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ABSTRACT 

Predictive maintenance (PdM) or Prognostics and Health 
Management (PHM) assists in better predicting the future 
state of physical assets and making timely and better-
informed maintenance decisions. Many companies nowadays 
desire the implementation of such an advanced maintenance 
policy. However, the first step in any implementation of PdM 
is identifying the most suitable candidates (i.e. systems, 
components). This is to assess where PdM would provide the 
greatest benefit in performance and costs of downtime. 
Although multiple selection methods are available, these 
methods do not always lead to the most suitable candidates 
for PdM. The main reason is that these methods mainly focus 
on critical components without considering the clustering of 
maintenance, and the technical, economic, and organizational 
feasibility.  

This paper proposes a three-stage funnel-based selection 
method to enhance this process. The first step of the funnel 
helps to significantly reduce the number of suitable systems 
or components by a traditional filtering on failure frequency 
and impact on the firm. In the second and third step, a more 
in-depth analysis on the remaining candidates is conducted. 
These steps help to filter potential showstoppers and study 
the technical and economic feasibility of developing a 
specific PdM approach for the selected candidates. Finally, 
the proposed method is successfully demonstrated using two 
distinct cases: a vessel propulsion system and a canal lock.  

1. INTRODUCTION  

Preventing unexpected failures from occurring is important 
for many complex systems such as production systems, 
medical equipment and high-tech products. Executives in 
such asset-intensive industries often regard unexpected 
failures of their physical assets as the primary operational risk 
to their business (LaRiviere, McAfee, Rao, Narayanan, & 

Sun, 2016). Such unexpected downtime can be disruptive in 
complex manufacturing supply chains and imposes high 
costs due to forgone productivity (LaRiviere et al., 2016). 
Competitive pressure therefore forces companies to use the 
reliability and dependability of their equipment as a 
competitive weapon (Simões, Gomes, & Yasin, 2016). 

Typically, a lot of preventive maintenance is conducted to 
avoid negative impacts (such as safety hazards, production 
losses, logistic costs, or high repair costs) caused by failures. 
Ideally, predictive maintenance strategies are employed to 
provide insight in the future state of assets. Predictive 
maintenance (PdM) techniques inform the asset owner or 
operator about the current and preferably also future state of 
their assets. PdM thereby helps to reduce unexpected failures, 
improve the reliability and dependability of equipment and 
prevent unnecessary replacement of components. Next to 
that, system level monitoring can be used to get control and 
system performance data.  

Predictive maintenance is enabled by PHM (prognostics and 
health management) technologies in response to the indicated 
deteriorated condition, performance or the remaining useful 
life (RUL) of a component or system (Lei & Sandborn, 
2016). Although predictive maintenance is often referred to 
as CBM (condition-based maintenance), predictive 
maintenance goes further than CBM by also taking 
prognostic information into account (Shafiee, 2015; Tinga & 
Loendersloot, 2014). 

Typically, two motivations for implementing PdM can be 
discerned. Either (1) industrial practitioners look for the best 
maintenance approach (also termed: maintenance policy 
selection) for their high-impact components and systems, and 
PdM appears to be the most suitable approach.  Or (2) 
opportunities arise that make the application of PdM feasible, 
for example by digitization of assets (an example of this will 
be shown in section 5.2: the canal lock case).  

By having the desire to implement a PdM approach, by either 
of these two motivations, the first step is to consider whether 
PdM is indeed the most suitable approach (for candidates 
from the first perspective) or to identify the most suitable 
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candidates (i.e. systems or components) for PdM (for 
candidates following the second perspective) (Lee et al., 
2014).  

The purpose of selecting the most suitable candidates for 
PdM is to assess where PdM would provide the greatest 
benefit in terms of performance and/or cost of downtime (Lee 
et al., 2014). Since many maintenance techniques that enable 
PdM are costly to develop, it would not be cost-efficient to 
apply them on all equipment (Bengtsson & Jackson, 2004). 
That is to say, almost 30% of industrial equipment does not 
benefit from applying techniques (i.e. condition monitoring) 
that enable CBM (or similarly PdM / PHM) (Hashemian & 
Bean, 2011). It is therefore often stated that CBM should only 
be applied where it is suitable, not as an overall policy 
(Moubray, 1997). It is therefore critical to select the suitable 
candidates for a PdM application to achieve the optimal 
benefits (Brahimi, Medjaher, Leouatni, & Zerhouni, 2016). 

Therefore, in this paper, a method is developed to identify 
and select suitable candidates for predictive maintenance. A 
design science method (Holmström, Ketokivi, & Hameri, 
2009) is followed in developing the selection method. First, 
section 2 gives an overview of current methods. After this, 
section 3 covers the problem exploration (step 1). The 
problem exploration serves as design criteria for the initial 
solutions (step 2), which are proposed in the literature review 
and in the reflection of existing methods. The solution is 
designed (step 3) in section 4 to identify suitable candidates 
from the plethora of components that are typically available 
in complex systems. The solution is demonstrated (step 4) in 
section 5 in two distinct cases: a propulsion system of a ship 
and a canal lock. Finally, concluding remarks will be given 
in section 6.  

2. REVIEW OF CURRENT METHODS 

The literature describes various well-known and accepted 
methods to select suitable candidates for PdM. In this section, 
we will first discuss various methods that have been proposed 
to identify or select critical components. In section 3, we will 
discuss the shortcomings of current methods and how the 
discussed methods can contribute to an improved approach to 
select the suitable candidates for PdM.  

2.1. Methods based on risk assessment and dependability 
of components  

An often applied approach is to define critical components as 
a component whose failure leads to unavailability of the 
whole system, and/or a component which has a high failure 
rate (Gouriveau, Medjaher, & Zerhouni, 2016).  

A first alternative for this is to define the critical components 
of a system by conducting a dependability analysis (Brahimi 
et al., 2016). A dependability analysis brings components to 
light whose failures have the highest impact on the 
availability, reliability, maintainability, safety, and integrity 

of the system (Avizienis, Laprie, Randell, & Landwehr, 
2004). Qualitative dependability analyses use expert 
judgment to evaluate potential failures to evaluate risk, using 
for example a Failure Mode Effects (and Criticality) Analysis 
(FMEA and FMECA) (Brahimi et al., 2016) or a Fault Tree 
Analysis (FTA). Quantitative dependability analyses use 
statistical methods and can be deterministic or probabilistic. 
These methods are used to estimate measures such as the 
mean time to failure (MTTF), mean time between failures 
(MTBF), or failure rates to evaluate a system’s reliability 
(Brahimi et al., 2016).  

A quantitative approach that follows this logic is to select the 
top 10 cost drivers or availability killers for a PdM policy, as 
done in for example the degrader analysis of Banks, 
Reichard, Hines, and Brought (2008). This approach has 
similarities with an often applied Pareto analysis based on 
maintenance costs, failures, downtime, or safety.  

The reliability-centered maintenance (RCM) method 
(Moubray, 1997) uses systematic logic to rank the criticality 
of failure modes and provides guidelines for selecting the 
applicable maintenance task (Tsang, 1995). RCM is normally 
performed at the system level since the criticality of failures 
at the component level can only be judged on the basis of its 
impact on delivering the required system functions  (Tsang, 
1995). 

An example of such a dependability analysis that uses RCM 
logic is the Most Important Systems (MIS) and Most Critical 
Components (MCC) analysis of Waeyenbergh and Pintelon 
(2002). Their analysis first focuses on selecting the so called 
most important systems by regarding the impact of its 
breakdown on safety, environment, production, repair costs, 
and secondary damages. This includes bearing in mind the 
system’s ease of repair and the ease of failure detection. Next 
to that, in the MIS analysis it is considered whether the 
system is a bottleneck, redundant, or complex. The second 
step, the MCC analysis, helps to determine the most critical 
components within the selected system (the MIS). This is 
done with a simplified FMECA, which is according to the 
authors “rather ‘quick and dirty’, but […] very easy to use”. 
In this simplified analysis, the same consequences are 
considered as is done in the MIS analysis. RCM cannot only 
be used to select the most critical components, based on for 
example their risk priority number (RPN), but also advises on 
the most suitable maintenance task.  

Dehghanian, Fotuhi-Firuzabad, Bagheri-Shouraki, and 
Kazemi (2012) proposed a fuzzy-AHP (analytical hierarchy 
process) method to identify critical components in a RCM 
program. They prioritize components based on: (i) the 
number of failures, (ii) the number of component failures, 
(iii) repair duration, (iv) component investment costs, and (v) 
component repair and maintenance costs.  

Lee, Liao, Lapira, Ni, and Li (2009) argue that identifying the 
critical components on which the PdM approach should be 
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performed is the first key step by deciding which 
components’ degradation has significant impact to the 
system’s performance or costs a lot when the downtime 
happens. They propose to use a four-quadrant chart which 
quickly distinguishes between components based on their 
failure rate (low vs high) and their associated downtime (low 
vs high). Lee et al. (2014) argue that predictive maintenance 
should only be applied on those components that have a 
critical impact on the firm (i.e. high downtime) and a low 
failure rate. Note that components with a high failure rate and 
high associated downtime should be designed out.  

Labib (2004) proposed a similar idea that helps to determine 
the suitable maintenance policy for components based on a 
trade-off between the frequency of failure and the downtime. 
In their approach, a condition-based concept is only applied 
to those components that have a low frequency of failure but 
a high associated downtime. This is comparable to the 
approach of Lee et al. (2009).   

2.2. Maintenance policy selection methods 

Maintenance policy selection methods do not directly help to 
select the most suitable candidate for predictive maintenance. 
However, as was also mentioned in the introduction, the 
starting point for many companies is to find a suitable policy 
for their high-impact components and systems. When PdM is 
selected to be most appropriate, a check on the suitability of 
the candidates might prove valuable. Moreover, reviewing 
these policy selection methods may provide valuable insights 
into when to select PdM for a (component in the) system as 
it provides rules or criteria for when to apply predictive 
maintenance strategies.  

Different goals and criteria can be taken into account in the 
selection of the most suitable maintenance policy. A 
maintenance policy can be defined as a rule or set of rules 
that describe the triggering mechanism, such as time, usage 
or an expression of deterioration, for the different 
maintenance actions (repair, replace, monitor, shutdown) 
(Pintelon & Van Puyvelde, 2006). To take these various 
criteria and goals into account, multi-criteria decision making 
(MCDM) methods can be used for maintenance policy 
selection (MPS). The MCDM approach is typically suitable 
in contexts where the goals and criteria are difficult to express 
in monetary terms and are therefore difficult to quantify. For 
MPS, these criteria include the investment required for 
implementation, safety aspects, environmental issues, failure 
costs, reliability of the strategy, and manpower utilization of 
the facility (Shafiee, 2015).  

Shafiee (2015) reviewed the use of MCDM methods for 
MPS. MPS, which is by other authors sometimes also termed 
maintenance strategy selection (MSS), helps practitioners in 
selecting between policies such as corrective maintenance 
(CM), preventive maintenance (PM), opportunity-based 
maintenance or predictive maintenance. Goossens and 
Basten (2015) proposed a maintenance policy selection 

method for naval ships based on a multi-criteria decision 
making (MCDM) method that helps to select between failure-
based maintenance, time or use-based maintenance, and 
condition-based maintenance. In their method they consider 
whether the maintenance policy fits the: (i) crew’s size and 
education level, (ii) available knowledge in the company, (iii) 
mission profile, (iv) internal and external relations of the 
company, and finally (vi) influences on performing 
maintenance tasks. 

3. PROBLEM EXPLORATION: SHORTCOMINGS OF EXISTING 
METHODS 

Based on practical experience and literature, the problem 
exploration in this subsection will point out several factors 
that cause that traditional selection methods not always lead 
to the best selection of components.  

3.1. Underestimating time consuming process 

Even though a PdM policy might be the preferable strategy 
for an asset, not all components within that asset might be 
suitable for PdM. FMECA analyses can be used to identify 
suitable components. However, FMECAs can become very 
extensive and time-consuming when they are conducted 
down to the component level for a complex system.  

Tinga, Tiddens, Amoiralis, and Politis (2017) for example, 
showed that a complex asset like a ship typically can be 
decomposed in up to 60 installations. In case of a naval 
vessel, the installations within the propulsion section can be 
formulated on the level of a gearbox, thruster or diesel 
engine. But these installations again contain numerous 
components, e.g. main bearing, connecting rod, cylinders and 
pistons for the diesel engine.  

Approaches such as streamlined FMECA or simplified 
FMECA (as used in the approach of Waeyenbergh and 
Pintelon (2002)) can help to reduce this complexity by first 
focusing on the criticality of the installation / subsystem. 
However, these approaches do not guarantee that all critical 
components have been identified (Tinga et al., 2017). 
Therefore, methods like a recursive combination of FTA and 
FMEA have been proposed (Peeters, Basten, & Tinga, 2018). 
In this method, FMEA is used to assess the criticality of 
system level failure modes that are identified in a FTA. For 
the selected (critical) failure modes, a function level FTA is 
conducted followed by another FMEA.  

Since applying traditional methods can lead to a time 
consuming process, it would be useful to find ways that can 
reduce the required effort. 

3.2. Ignoring clustering of maintenance activities 

Only being a critical component does not make a component 
a suitable component for PdM. Using prognostic methods to 
extend the component’s lifetime is only useful when the 
failure prediction actually enables reducing or extending the 
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maintenance intervals. Interval reductions typically mean 
that failures that otherwise would have occurred can be 
prevented, thereby leading to an increase in the system 
availability. Interval extensions lead to cost reductions 
(conducting less preventive maintenance) and thereby also 
higher availability of the asset (as it is not in maintenance).  

Maintenance activities however, are often clustered based on 
a production (i.e. opportunistic maintenance planning in a 
production plant) or mission (i.e. docking intervals for a ship) 
planning. Such a planning dictates when maintenance 
activities can be conducted and thereby restrict shifting 
maintenance activities, unless these can be extended to the 
next planned opportunity. In these cases, preventive 
(opportunity-based) maintenance is sometimes more 
convenient than more advanced methods.  

Clustering of maintenance activities can also be caused by 
technical restrictions. Take the example of gearbox 
maintenance. Extending the maintenance interval of a 
gearwheel in a gearbox would make little sense if all other 
parts in the gearbox have to be maintained anyway (unless it 
concerns a very expensive component). The benefits of 
extending maintenance of the gearwheel can only be 
achieved when all maintenance activities for the gearbox can 
be extended. Finally, a single maintenance activity can also 
contribute to preventing multiple failure modes from 
occurring. This means that it might be possible to extend a 
maintenance activity by monitoring a specific failure mode, 
but that another failure mode can become dominant when this 
maintenance activity is extended.   

3.3. No consideration of technical feasibility  

Although an imminent failure might be beneficial to monitor, 
it is not always possible to predict or detect the anomaly 
before a failure occurs. Besides, prognostics can never be 
100% sure to predict failures and faults (Jardine, Lin, & 
Banjevic, 2006). Moreover, analyzing data sets without 
knowing the underlying failure mechanisms can lead to 
incorrect results. This means that a root cause analysis is 
essential in achieving an effective maintenance policy. The 
technical feasibility goes hand in hand with the knowledge 
level within the company. Understanding of the degradation 
mechanism is often required to predict or detect the failure. 
Either internal or access to external knowledge sources is 
required to gain this understanding. When this is not 
available, the PdM approach cannot be implemented 
successfully. Next to this, considering the technical 
feasibility of PdM is important for: (i) failures due to human 
error (which can typically not be predicted or monitored); and 
(ii) failures of which the faulty condition cannot be detected 
early enough (early warning) in comparison to the 
maintenance opportunity (suppose a large part aboard a ship). 
The latter can cause that the prognostic model is ineffective. 
Finally, firms should consider whether a prognostic model is 

already available or that additional research has to be 
conducted.  

3.4. No consideration of economic feasibility  

Although costs are often mentioned as a criterion for 
maintenance policy selection, there are more reasons that can 
hinder the full potential of PdM. The four quadrant chart of 
Lee et al. (2009) and the selection method of Labib (2004) 
consider a trade-off between the failure frequency and an 
failure effect criterion such as downtime, costs or safety. 
However, these methods do not consider a lower boundary 
for the failure frequency or an upper boundary for the failure 
effect. The four quadrant method of Lee et al. (2009) was 
therefore first improved by Tiddens, Braaksma, and Tinga 
(2017) who introduced upper boundaries for the failure effect 
and upper boundaries for the failure frequencies; both to 
advise redesign as the consequences of these types of failures 
can disrupt firms. After that, Tinga et al. (2017) introduced 
lower boundaries for the failure frequency to guarantee the 
economic justification for PdM policies; the investment in 
PdM is not recovered when there are not ‘enough’ failures or 
these are not experienced within the realistic (economic) 
lifetime of the asset.  

Next, the business case for predictive maintenance could be 
negative because: (i) introducing PdM is more costly than 
preventive or corrective maintenance; (ii) there is a low 
probability of unnecessary replacements (high confidence 
that failure will occur as predicted in preventive policy); (iii) 
probability of correct prediction of time to failure is not 
important as part will be replaced anyhow before each 
mission.  

3.5. No consideration of organizational feasibility  

Even though PdM might be economically and technically 
feasible, it should also fit the organization. Issues such as a 
lack of system and domain knowledge, a lack of trust in 
monitoring systems and the organization not being ready to 
implement PdM can hinder the adoption of PdM. Jonsson and 
Westergren (2004) clearly expressed the opinion of one 
employee towards the adoption of PdM: “What will break 
first – the motor or the remote [monitoring] system?”. 
Jonsson and Westergren (2004) argue that firms should work 
hard on showing the added value of the system or on 
integrating it with a larger monitoring system to overcome 
this barrier.  

3.6. No focus on desired use and desired outcome of 
predictive maintenance approach  

The reviewed methodologies pay little attention to the 
different possible outcomes of the selected predictive 
maintenance approach. In the literature, three types of end 
results of a prognostic approach are often distinguished: 
detection, diagnosis, and prognosis (Jardine et al., 2006). The 
inputs from a condition monitoring (CM) system can be used 
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for CBM, but also (in a simplified manner) to only detect 
anomalies (detection). These differences in outcomes should 
be included in the selection of suitable candidates as this 
difference leads to another view on the discussed limitations 
of existing methods.  

For example, considering the clustering of maintenance 
activities (as discussed in 3.2) is not important for detecting 
anomalies (for example preventing safety incidents) while it 
is important for extending maintenance actions (the goal of 
prognosis). Although PdM/PHM and CBM are sometimes 
used interchangeable, they lead to different end results. CBM 
is a dynamic maintenance policy based on performance 
and/or condition monitoring. CBM thereby aims to detect 
anomalies in the operation of industrial machinery: the 
discovery of changes in their characteristics prefigures a 
future failure in the short term (Gouriveau et al., 2016). 
Where CBM is mainly diagnostic, PHM (used for PdM) 
includes prognostic capabilities (Tinga & Loendersloot, 
2014). We therefore consider CBM as diagnosis and PdM / 
PHM as prognosis. Detection (using e.g. CM) is typically 
used to recognize imminent failures before the system fails 
and can therefore be seen as a safety warning. 

3.7. Factors to consider 

The factors discussed before in this section serve as design 
criteria for the final solution development, that should help to 
reduce time consumption of the process (following section 
3.1). These factors have been added to the already known 
factors to create the list shown in Table 1, now containing all 
factors that can hinder the usage of predictive maintenance. 
The overview of Goossens and Basten (2015) was used as 
starting point, and this list was extended with the factors 
discussed in sections 3.1 to 3.6 (marked with ‘*’).  

Factors hindering the use of PdM 
Clustering 
No consideration of  production/mission clustering * 
No consideration of technical clustering * 
Technical feasibility 
Other failure modes become critical * 
Failure cannot be predicted due to human errors * 
Failure cannot be detected with existing technology * 
Failure cannot be detected even with additional research * 
Failure cannot be predicted with existing technology * 
Failure cannot be predicted even with additional research * 
Economic feasibility 
Insufficient financial resources available * 
Not enough failures (during life time) * 
Organizational feasibility 
No trust in monitoring system  
No fit to crew (size and education level) 
No fit to existing knowledge levels 
No fit to the operational task (maintenance location) 
No fit to mission (equipment age, location and profile) 

Not compliant with existing policies and prescriptions 
No fit to (external) relations (outsourcing) 
No fit to the spare parts (commonality, availability) 

Table 1. Factors that hinder the use of predictive 
maintenance (new factors are marked with ‘*’) 

4. SOLUTION DEVELOPMENT: PROPOSED SOLUTION FOR 
IDENTIFICATION OF SUITABLE CANDIDATES FOR PDM 

4.1. Proposed method 

The proposed methodology (visualized in Figure 1) consists 
of three stages: the criticality classification, the identification 
of showstoppers, and a focused feasibility study. The 
proposed method works as a funnel, the first stage aims to 
reduce the number of potential candidates significantly to 
reduce the required efforts in the two following stages. Each 
of the three stages will be elaborated in the following 
subsections, and demonstration of the proposed method in  
two real cases then follows in section 5. 

 
Figure 1. Proposed funnel approach for the identification of 

suitable candidates for PdM 

4.2. Criticality classification 

The initial criticality classification acts as a filter to 
significantly reduce the number of possible candidates from 
a plethora of components. The four quadrant chart based on 
the work of Labib (2004), Lee et al. (2009) and Tinga et al. 
(2017) helps to bring focus to only the most promising 
candidates, namely those with a low frequency of failure and 
a high associated failure consequence (e.g. failure, costs or 
downtime). The improved focus established by the 
introduction of a lower limit (in addition to the upper limit) 
on the failure frequency helps to only select those candidates 
that fail often enough for a positive business case. 



INTERNATIONAL JOURNAL OF PROGNOSTICS AND HEALTH MANAGEMENT 

6 

4.3. Identifying showstoppers related to the desired 
outcome 

Showstoppers are factors that can make the prognostic 
approach infeasible or providing no added value. In section 3 
several factors were identified that hinder the use of PdM / 
PHM. These are clustered in the potential showstoppers (PS) 
listed in Table 2.  

Firstly, following section 3.6, a differentiation is made 
between three ambition levels, the desired results of 
prognosis: Detection: used as safety warning or last resort; 
Diagnosis: determine fault state and short-term (failure) 
behavior forecast; and Prognosis: long-term (failure) 
behavior prediction. Determining the desired outcome by 
differentiating between detection, diagnosis, and prognosis 
helps to firstly describe the requirements of the prognostic 
system and secondly explore the possibilities and 
impossibilities by recognizing the potential showstoppers. 
Next, when considering technical feasibility, a choice has to 
be made whether additional research may be conducted or 
only existing technologies can be applied.  

Per approach, it is then determined whether the potential 
showstopper is present in the situation under analysis, which 
then prevents that approach to be successful. For 
practitioners, it will however not always be trivial whether a 
factor will be a showstopper. Three possible outcomes can 
therefore be chosen: Yes (it is a showstopper), No (it is not a 
showstopper), or Maybe (it might be a showstopper). In the 
final stage of the procedure, the focused feasibility study 
(section 4.4), these Maybe‘s will be looked at in more detail. 
When no other showstoppers have already made the desired 
approach infeasible, the Maybe has to be transformed in a 
decisive Yes or No in this final stage.  

The potential showstoppers (listed in Table 2) can be 
operationalized in the following manner:  

Mission clustering: can a possible PdM activity be 
conducted during or in-between missions? If not, can the 
predicted maintenance activity be planned with a minimum 
of the duration of one operational period in advance (i.e. this 
requires a prognostic distance of at least one mission 
duration) ? 

Technical clustering: does the predicted failure mode drive 
the package of clustered maintenance activities (i.e. does it 
drive the maintenance interval)? If not, can it be skipped one 
interval? Note: this also requires considering whether all 
relevant failure modes of the component are listed.  

Detecting/predicting with existing/additional research: is 
it viable to build a model that is able to detect/predict the 
failure mode/mechanism with existing/additional research?  

Sufficient financial resources: are sufficient resources 
available to cover the investment costs?  

Enough failures during life time: will sufficient failures 
occur (and thus be prevented under a predictive maintenance 
policy) to recover the investment costs? Note: the lower limit 
line in the four quadrant chart also helps to cover this PS.  

Trust in monitoring system: will the developed monitoring 
system be trusted by maintenance personnel and operators? 

Fit to personnel: is sufficient knowledge, qualifications and 
experience with maintenance available within the company? 
Is there sufficient willingness to adopt PdM?  

Operational task and mission: does the predictive 
maintenance fit with performing the operational mission? 

Relations and policies: does the predictive maintenance fit 
with the internal and external relations of the company? 

Spare parts: does the predictive maintenance policy fit with 
the type, commonality and availability of spares?  

 

Potential Showstoppers (PS) D
et

ec
tio

n 

D
ia

gn
os

is
 

Pr
og

no
si

s 

Clustering  
c1 No match with production or 

mission planning 
 PS PS 

c2 No match with technical clustering   PS PS 
Technical feasibility 
t1a Failure cannot be detected with 

existing technology PS PS  

t1b Failure cannot be predicted with 
existing technology   PS 

t2a Failure cannot be detected with 
additional research PS PS  

t2b Failure cannot be predicted with 
additional research   PS 

Economic feasibility 
e1 Insufficient financial resources  PS PS PS 
e2 Not enough failures (during life 

time) for positive business case PS PS PS 

Organizational feasibility 
o1 No trust in monitoring system PS PS PS 
o2 No fit to personnel  PS PS PS 
o3 No fit to operational task / mission  PS PS 
o4 No fit to relations and policies  PS PS 
o5 No fit to the spare parts   PS PS 

Table 2. Identification of potential showstoppers (PS) for 
the differentiated application of PdM  

Table 2 shows that each of the 11 factors can act as a 
showstopper for the two most ambitious (Diagnosis and 
Prognosis) levels, but only six of them could affect the lower 
level Detection.  

Showstoppers that are identified on the aspects 
“organizational feasibility” and “clustering” can result in a 
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(temporary) stop on developing the desired PdM approach. 
Therefore, analysis is required to see how these showstoppers 
can be mitigated. For the clustering, it should be examined 
how the candidate can be removed from the maintenance 
(either mission or technical) cluster or whether the interval of 
the other maintenance activities within the cluster can be 
coupled to the selected candidate.  

For the organizational feasibility, the identified showstoppers 
point at factors that have to be addressed before PdM can be 
successfully implemented. Bengtsson (2008) provides a 
checklist with organizational factors to take into 
consideration when implementing PdM. Bengtsson argues 
that when a positive business case can be made for the 
implementation, small scale pilot projects and gradual 
implementation can help to overcome these barriers. 

The showstoppers on the aspects “technical feasibility” and 
“economic feasibility” can also result in a (temporary) stop 
on developing the desired PdM. However, for these factors 
the answer is not always a clear Yes or No, so these will be 
addressed in the third and final stage, the focused feasibility 
study.  

4.4. Focused feasibility study  

In the final stage of the method, the feasibility of developing 
a prognostic model is further examined for those candidates 
where a ‘Maybe’ has been selected for one or several of the 
showstoppers (and no definite showstoppers were identified). 
This means that these factors will be studied in more detail.  

The economic feasibility study focuses on whether 
developing the prognostic model is beneficial to the firm, 
from a strategic point of view. This is because not all 
industrial equipment benefits from the application of 
prognostic techniques. It is difficult to assess the financial 
impact with a high accuracy at the start of the project, but it 
is important to discuss and brainstorm on the possible gains 
in comparison to the possible investment costs (Bengtsson, 
2008). As proposed by Tiddens, Brouwer, Braaksma, and 
Tinga (2017), first a distinction should therefore be made 
between explorations and exploitations of PdM / PHM. 
Exploitations regard applying well-known (to the firm) 
technologies. For these, a detailed financial modelling can be 
executed, using for example the method proposed by 
Tiddens, Brouwer, et al. (2017). This method helps to 
determine whether developing PdM for the candidate system 
leads to a financial justification. In these cases, it is often 
quite clear whether the use of PdM is beneficial to the firm 
and the showstopper identification can be conducted with 
limited uncertainties. Explorations are those developments in 
which the frontiers of what is known (within the firm) are 
pushed. For explorations, a detailed cost benefit analysis 
cannot be made since the costs and benefits are highly 
uncertain. Then, a maintenance balanced scorecard approach 
can be used. An example of this approach, proposed by 
Alsyouf (2006), is shown in Table 3. A multi-criteria decision 

making approach could in this situation be used to compare 
PdM with fixed-interval preventive maintenance (PM) and 
corrective maintenance (CM) (or any other maintenance 
policy) at a strategic level. Although PdM was – technology 
wise –  possibly already selected as the preferable 
maintenance approach for the candidate system, the highest 
total score (22) for PdM in Table 3 confirms that in this case 
developing PdM is of strategic interest to the firm.  

Perspective CM PM PdM 
(i) innovation and growth 1 2 4 
(ii) maintenance 2 3 3 
(iii) production 1 3 3 
(iv) customer 1 4 5 
(v) society 1 3 4 
(vi) financial 2 3 3 
Total  8 18 22 

Table 3. Example multi-criteria analysis to assess the 
(positive) impact of PdM (1 = low, 5 = high) 

The technical feasibility study focuses on whether it is 
possible for the firm to develop and implement the desired 
prognostic approach. The technical feasibility goes deeper 
than the showstopper identification. Determining the 
feasibility is not always trivial, since for innovative PdM 
approaches, a successful outcome can be quite uncertain. In 
the technical feasibility study, focus should be paid to the 
seven functional levels that are used in the OSA-CBM (Open 
System Architecture for CBM) (Lebold, Reichard, & Boylan, 
2003). The level of detail of this technical feasibility study 
should be determined per case. In case of a highly uncertain 
and costly PdM implementation a complete proof-of-concept 
might be required, whereas in case of a low cost and low risk 
application, only briefly discussing the questions would be 
sufficient. Following the requirements defined by Gouriveau 
et al. (2016), based on the original OSA-CBM, the following 
questions guide the assessment of the technical feasibility:  

1. Data acquisition: How can the failure mechanism be 
measured? How can the required data be acquired, back-
upped and secured? 

2. Data processing: How can the signals issued from the 
sensors be processed to extract features that suggest the 
presence of anomalies, and in the long term, represent 
the state of the monitored system? 

3. Detection (condition assessment): How can the real-time 
data be compared with expected or known values. How 
can alerts be generated based on criteria of performance, 
security, etc.?  

4. Diagnostics (not required for: ‘Detection’): How can – 
based on the detected state – be determined whether the 
monitored system is degraded? How can insight be 
provided on influences of interactions with other 
components, operating and environmental conditions? 

5. Prognostics (not required for: ‘Detection’ and 
‘Diagnosis’): How can the current state of the monitored 
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system be determined? How can the future state of the 
monitored system be determined and an estimation of the 
remaining useful life (RUL) be given?  

6. Decision analysis: How can maintenance/control actions 
be recommended such that the system can function until 
the accomplishment of the mission? 

7. Presentation: How can the results be presented?  
 

5. SOLUTION DEMONSTRATION  

5.1. Selecting suitable candidates for PdM for a ship’s 
propulsion system  

MAR is a maritime company that monitors the seas and 
collects engineering and earth data. For its vessels, MAR 
wants  to introduce PdM and has therefore joined the 
MaSeLMA (maintenance and service logistics for maritime 
assets) research project.  In this project (in which the authors 
are also involved), MAR cooperates with other maritime 
companies to develop a PdM approach for the diesel-direct 
propulsion system of a series of their vessels. The first step 
for MAR therefore is determining the most suitable 
candidates for PdM within the propulsion system. As 
multiple companies are involved in this project, the final 
selection is based on the result of the identification of suitable 
components at multiple companies. For clarity, this case 
study only discusses the selection of suitable candidates at 
MAR.  

5.1.1. Criticality classification 

A streamlined FMECA has been conducted to determine the 
most critical failure modes within the diesel-direct propulsion 
system of MAR. These FMECAs were conducted using 
experts at MAR and external experts from the supplier of the 
diesel engines. The identified failures are plotted in the four 
quadrant chart, see Figure 2. The four quadrants represent the 
following maintenance advice: Q1 (upper right, including the 
cut-off regions of Q2 and Q4): fix unreliability during design; 
Q2 (upper left): fix failures with spare parts; Q3 (lower left): 
regular (OEM prescribed) maintenance; and Q4 (lower 
right):  predictive maintenance. The dotted line indicates the 
lower limit for Q4, failures with a lower failure frequency are 
expected to lead to a negative business case.  Eleven failures 
(Table 4) are identified in the Q4 area. These failures cause a 
downtime longer than 24 hours and have a failure occurrence 
of more than once every 30 years (the minimum economic 
lifetime of the vessel). The upper limit on the failure 
frequency for Q4 is set at one failure every three years. 

5.1.2. Identifying showstoppers related to the desired 
outcome 

MAR has the desire to do prognostics, so the associated 
potential showstoppers are analyzed (t1a and t2a are not 

applicable for prognostics). MAR operates it’s vessels all 
over the world. Consequently, their maintenance 
opportunities are limited. The current fixed-interval 
preventive maintenance policy prescribes many clustered 
maintenance activities (c2). The larger maintenance activities 
are scheduled during docking periods. The mission schedule 
allows for small maintenance activities during operations and 
bad weather periods (o3). However, at those moments limited 
tools and specialisms are available thus not all maintenance 
activities can be conducted (c1).  

 

 
Figure 2. Four quadrant method, showing failures for 

MAR’s vessel propulsion system.  

 

ID Description of event / failure mode 
1 Diesel engine – bearing shells worn  
2 Diesel engine – connecting rod bearing shell worn  
3 Diesel engine – pistons (+ springs) seized / fouled 

due to liner wear 
4 Diesel engine – valve  mechanism – valve broken 

due to fatigue / overload / wear 
5 Diesel engine – gear wheel train worn  
6 Diesel engine – air cooler waterside fouled  
7 Gearbox – gearwheels teeth worn / broken due to 

wear / overload  
8 Gearbox – thrust bearing worn  
9 Thruster – coupling slipped due to wear  
10 Thruster – frequency converter failed 
11 Thruster - encoder failure due to software error 

Table 4. Identified candidates using the four quadrant chart 
method 

 

Next, the different crews aboard the vessels are to be trained 
in the use of prognostic systems (o2). Moreover, high 
reliability is demanded in the industry and trust in the 
monitoring systems has to be gained in time (o1). Finally, 
limited funds are available to invest in monitoring systems. 
Therefore, the cost effectivity of the investments in PdM is 
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key for MAR (e1,e2). Table 5 shows the complete overview 
of identified showstoppers for the candidates remaining from 
the first step (the four quadrant chart).  

ID c1
 

c2
 

t1
b 

t2
b 

e1
 

e2
 

o1
 

o2
 

o3
 

o4
 

o5
 

R
es

ul
t 

1 N Y M N N N N N N N N Y 
2 N Y M N N N N N N N N Y 
3 N Y M N N N N N N N N Y 
4 N N M N N N N N N N N M 
5 N M N N N N N N N N N M 
6 N M N N N N N N N N N M 
7 N N N N N N N N N N N N 
8 N N M N N N N N N N N M 
9 N N N N N N N N N N N N 

10 N N M N N N N N N N N M 
11 N N Y M N N Y N N N N Y 

Table 5. Identification of showstoppers for the 9 candidates 
(ID) at MAR. Y= yes, N = no, M = maybe.  

5.1.3. Focused feasibility study  

The showstopper identification shows that the candidates 
with ID:4,5,6,8,10 are ‘Maybe’ suitable for PdM. The 
technical feasibility will therefore be studied in more detail 
in this section, focusing on the valve mechanism (ID:4). 
Studying the economic feasibility in detail is not necessary as 
developing and applying a PdM approach is expected to 
result in financial savings. The technical feasibility of 
developing PdM for the valve mechanism has been studied 
by Duplex (2017), the results are presented here along the 
seven levels of the OSA-CBM structure.  

1. Data acquisition: based on the work conducted by Lewis, 
Dwyer-Joyce, Slatter, and Brooks (2004), a physical model 
has been developed. This model accounts for impact (when 
the valve closes) and abrasion (sliding of valve and seat under 
combustion pressure). The former is estimated by an 
empirical relation used in erosion studies, and the latter by 
Archard’s wear law. These are then summed to make a final 
wear prediction. Key input parameters for the model are 
thermodynamic working characteristics of the engine, 
material properties, and engine operational scenarios. The 
required data will be collected from engine operational 
parameters, simulations, experiments and empirical values 
from literature. The operational profile will be estimated in 
discussions with ship managers. If the results are promising 
then a data acquisition system will be installed to record 
actual operational hours and load conditions.   

2. Data processing: based on the estimated or logged 
operational profile, a wear rate can be determined using the 
developed physical model.  

3./4. Detection and Diagnostics: The model output will be 
compared with manufacturer instructions for rejection 

criteria. The actual wear profile of valves can be determined 
for a given or logged set of operational scenarios.   

5. Prognostics:  Based on the estimated future operational 
scenario, the model calculates a remaining useful life (RUL).  

6./7. Decision analysis and Presentation: The decision 
support tool will be customized to determine actual wear and 
remaining life of valves. Subsequently, a set of working 
scenarios can be simulated in this tool to estimate an 
approximate maintenance interval or assist in mission 
planning. 

5.1.4. Discussion on MAR case  

The showstopper identification proves to be of high value for 
the MAR case. Initially, the cylinder liners (ID:3) were 
selected in the MaSeLMA project. This selection was made 
by conducting the FMECA analyses and applying the four 
quadrant chart only. During the project it however turned out 
that the developed physical model, that helped to prolong 
maintenance intervals, could not be used to its optimum. As 
the maintenance activities of the complete diesel engine are 
clustered into a use-based preventive maintenance policy, 
only conducting maintenance for the liners would not be 
efficient. The showstopper identification, as used in the 
proposed method, clearly points at this issue (c2). By using 
the proposed method, the clustering of maintenance activities 
could have been identified in advance as a showstopper. 

Further, one of the factors affecting the failure: diesel engine 
bearing shells worn (ID:1) is fouling of lubrication oil. 
Periodic oil sample analysis is already ongoing at MAR. 
However, considering the mission clustering (c1) requires 
checking whether the prognostic distance of these analyses is 
large enough. Oil samples cannot be analyzed aboard all 
vessels. These samples are therefore send to a lab. However, 
when the vessel is operating in a remote location, the period 
between taking the sample and receiving the analysis result 
can be too long to take timely measures (i.e. change the oil). 
Nevertheless, other CM techniques (e.g. vibration 
monitoring) could still provide a way to timely predict a 
bearing failure, so c1 is not considered to be a showstopper 
for ID:1. 

5.2. Selecting suitable candidates for PdM in a canal lock  

Rijkswaterstaat (RWS) is, on behalf of the Dutch ministry of 
infrastructure, responsible for the design, construction, 
management and maintenance of the main infrastructure 
facilities (such as highways and waterways) in the 
Netherlands. In this context, RWS, is responsible for 
numerous canal locks and pumping stations in waterways. 
The studied complex consists of a lock gate and a water 
pumping station (Figure 3). The two main functions of this 
complex are: controlling the water level in the waterway, and 
providing passage of shipping. The complex should therefore 
be able to pump water (increase upstream level), drain water 
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(decrease upstream level), and stop the water. The moveable 
miter gates of the canal lock allow for the passage of 
shipping.  

 
Figure 3. The canal lock (left hand side) and the water 

pumping station, source: RWS 

RWS is currently investing in data extraction technologies 
that can enable PdM for the studied complex in the eastern 
part of the Netherlands. In this project, real time data on the 
operation and performance of the whole complex will 
become available remotely. Having the opportunity to 
remotely monitor the performance of e.g. the pumps in the 
pumping station could enable PdM. However, as many data 
from various installations will become available, the first 
question of RWS is: For which components should a 
predictive policy be developed first?  

5.2.1. Criticality classification 

For the first stage filtering process, existing data from a fault 
tree analysis (FTA) is used as input for the four quadrant 
chart. These FTA’s were conducted by an external bureau 
using expert knowledge. The 175 identified events were 
plotted in the four quadrant chart, see Figure 4. The FTA 
identified 84 basic events that lead to downtime less than 24 
hours (48%), 4 events leading to downtime between a day 
and a week (2%), 44 events leading to downtime between a 
week and a month (25%) and 43 events leading to downtime 
longer than one month (25%).   

After identification of the failure modes that can be plotted in 
the four quadrant chart, it is important to set the boundaries 
for the quadrants and to set a lower level for the failure 
frequency, as is suggested by Tinga et al. (2017). The lower 
limit was set at a failure frequency of one failure every billion 
hours, the upper level at one failure per million hours. The 
lower boundary for the associated downtime was set at 24 
hours (1 day).  

Table 6 shows the events that were identified by applying the 
four quadrant chart method. 29 failures potentially interesting 
for PdM were identified, as they were located in Q4 of the 

graph. For clarity reasons, this list was cleaned up and 
reduced to 14 failures.  

For example, similar failures for different gearboxes were 
grouped and also natural events influencing various 
installations were clustered (i.e. lightning strike for the 
control building and lightning strike for the tower were 
clustered into “lightning strike”). 
 

 
Figure 4. Four quadrant chart for the canal lock . The Q4 

area indicates the failures that are suitable for PdM 

 
ID Description of event  
1 Lightning strike  
2 Fire 
3 Ship collision  
4 Gate closed too early 
5 Drive hydro motor lock failure  
6 Cylinder leveling slider front lock failure 
7 Reduction gearbox failure 
8 Control panel pump system failure 
9 Return valve does not open 
10 Butterfly valve (electric drive) failure 
11 Hoist and electromotor protective gate failure 
12 Pump failure 
13 Fiber network ring connection breaks 
14 E-motor failure 

Table 6. Identified candidates using the four quadrant chart 
method 

 
5.2.2. Filtering showstoppers related to the desired 

outcome 

The ambtion level of RWS is to be able to reduce unplanned 
downtime by looking at current and short-term future 
behavior, thus: Diagnosis. The focus of this project is to use 
the data that is available using the new data extraction 
technologies that RWS has invested in. Therefore, extra data 
collection is not desirable and mainly data on e-motors and 
pumps will become available (t1a,t2a). Clustering of 
maintenance tasks (c1,c2) does not give any restrictions here.  
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The results of the showstopper identification show that for 8 
of the 14 candidates one or more showstoppers are identified, 
in 4 cases (where the total result is M), a more detailed 
feasibility study has to be conducted, and for 2 cases no 
showstoppers are identified at all. Oftentimes, a ‘Maybe’ is 
given for the categories o1 (trust in the monitoring system) 
and o2 (fit to personnel). RWS is convinced that PdM has 
many benefits that can be gained on the long-term, but on the 
short-term, hick-ups can occur within the organization. Trust 
in the monitoring systems should be gained over time, since 
there is no wide spread previous experience within the 
organization. Next, in recent years a lot of RWS’s 
maintenance has been outsourced. It is therefore important to 
consider whether sufficient domain knowledge (02: fit to 
personnel) is still present. RWS’s goal is to build this up by 
investing in the conduction of failure analyses and 
implementing PdM. To succeed in the development of PdM 
for the canal lock, sufficient domain knowledge will be 
gained by cooperating with knowledge institutes and 
partners. Therefore, also RWS’s relations and policies will be 
challenged by adopting PdM (o4). As this is labelled an 
‘innovation project’, no insurmountable problems are 
foreseen. Sufficient resources (both human and financial – 
e1,e2) are available to solve difficulties that might occur.  

ID c1
 

c2
 

t1
a 

t2
a 

e1
 

e2
 

o1
 

o2
 

o3
 

o4
 

o5
 

R
es

ul
t 

1 N N Y Y Y Y Y Y N N Y Y 
2 N N Y Y Y Y Y Y N N Y Y 
3 N N Y Y Y Y Y Y N N Y Y 
4 N N Y Y Y Y Y Y N N Y Y 
5 N N N N N N N N N N N N 
6 N N M N N N M M N N N M 
7 N N M N M N M M N N N M 
8 N N Y N M N M M N N Y Y 
9 N N Y N M N M M N N N Y 

10 N N Y N M N M M N N N Y 
11 N N N N N N M M N N N M 
12 N N N N N N N N N N N M 
13 N N Y N N N Y M N N Y Y 
14 N N N N N N N N N N N N 

Table 7. Identification of showstoppers for the canal lock. 
Y= yes, N = no, M = maybe.  

5.2.3. Focused feasibility study 

The reduction gearbox (ID: 7) is one of the four failures 
selected as a potentially interesting candidate for PdM for 
which a more detailed feasibility study has to be conducted. 
The economic feasibility of developing PdM for the gearbox 
is assessed using the maintenance balanced scorecard 
approach, for which the results are shown in Table 8:  

(i) innovation and growth: an innovative maintenance 
policy will be developed that helps developing competences, 

skills and knowledge within RWS. The impact is therefore 
rated considerably higher (value 5 in Table 8) compared to 
the traditional corrective maintenance (CM) and preventive 
maintenance (PM).  

(ii) maintenance: The PdM introduction can reduce the non-
utilized remaining life of the gearbox while complying to 
safety regulations and standard. However, it is not as easily 
plannable as fixed-interval PM activities. PdM can also 
decrease the work load of the maintenance organization by 
increasing the time between overhauls. PM and PdM are 
therefore scored equally. UM scores low because it can create 
high variances in the maintenance organization’s work load 
and unplanned failures can occur.  

(iii) production: PM and PdM can be scored equally as they 
both assure reliable operation and thereby guarantee the 
operational effectiveness of the lock.  

(iv) customer: PdM might improve the availability of the 
lock. PdM is therefore rated slightly higher than PM, which 
also ensures reliable operation of the lock (the main concern 
of the customers).  

(v) society: RWS serves the interests of society. Therefore, a 
reduction in the operating costs and improvements in the 
lock’s availability are of interest to the society.  

(vi) financial perspective: PdM can help to prevent costs 
associated with unplanned failures and damages and helps to 
prevent spoiling remaining useful life by only conducting 
maintenance when required. A downside of the introduction 
of PdM is the capital investment that is required for the 
development.  

Perspective CM PM PdM 
(i) innovation and growth 1 2 5 
(ii) maintenance 1 4 4 
(iii) production 1 3 4 
(iv) customer 1 3 4 
(v) society 1 3 4 
(vi) financial 1 3 4 
Total  6 18 25 

Table 8. Results of the economic feasibility study for the 
gearbox 

The technical feasibility of developing PdM is assessed 
using the seven levels of the OSA-CBM structure:  

1. Data acquisition: A SCADA system is available for 
automatic collection of sensor data (i.e. oil level, oil fouling, 
temperatures and motor current) and event data. The newly 
available data extraction technologies ensure secure data 
connection and back-up possibilities. The raw SCADA data 
is coded and send to a data center in real-time. Via this 
connection, asset managers are able to process the data. 

2. Data processing: The project initiated by RWS focuses on 
developing models to process this data. Praveenkumar, 
Saimurugan, and Ramachandran (2017) recently showed the 
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potential of using motor current signal for gearbox fault 
detection.  

3./4. Detection and Diagnosis: Kar and Mohanty (2006) 
showed how motor current signal analysis can be used for 
gearbox fault detection. Based on the principles explained in 
this work, alerts can be generated based on the gearbox 
performance and a short-term failure prediction can be 
developed.  

5. Prognosis: not required for the set ambition level. 

6./7. Decision analysis and Presentation: via the data 
center, the results from the data processing can be converted 
to information. Dashboards and status reports are to be 
developed to present anomalies in behavior of the gearbox to 
asset managers. 

In conclusion, developing a PdM approach for the gearbox 
seems feasible from both a strategic (financial) as well as a 
technical point of view.  

5.2.4. Discussion on RWS case  

Filtering showstoppers for the canal lock was helpful. After 
applying the four quadrant chart method, many natural events 
(such as lightning strikes) and external events (such as a 
transport accident) came up as possibly suitable candidates 
for PdM. Although it might be straightforward to not develop 
PdM for these candidates, during the session it was indicated 
that normally the non-technical factors that could be potential 
showstoppers, could easily have been ignored. The main 
value for RWS was therefore having a structured way of 
assessing the applicability of PdM per candidate. Also the 
feasibility study provides, at an early stage, a clear indication 
of how PdM can be developed using currently available 
technology. It points at academic literature that shows that 
achieving the set ambition ‘Diagnosis’ with the existing 
sensors is indeed possible.  

6. CONCLUSION 

This paper aimed to propose a method to select the suitable 
components for PdM / PHM within an asset. It can be 
concluded that the proposed three stage approach can be 
widely applied for suitable candidate selection, as was 
demonstrated by the canal lock (RWS) and naval vessel 
propulsion system (MAR) cases. Applying the four quadrant 
chart as a first filter has shown to reduce the time effort as it 
significantly reduces the number of potential candidates with 
up to 90% for MAR and 84% for RWS. The second stage, i.e. 
identifying showstoppers proves to be an important 
contribution of this paper. In both cases, several 
showstoppers have been identified that are easily overlooked 
by traditional methods (as the cylinder liner example in the 
MAR case clearly showed). Thus, simply applying PdM / 
PHM on the top cost drivers or performance killers will in 
many cases not lead to optimal results (i.e. reducing 
downtime or maintenance costs by applying PdM). Besides, 

the value of the proposed method is not only in generating a 
list of suitable candidates for PdM, but also in providing a 
structured and traceable way to determine these candidates. 
By identifying potential showstoppers in advance and 
conducting a structured feasibility study, the often observed 
trial-and-error approach in developing PdM in practice can 
be prevented.  

The cases also show that the group of persons applying the 
proposed method affect the results, since especially the 
showstopper identification and the feasibility study are fairly 
subjective. This is however not problematic by itself: 
although attention is required to create reproducible results, 
the goal of the method is to assess showstoppers and the 
feasibility within the company. It is nevertheless advised to 
use a multidisciplinary team which is well suited to estimate 
the feasibility within the firm. This feasibility is determined 
by e.g. the knowledge level of employees, maturity of the 
firm, previous experiences with PdM and experience in 
applying the proposed selection method.  

Finally, the proposed method has only be tested in situations 
where a clear project aiming at developing PdM was initiated. 
This might also explain why only a limited number of 
organizational showstoppers have been identified; the 
companies were ready to start with implementing PdM. 
Besides, the proposed list of showstoppers might not be 
complete for any application, but can easily be extended with 
additional factors when necessary. Further research should 
therefore focus on testing the proposed method in standard 
maintenance improvement programs in practice.  
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