods for nine out of ten 

metrics. This indicates that the integration mechanism 

enhances prognostic capability in general. Also, the results 

show that using an individual deteriorated model will not 

produce robust outputs. The data-driven model produces 

roughly 20% prognostic horizon levels for the crack 

propagation case. However, the integration scheme brings 

robustness, where the PH percentage level rises to nearly 

90%, a good deal beyond the deteriorated PbM value of 77%. 

To conclude, one of the main goals for this research was to 

develop a generic integration scheme to be used in hybrid 

modelling, in which incomplete data-driven and physics-

based models were integrated. The results obtained from this 

case study shows unequivocally that the hybrid scheme 

produces significantly better prognostic results than either of 

the prognostic schemes on their own. 
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To further examine the bias between DdM and PbM, 

Scenario 3 is selected. Referring to Figure 3, ‘𝑛0’ and ‘𝑛1’ 

can be used as the bias between DdM and PbM. For instance, 

increasing ‘𝑛0’ means involving more data points from the 

past into the similarity calculations, which implies the hybrid 

integration system is biased towards the DdM. Contrarily, 

where the system is more biased to PbM, the ‘𝑛1 𝑛0⁄ ’ ratio 

will increase. The use of ‘𝑛0’ and ‘𝑛1’ for the variants chosen 

is summarised in Table 4.  

 Variant 

    A  B  C   D 

𝒏𝟎  100 70 40   10 

𝒏𝟏    10 40 70 100 

Table 4. Segment size construction for different variants 

 

Figure 5. System bias comparison 

Figure 5 shows the effect of these variations. The top left plot 

in the figure represents the highest bias towards the DdM, 

with an ‘𝑛0 𝑛1⁄ = 10’ bias rate. The rate decreases moving 

through to the bottom right where it is 0.1. Note that, as the 

DdM is complete and the PbM is incomplete, Scenario 3 

being chosen, the degeneration in the hybrid model results is 

apparent as the bias towards PbM is made. The hybrid curves 

remain significantly closer to actual RUL values when the 

bias is directed to the complete DdM model. This integration 

mechanism gives users the flexibility to tune the bias values 

as desired. 

4.3. Filter Clogging Modelling 

The second case study concerns filter clogging. This dataset 

consists of fifty-six run-to-failure samples obtained from 

well-controlled accelerated filter clogging experiments (Eker 

et al., 2016). Table 5 gives the details of the prognostic 

scenarios for the filter clogging failure mode. 

Scenarios Details 

1 Physics-based model for filter clogging with a rich 

data source and optimised initial model parameters. 

2 40 out of 56 samples are selected to be used in the 

training of the modified SBP model while the 

remaining sixteen samples are left for testing the 

algorithm. 

3 The physics-based model is crippled by starting with 

poor initial parameters used in the particle filter 

modelling. The cake thickness simulation is also 

weakened by adding randomly shifted errors. 

4 In order to limit the capabilities of the data-driven 

model, the number of training samples is 

significantly reduced (i.e. training sample size is 

dropped to 5). 

5 Poor conditions for both physics-based and data-

driven models which have identical conditions to the 

ones in Scenario 4 and 5 respectively. 

Table 5. Description of scenarios for filter clogging 

Table 6 organises all the prognostic evaluation results for the 

five scenarios. PbM(c) and DdM(c) column names indicate 

that the model is complete, where they belong to scenarios 

one and two respectively.  

 Scenario 

1 2 3 

PbM(c) DdM(c) PbM Hybrid 

PH (%) 96.22 91.51 60.13 93.02 

𝛼 − 𝜆 (%) 59.65 27.25 16.61 27.16 

CRA (%) 83.56 72.85 62.58 72.80 

Convergence 0.51 0.51 0.55 0.51 

nRMSE (%) 7.17 11.09 26.24 11.20 

 

Scenario 

4 5 

DdM Hybrid PbM DdM Hybrid 

PH (%) 80.70 90.11 55.70 75.85 84.97 

𝛼 − 𝜆 (%) 13.50 42.09 4.68 14.18 19.15 

CRA (%) 61.47 81.34 63.25 59.62 70.24 

Convergence 0.53 0.51 0.53 0.63 0.52 

nRMSE (%) 25.04 10.58 20.30 26.04 17.60 

Table 6. Performance metrics comparison for filter clogging 

case study 

From Table 6, both PbM(c) and DdM(c) results are very good 

when supplied with all the data. The hybrid schemes are again 

seen to be noticeably better than the degraded method, i.e. in 

scenario 4 the hybrid is much better than the degraded DdM. 

The hybrid method is compensating for the lack of data by 

combining both techniques. 

Comparing scenarios 1 and 3, the performance of the PbM 

drops significantly but is almost completely recovered by the 

using the DdM(c) in the hybrid. Scenarios 2 and 4 show a 

similar story when the DdM(c) results are degraded by using 
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very much less data, only 5 samples rather than 40. Again, 

the hybrid method improves the results in all metrics. 

Finally, for scenario 5, the hybrid result is the best across all 

metrics, supplementing the good performance of the DdM 

with very little data. 

To conclude, one of the main goals for this research was to 

develop a generic integration scheme to be used in hybrid 

modelling, in which incomplete data-driven and physics-

based models are integrated. The results obtained from two 

engineering case studies verify that the integration scheme 

produces better prognostic results compared to the particular 

models which contribute to the hybrid mechanism. 

Therefore, this integration scheme is anticipated to be applied 

to other engineering cases to enhance the accuracy of the 

estimations.  

5. CONCLUSIONS 

Prognostics is the key component of PHM technologies, 

which generally involves system monitoring, fault detection 

and diagnostics, failure prognostics and operating 

management. Physics-based and data-driven approaches are 

two of the most commonly used prognostic models in the 

industry / academia, both approaches having their own 

strengths and weaknesses. This paper presents a hybrid 

prognostic model that leverages the strengths of both 

approaches whilst avoiding the weaknesses where possible. 

The similarity based prognostics have been modified to 

include the short-term forecast obtained from physics-based 

prognostics. The method has been applied on crack growth 

and filter clogging test cases. The RUL estimations based on 

the hybrid method are presented and compared with 

individual physics-based and data-driven approaches. It is 

concluded that, for real world problems with a shortage of run 

to failure data, the hybrid approach is much better than either 

of its constituent techniques. 
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