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ABSTRACT

Production surveillance is the task of monitoring oil and gas
production from every well in a hydrocarbon field. A key op-
portunity in this domain is to improve the accuracy of flow
measurements per phase (oil, water, gas) from a multi-phase
flow. Multi-phase flow sensors are costly and therefore not in-
strumented for every production well. Instead, several low fi-
delity surrogate measurements are performed that capture dif-
ferent aspects of the flow. These measurements are then rec-
onciled to obtain per-phase rate estimates. Current practices
may not appropriately account for the production dynamics
and the sensor issues, thus, fall far short in terms of achieving
a desired surveillance accuracy. To improve surveillance ac-
curacy, we pose rate reconciliation as a state estimation prob-
lem. We begin with hypothesizing a model that describes the
dynamics of production rates and their relationship with the
field measurements. The model appropriately accounts for
the uncertainties in field conditions and measurements. We
then develop robust probabilistic estimators for reconciliation
to yield the production estimates and the uncertainties therein.
We highlight recent advancements in the area of probabilistic
programming that can go a long way in improving the perfor-
mance and the portability of such estimators. The exposition
of our methods is accompanied by experiments in a simula-
tion environment to illustrate improved surveillance accuracy
achieved in different production scenarios.

1. INTRODUCTION

Production in the context of a hydrocarbon field is the to-
tal output from production wells that, apart from oil, con-
tains water, gases and particulate matter. Although accurate
information about the total production from a field is usu-
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ally available, there exist significant gaps in the per-well pro-
duction estimates. The latter is valuable for several reasons
that include equipment health monitoring, improved resource
management, reduced operational cost and ultimately, pro-
duction optimization. Even with state-of-the art sensors, the
accuracy of multi-phase flow metering is quite limited. Be-
cause of the limited accuracy and the cost of multi-phase flow
sensors, fields are instrumented with more conventional sen-
sors that capture different aspects of the flow. Measurement
from these multi-modal sensors are then combined to obtain
an estimate of the production rate of each phase per individual
well. This task is commonly referred to as rate reconciliation.
Achieving a desired reconciliation accuracy is hampered by
many issues such as sensor failures, evolving and unknown
reservoir conditions, time varying sensor errors, sensors with
varying sampling rates and duplicate measurements. Current
deterministic approaches of surveillance are unable to address
these issues in a systematic way, and thus remain sub-optimal
at best.

In recent years, data-driven solutions that require minimal
knowledge of the subsurface properties are gaining traction
for production surveillance (Goh, Moncur, Van Overschee,
Briers, et al., 2007; Poulisse et al., 2006). With a similar
intent, we appeal to the rich area of probabilistic state es-
timation, which makes our approach the first to tackle the
production surveillance task in a fully probabilistic frame-
work. The approach establishes a dynamic production model
describing the time evolution of production rates, and a mea-
surement model defining the relationship between rates and
the field measurements. Importantly, these models do not re-
quire knowledge of the subsurface properties or the physics of
fluid flow through porous media. Once the models are speci-
fied, the rate reconciliation amounts to inverting the dynamic
model for its states (and/or parameters), given the field mea-
surements. An important feature of our approach is that it
allows for the quantification of uncertainty in the estimated
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rates, thus leading to better operational decisions via improved
risk assessment.

It should be noted that we do not cover the topic of sensor val-
idation, which is a prerequisite to the surveillance approach
discussed in this paper. We assume that the sensor data is
validated and that the noise characteristics are known. This
is a reasonable assumption in practice, since most modern oil
fields have either a vendor supplied or a customized solution
for validation and noise characterization. Also, this task is
very sensor specific and cannot be put into a general frame-
work.

In section 2, we describe a typical sensing environment found
in a production field and outline a commonly used determin-
istic rate reconciliation approach. In section 3, we present
a production model that appropriately captures the dynam-
ics of production as well as the noise characteristics of field
measurements. Simplifications to this model, for the purpose
of inversion, are presented in section 4. Section 5 describes
the probabilistic estimators to carry out the inversion of the
aforementioned dynamic models. In section 6, we discuss
the performance of these estimators in different production
scenarios using a simulation study and finally conclude with
remarks on future research direction in section 7.

2. MEASUREMENT SETUP

Consider a typical field set-up, where n wells are grouped to-
gether in the measurement configuration shown in figure 1.
The output from these wells goes to a test separator, where
the incoming liquid is separated into oil and water. For ease
of exposition, we assume a two-phase flow, although the pro-
posed methods can be extended for the presence of gas as a
third phase. The following is a list of typical measurements
that are available for reconciliation.

Figure 1. A schematic of typical sensing configuration in a
production field, where a group of n wells feed to a separator.
Text in red shows different types of measurements that can
be available at time t. wsep[t] and osep[t] are the aggregated
water and oil rates from the separator. li[t] and ci[t] are the
measured total liquid rate and water-cut (fraction of water in
the total flow) for the ith well.

Test-separator rates (wsep[t], osep[t]) : Test-separators are

complex devices that are used to measure individual phase
rates in a multi-phase flow. They are based on the principle
of gravimetric separation of different phases that are present
in the incoming feed. Test-separators are quite expensive and
cumbersome to instrument and each measurement can take
upto a few hours waiting for gravimetric separation. For these
reasons, it is very common to have a test-separator that is
a shared by a group of wells. During the production, each
group is diverted to the separator based on a fixed schedule.
In this way, one can get a snap-shot estimate of combined
water and oil rates every few days.

Total liquid rates (li[t]): The total fluid production rate from
each well is usually inferred using an indirect measurement
(such as ultrasound sensing, venturimeter) or some form of
soft-sensing model. For example, for wells that are equipped
with artificial lift systems such as sucker-rod pumps, elec-
trical submersible pumps or gas-lift systems, a soft-sensing
model can estimate the amount of total liquid (oil and water)
that is being produced. These measurements are often called
inferred rates. Although these measurements could be very
noisy and not informative about the individual oil/water rates,
they are available much more frequently (perhaps hourly) and
hence play a key role in a rate-reconciliation process.

Water-Cuts (ci[t]): It is often possible to manually obtain
a homogeneous sample of the liquid from a well and mea-
sure the fraction of water present in the liquid. This frac-
tion is referred as the water-cut. Since the process is la-
borious, water-cuts are obtained very infrequently (perhaps
monthly) but have high accuracy. Moreover, these measure-
ments provide complimentary information that is valuable for
rate-reconciliation.

Any reconciliation approach should assimilate these measure-
ments as they become available and appropriately use them
based on their information content and measurement noise
level. Here we quickly describe a commonly employed de-
terministic reconciliation approach, which would serve as a
reference approach for later comparisons. The deterministic
approach starts with the total liquid rate measurements that
are available for each individual well. These liquid rates are
scaled to match the total liquid rate obtained from the last
successful well-test from the test separator. A well-test is con-
sidered successful if a desired level of phase separation was
attained during the test. The water-cuts are determined either
by a manual water-cut measurement or a successful well-test,
whichever one occurred the latest. All the wells are assigned
the same water-cut value, if the value is coming from a well-
test. Finally, with the information about the individual liq-
uid rates (scaled) and the water-cut values, the water and oil
rates per well are straightforward to estimate. Deterministic
rate estimation suffers from many issues. It lacks a system-
atic framework to handle multitude of sensor issues (failures,
varying noise levels, different sampling rates, data gaps etc.),
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let alone a mechanism that accounts for declining production
rates. In the light of these shortcomings, we propose a dy-
namic production model, in the next section, that forms the
backbone of rate estimation approach presented in this paper.

We use the following notation in the rest of the paper; the
lower case letters are reserved for scalar quantities, bold lower
case letters for vectors and upper case letters for matrices. All
the vectors are column vectors unless otherwise stated. Greek
letters are used to denote model parameters. The square paren-
thesis [·] is used for time indexing.

3. A DYNAMIC PRODUCTION MODEL

The proposed dynamic model simulates production from a
typical hydrocarbon field. Let wi[t] and oi[t] represent the
water and the oil rates from the ith well (i ∈ [1, 2, · · ·n]) at
time t. We focus on the decline phase where the production
displays an exponential type of decay (Höök, Davidsson, Jo-
hansson, & Tang, 2013). To model observed changes around
the exponential decay and to ensure strictly positive rates, we
sample the rates from log-normal distributions. Thus the time
evolution of the rates can be written as:

wi[t] ∼ LogNormal(log(w̄i[0])− λwi
t, γwi

) (1)
oi[t] ∼ LogNormal(log(ōi[0])− λoit, γoi) (2)

w̄i[0] and ōi[0] are the initial (t = 0) mean rates of water and
oil respectively. The parameters λwi

and λoi are the decay
rates of the same. The arguments of the LogNormal(·) func-
tion are the mean and standard deviation of the rates in the
log-space. Given the time evolving rates in (1) and (2), the
sensor measurements can be simulated as follows:

wsep[t] ∼ Normal (
∑n
i=1 wi[t], σsep[t]) T[0,∞]

osep[t] ∼ Normal (
∑n
i=1 oi[t], σsep[t]) T[0,∞]

li[t] ∼ Normal(wi[t] + oi[t], σli [t]) T[0,∞]
ci[t] ∼ Normal(wi[t]/(wi[t] + oi[t]), σc) T[0, 1]

(3)

Where the definitions of wsep[t], osep[t], li[t] and ci[t] fol-
low from section 2. Note that the measurements are obtained
by assuming an additive normally distributed error. Trunca-
tion of values between a and b is denoted T[a,b]. The time-
dependent nature of measurement noise standard deviation,
σsep and σli , are shown in equations (4) and (5). The choice
of Gamma distribution and the subsequent parametrization
is motivated by typical noise characteristics of field sensors.
σ̄sep and σ̄li can be interpreted as average noise standard de-
viation of the sensors over a long term. The noise variance
in manual water cut measurements, σ2

c , is assumed to be a

constant.

σsep[t] ∼ Gamma
(

10,
σ̄sep
10

)
(4)

σli [t] ∼ Gamma
(

10,
σ̄li
10

)
(5)

4. STATE-SPACE MODELS FOR RATE ESTIMATION

In the previous section, we presented a forward model that
generates the production rates and the sensor measurements,
given pre-specified parameters (decay rates, noise variances
etc.). The corresponding inverse problem would entail re-
covery of the production rates as well as the underlying pa-
rameters, from the noisy sensor measurements. Even though
the forward model in section 3 is a realistic description of the
production in a hydrocarbon field, it may not be conducive for
inversion (refer section 5.1). Here, we present two models as
the alternatives to this forward model, that make some sim-
plifying assumptions and hence allow for efficient inversion.
A probabilistic state-space framework is chosen to describe
these models. We refer the readers to (Srkk, 2013) and the
references therein for more details on the chosen framework.

Let x[t] and y[t] be the state and the measurement vectors
of the dynamical system at time t. The states correspond to
unknown entities such as water and oil rates from all wells,
in which case x[t] = [w1[t], . . . wn[t], o1[t], . . . on[t]]T . The
measurement vector contains all the observed sensor mea-
surements at time t i.e. y[t] = [wsep[t], osep[t], c[t], l1[t], . . . ln[t]]T .
A state-space model can be represented succinctly using equa-
tions 6 and 7. Equation 6 (dynamic component) describes the
time evolution of the states, whereas equation 7 (measure-
ment component) relates the measurements to the states. In
the probabilistic setting, both the dynamic and measurement
models are encoded as probability distributions Pdyn(·) and
Pmea(·).

x[t] ∼ Pdyn (x[t] | x[t− 1]) (6)
y[t] ∼ Pmea (y[t] | x[t]) (7)

The choices ofPdyn(·) andPmea(·) and the subsequent parametriza-
tion determines the complexity of inversion. Inversion (with
fixed parameters) in a state-space framework is also referred
as the state-estimation problem. The two proposed state-
space models differ only in the component describing the sys-
tem dynamics, while having the same measurement compo-
nent.

4.1. State Space Model 1 (SS-1)

SS-1 assumes simple linear dynamics with Gaussian noise as
shown in equation (8). Symbols A,Q[t] ∈ R2n×2n represent
the state transition and the process noise covariance matrices
respectively. The process noise is time varying as denoted
by the time index in Q[t]. The measurement model, shown
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in equation (9), assumes a Gaussian noise but could be non-
linear with respect to the state as denoted by function g(·).
SymbolR[t] is the time-varying measurement noise variance,
which is assumed given by a separate sensor validation pro-
cess. Figure 2(a) shows graphical representation of SS-1.

Pdyn (x[t] | x[t− 1]) = Normal (Ax[t− 1], Q[t]) (8)
Pmea (y[t] | x[t]) = Normal (g(x[t]), R[t]) (9)

Figure 2. A graphical representation of the two state-space
models with Markovian dynamics. For both models, x[·] and
y[·] denote the unknown rates and the field measurements re-
spectively. In SS-2, the state-space is augmented to include
the mean of the rates, z[·], in an attempt to closely mimic the
dynamic model from section 3.

4.2. State Space Model 2 (SS-2)

SS-1 is substantially different from the dynamic model pre-
sented in section 3. Here, we present another model (SS-2)
that is derived by simplifying our dynamic production model.
The simplification is due to an important insight about log-
normal distributions, i.e LogNormal(ξ, γ) can be well ap-
proximated by Normal(eξ, γeξ) for a small value of γ. We
argue that the γ values in equations (1) and (2) are indeed
small. To support that we refer to an equality that holds true
for γwi

(or γoi )in relation to the mean and the variance of the
true water rates (or oil rates).

γwi =

√
log

(
1 +

Var(wi)
E(wi)2

)
(10)

The ratio on the right hand side is the squared coefficient of
variation (CV) i.e. the amount of variability in the true wa-
ter rates, relative to the true mean. In reality, we expect CV
for water and oil rates to be small (< 0.2). Using the Taylor
series expansion of log(1 + x) and ignoring the higher or-
der terms, the γ value can be interpreted as CV and thus get
bounded as shown below. Hence the normal approximation
is valid.

γwi
∼ CV < 0.2 (11)

With the Normal approximation of the LogNormal distribu-
tion, the simplified dynamic model can now be written as

shown below.

wi[t] ∼ Normal(w̄i[t], γwi
w̄i[t]) (12)

w̄i[t] ∼ Normal(e−λwi w̄i[t− 1], s) (13)

Note that (12) is due to the Normal approximation of a Log-
Normal distribution and equation (13), with s → 0, is a
stochastic approximation of a exponentially decaying curve
w̄i[t] = w̄i[0]e−λwi

t. As a result of the aforementioned ap-
proximations, SS-2 can be defined in a similar fashion as SS-
1, albeit with some modification to its dynamic component.
The modification entails augmenting the state-space of SS-1
to include unknown states z[t] of the same dimension as x[t]
(refer figure 2(b)). z[t] is the expected water and oil produc-
tion, at time t i.e. z[t] = [w̄1[t], . . . w̄n[t], ō1[t], . . . ōn[t]]T .
The dynamic component of SS-2 is given by equations (14)
and (15) which are the multivariate extension of the equations
(13) and (12) respectively.

z[t] ∼ Normal (Az[t− 1], S) (14)
x[t] ∼ Normal (z[t], F [t]) (15)

The diagonal covariance matrix S ∈ R2n×2n is constant
with diagonal entries equal to s. The covariance matrix F [t]
is diagonal and can be written as F [t] = diag(γ ⊗ z[t]),
where γ = [γw1 , · · · , γwn , γo1 , · · · , γon ]. The transi-
tion matrix, A, is defined as A = diag(e−λ), where λ =
[λw1

, · · · , λwn
, λo1 , · · · , λon ]. As for the observation com-

ponent of SS-2, it remains identical to that of SS-1. There-
fore, the difference in the two models exists only in the dy-
namics, which is shifted from states x[t] to z[t] in SS-2. Fig-
ure 3 juxtaposes the time evolution of a state under the dy-
namics specified by SS-1 and SS-2. The initial state distribu-
tion is the same for the two models, so are the time varying
process noise F [t] and Q[t]. The top and the bottom row
correspond to case when the system exhibits a random walk
dynamics (A = 1) and an exponential decline (A = 0.97)
respectively.

5. RATE ESTIMATION

Here we present estimators for the dynamic models described
in previous sections. Section 5.1 describes an approach that
attempts to directly invert the model presented in section 3.
Because this direct inversion is notably hard, we highlight re-
cent algorithmic and software advancements that have made
it possible. Section 5.2 presents more efficient recursive es-
timators for the simplified state space models from section
4.

5.1. Direct Estimator

Given all the measurements, y[1 : t], from time 1 to t, the di-
rect estimator attempts to invert the model from section 3, for
the unknown rates x[1 : t] and the unknown parameters Θ.
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Figure 3. A graphical comparison of the dynamics encoded
by the two state-space models. The top row shows the time
evolution of a state under random walk dynamics (A = 1,
half-life = ∞) and the bottom row shows the same for a ex-
ponential decay with a half-life of 25 days (A = 0.97).

This inversion can represented as the following probabilistic
inference.

P (x[1 : t],Θ | y[1 : t]) (16)

The parameter set Θ is comprised of {λwi , λoi , γwi , γoi}ni=1.
From the production surveillance viewpoint, the benefit of
this approach comes from the simultaneous state and param-
eter estimation, which leads to improved surveillance accu-
racy. In addition, being an off-line setting, measurement from
the future can be used to improve the rates estimates from the
past. However, these benefits come at the cost of significant
computational challenges. First, because of the non-linear,
non-Gaussian model with state constraints, the posterior in
equation (16) cannot be obtained analytically. Second, the
dimensionality of state-space (x[1 : t]), which grows with
time, can become prohibitively large for any sampling based
method for posterior approximation. For these reasons, in
practice, recursive estimators (section 5.2) are carefully de-
signed to overcome these challenges but of course at the cost
of reduced estimation accuracy.

In recent years, with the advent of expressive probabilistic
programming languages (Gordon, Henzinger, Nori, & Raja-
mani, 2014), such direct inversion has become practical. The
primary motivation behind such languages is to make ma-
chine learning applications, rooted in probabilistic modeling,
easier to build. The benefits of probabilistic programming are
twofold. First, it provides the means for describing complex
probabilistic models that would otherwise take many lines of
code in traditional programming languages. And second, the
inference, such as the one in equation (16), is automatic and
does not require additional effort on the part of a modeler.

For example, solving (16) using forward-backward recursion
will not only require some simplifying assumptions but also
significant effort in algorithm and code development. A prob-
abilistic programming language, with its own inference en-
gine, completely obviates the need of a separate inference ca-
pability. We selected Stan (Carpenter et al., 2017) as the
probabilistic programming language to implement our model
because of its maturity, robustness and speed. Figure 4 shows
a snippet of Stan code for illustration. The one to one cor-
respondence between the mathematical representation of the
production model (equations (1), (2) and (3)) and the code is
specially to be noted. For the inference purpose, Stan offers
automatic inference engine based on variational (Kucukelbir,
Ranganath, Gelman, & Blei, 2015) and sampling based algo-
rithms (Hoffman & Gelman, 2014). Results presented in the
paper uses the latter.

Figure 4. Stan code for the simulation model described in sec-
tion 3. Only the model block of the code is included for illus-
tration. The other required programming blocks parameters
and data, which specify the unknowns and observed entities,
are not shown. The inference is carried out on the parameters
conditioned on the observed data and the specified model.

The Stan code in figure 4 specifies prior distributions (halfnor-
mal) on the parameters λ and γ. We base the standard devi-
ation for these distributions on knowledge of site operations,
then multiply by a factor greater than 1 to obtain weakly in-
formative prior. The impact of the prior is discussed briefly
in section 6. Such priors from domain knowledge and other
physical constraints, like non-negativity of flow rates, can be
easily encoded in Stan. The automatic inference procedure
ensures that the posterior distribution/samples honor such knowl-
edge or constraints.

The biggest advantage of probabilistic programming comes
from the agile development of the applications. For instance,
in another hydrocarbon field, with different production dy-
namics and sensor configuration, the rate estimator (Stan code)
can be readily adapted by changing the production model, the
measurement model and the sensor configuration. On the
contrary, with a traditional programming language, signifi-
cant effort will be needed to hand-craft and code an apropos
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inference algorithm.

5.2. Recursive Estimators for the State Space Models

Recursive rate estimation amounts to performing the follow-
ing probabilistic inference.

P (x[t] | y[1 : t],Θ) (17)

Note that this is a much smaller inference problem than the
one given in equation (16). It can be argued that this infer-
ence can also include the parameter Θ, so as to perform com-
bined state and parameter estimation, along the line of work
in (Liu & West, 2001). However, limiting only to state es-
timation greatly enables real-time implementation of the al-
gorithm in large assets with many producing wells. Never-
theless, simultaneous parameter and state estimation, in a re-
cursive setting, could be an important capability that we may
pursue in future research. Henceforth, we will denote the dis-
tribution P (x[t] | y[1 : t],Θ) as π[t] for brevity. The goal of
recursive Bayesian estimation is to perform the inference in
equation 17, recursively, for each time step by repeated ap-
plications of prediction and correction steps. The literature
on recursive estimation is rather rich, ranging from Kalman
filters and its variants to numerous Sequential Monte Carlo
(SMC) methods (Arulampalam, Maskell, Gordon, & Clapp,
2002). Our goal was to design robust and efficient recursive
estimators for our state-space models by leveraging existing
methods. To this end, we developed a hybrid estimator which
combines analytical approaches with the approximate ones
(sampling based), thereby bringing the best of both worlds.

Before presenting the hybrid estimator, an important note on
the parametric form of the posterior distribution (π[t]). We
enforce π[t] to be a Mixture of Gaussians (MoG). The use
of MoG posterior distribution is well documented (Alspach
& Sorenson, 1972; Sorenson & Alspach, 1971; Vo & Ma,
2006) (Sondergaard & Lermusiaux, 2013), in diverse prob-
lem settings where the Gaussian assumption is severely limit-
ing. In our case, the need for a MoG arises due to the fact that
flow distributions may deviate from normality as the flows
approach zero. MoG is a suitable choice to model such non-
normality mainly for three reasons. First, MoG can character-
ize arbitrary non-normal distributions; second, a MoG prior
is conjugate with respect to a linear-Gaussian observations;
and lastly, it provides a mechanism to bridge the analyti-
cal and approximate approaches for posterior computation.
These reasons are central for the success of our hybrid esti-
mator and would become clearer in the ensuing discussion.
Let ψ(α,µ,Σ) denote a k component MoG distribution as
shown in (18).

ψ(α,µ,Σ) =

k∑
c=1

αc × Normal (µc,Σc) (18)

where α = {αc}kc=1,µ = {µc}kc=1,Σ = {Σc}kc=1

The symbols αc, µc and Σc are the mixing proportions, the
mean, and the covariance parameters of the cth Gaussian com-
ponent respectively. Thus π[t] becomes ψ(α[t],µ[t],Σ[t]).
In the following, we estimate the posterior distribution π[t+
1], for SS-1 and SS-2, given the prior distribution π[t] and a
new observation vector y[t + 1]. For completeness, we ex-
plicitly provide the update equations of the prediction and
correction steps. The detailed derivation of the update equa-
tions for SS-1 can be found elsewhere (Sorenson & Alspach,
1971). For SS-2, the derivation is included in the appendix.
In cases where correction step can not be carried out exactly,
we provide suitable approximations.

5.2.1. Prediction:

In the prediction step, we propagate the posterior, π[t], at time
t to the next time step using the dynamics specified in the
state-space model. Let’s denote the propagated distribution
as π̃[t + 1]. Since, both SS-1 and SS-2 have linear dynamics
and since π[t] is a MoG, π̃[t+ 1] remains a MoG and can be
represented as ψ(α̃[t+1], µ̃[t+1], Σ̃[t+1]). The expressions
for the parameters, α̃[t + 1], µ̃[t + 1], Σ̃[t + 1], for the two
models are provided as follows.

SS-1: The propagated mean (µ̃c[t + 1]) is simply the linear
transformation A of the current posterior mean. The covari-
ance (Σ̃c[t + 1]) is the linear transformation of the current
posterior covariance via A, plus the noise covariance Q[t].
The mixing proportions (α̃c[t+ 1]) remain unchanged.

α̃c[t+ 1] = αc[t]
µ̃c[t+ 1] = Aµc[t]

Σ̃c[t+ 1] = AΣc[t]A
T +Q[t]

(19)

SS-2: We write the parameters of SS-2 as shown in equa-
tion (20). This representation is due to the grouping of the
parameters with respect to states z and x. Thus, the param-
eters of π̃[t + 1] can be written in terms of the parameter of
π[t], as shown in equation group (21) (details included in the
appendix).

µ̃c[t+ 1] =
[
µ̃z
c [t+1]

µ̃x
c [t+1]

]
, Σ̃c[t+ 1] =

[
Σ̃zz

c [t+1] Σ̃zx
c [t+1]

Σ̃xz
c [t+1] Σ̃xx

c [t+1]

]
(20)

where
µ̃zc [t+ 1] = Aµzc [t]
µ̃xc [t+ 1] = Aµxc [t]

Σ̃zzc [t+ 1] = AΣzzc [t]AT + S

Σ̃zxc [t+ 1] = AΣzzc [t]AT + S

Σ̃xxc [t+ 1] = AΣzzc [t]AT + S + F [t]

(21)

The mixing proportions remain unchanged i.e. α̃c[t + 1] =
αc[t].
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5.2.2. Correction (exact):

In the correction step, the posterior distribution π[t + 1] is
obtained by performing the following Bayesian inference,

π[t+ 1] =
π̃[t+ 1]× φ(y[t+ 1]; g(x[t+ 1]), R[t+ 1])∫

x[t+1]

π̃[t+ 1]× φ(y[t+ 1]; g(x[t+ 1]), R[t+ 1])

(22)

where, φ(·) denotes the Normal density function. Equation
22 holds for both the models as they have the same measure-
ment component. The complexity of this posterior computa-
tion depends on the form of g(·). For instance, when g(·) is
linear i.e. g(x[t + 1]) = Hx[t + 1], where H ∈ Rm×2n

(m=number of measurements), π[t + 1] can be obtained an-
alytically. The Matrix H is expected to be known from the
information about the measurement configuration. For in-
stance, consider a group of three wells (n = 3), in which
case

[
w1[t+1] w2[t+1] w3[t+1] o1[t+1] o2[t+1] o3[t+1]

]T
denotes

the state vector x[t+ 1]. Let the measurement vector at time
t+ 1 be y[t+ 1] =

[
l1[t+1] l2[t+1] l3[t+1] w[t+1] o[t+1]

]T
(re-

fer section 2). As a result, the matrix H takes the form shown
in equation 23.

H =


1 0 0 1 0 0
0 1 0 0 1 0
0 0 1 0 0 1
1 1 1 0 0 0
0 0 0 1 1 1

 (23)

With this information, we can obtain the update equations for
the parameters of π[t + 1]. Since the MoG prior (π̃[t + 1])
is conjugate for linear-Gaussian observations, the posterior
in equation 22 is again a MoG distribution, i.e. π[t + 1] =
ψ(α[t+1],µ[t+1],Σ[t+1]). In the following, we explicitly
write the update equations forα[t+1],µ[t+1] and Σ[t+1],
for the two state-space models.

SS-1: The parameter update equations of the first model are
given in equation group 24.

αc[t+ 1] ∝ α̃c[t+ 1]× φ(y[t+ 1];Hµ̃c[t+ 1], Jc[t+ 1])
µc[t+ 1] = µ̃c[t+ 1] +Kc[t+ 1]× (y[t+ 1]−Hµ̃c[t+ 1])

Σc[t+ 1] = Σ̃c[t+ 1]−Kc[t+ 1]×HΣ̃c[t+ 1]

(24)

where Jc[t+1] = (HΣ̃c[t+1]HT+R[t+1]) andKc[t+1] =
Σ̃c[t+1]HTJ−1

c [t+1] is the Kalman gain for the cth Gaussian
component. The first equation in the group updates the mix-
ing proportions and the proportionality sign there indicates
the need of re-normalization so that the posterior remains a
valid MoG distribution.

SS-2: For SS-2, let the mean and the covariance of the cth

component be represented as µc[t + 1] =
[
µz
c [t+1]
µx
c [t+1]

]
, Σc[t +

1] =
[

Σzz
c [t+1] Σzx

c [t+1]
Σxz

c [t+1] Σxx
c [t+1]

]
respectively. The parameter up-

date equations can be derived to yield equation group (25)
(details included in the appendix).



αc[t+ 1] ∝ α̃c[t+ 1]× φ(y[t+ 1];Hµ̃x
c [t+ 1], Jc[t+ 1])

µz
c [t+ 1] = µ̃z

c [t+ 1] +Kz
c [t+ 1]× r[t+ 1]

µx
c [t+ 1] = µ̃x

c [t+ 1] +Kx
c [t+ 1]× r[t+ 1]

Σzz
c [t+ 1] = Σ̃zz

c [t+ 1]−Kz
c [t+ 1]×HΣ̃xz

c [t+ 1]

Σzx
c [t+ 1] = Σ̃zx

c [t+ 1]−Kz
c [t+ 1]×HΣ̃xx

c [t+ 1]

Σxx
c [t+ 1] = Σ̃xx

c [t+ 1]−Kx
c [t+ 1]×HΣ̃xx

c [t+ 1]

(25)

where,

Kz
c [t+ 1] = Σ̃zx[t+ 1]HT (HΣ̃xx[t+ 1]HT +R[t+ 1])−1

Kx
c [t+ 1] = Σ̃xx[t+ 1]HT (HΣ̃xx[t+ 1]HT +R[t+ 1])−1

r[t+ 1] = y[t+ 1]−Hµ̃xc [t+ 1].

5.2.3. Correction (approximate):

The posterior in equation (22) need not always assume a close-
form and hence requires approximation. The need of approx-
imation arises mainly due to the non-linear measurements
and/or the physical constraints on the states. We elaborate
these two scenarios and propose suitable methods for approx-
imating the posterior.

Scenario 1 (state constraints): Well production rates need to
satisfy non-negativity constraint. Additionally, one may also
have information about the pump sizes that defines an upper
limit on the well rates. However, the exact method for pos-
terior computation from section 5.2.2 does not directly lend
itself to such constraints. Numerous options exist to incorpo-
rate such inequality constraints that include methods based on
sampling, projection, density truncation, unscented transfor-
mation, moving horizon estimation etc. Reference (Simon,
2010) covers these options in detail and compares their per-
formance in terms of accuracy and computational overhead.
We down-selected Importance Sampling (IS) for our purpose.
IS works on the premise that there exists an easy to sample
proposal distribution, samples from which, allow us to ap-
proximate the target (posterior) distribution. IS works quite
well when the target and the proposal distributions are not too
different in terms of how the probability mass is distributed in
the state-space (Tokdar & Kass, 2010). This condition is very
likely to be satisfied if we take the proposal distribution as
the unconstrained posterior obtained using the exact method
(section 5.2.2). Let’s denote this unconstrained posterior as
πuncon[t+ 1]. Since πuncon[t+ 1] is a MoG, sampling from
it is efficient. Let si denote the ith sample from a set of total
q samples from the chosen proposal distribution. IS produces
a set of weighted samples {wi, si}qi=1, where the weights are

7
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obtained as follows

w′
i =

π̃[t+ 1](si)× φ(y[t+ 1]; g(si), R[t+ 1])× u(si; l,u)

πuncon[t+ 1](si)

wi =
w′

i∑
i w

′
i

(26)

Note that the numerator is the unnormalized posterior from
equation 22 with the added uniform density term u(·) to en-
sures that the lower (l) and the upper (u) bounds are ac-
counted for. From the weighted sample set, {wi, si}qi=1, the
target distribution, π[t+1], can be obtained using the Expectation-
Maximization (EM) algorithm (Bilmes, 1997) for MoG dis-
tribution. The standard EM algorithm assumes equally weighted
samples and hence needs a minor modification to account for
the sample weights.

Scenario 2 (water-cut measurements): A water-cut mea-
surement adds non-linearity to our model which needs to be
addressed during posterior computation. Such non-linear mea-
surements can be handled in different frameworks such as Ex-
tended (E) or Unscented (U) Kalman filters (KF). We resort
to a sampling-based approach for this purpose because it can
yield more accurate posterior distributions than the EKF and
UKF, provided a large number of samples can be simulated
from the true posterior. One approach could be to use π[t+1]
(exact posterior without the water-cut measurement) as the
proposal distribution in the IS framework, as done previously.
However, IS may not be a wise choice because of potentially
significant differences in the proposal and target distribution.
A water-cut measurement can drastically change the poste-
rior distribution from the prior, in which case IS will require
prohibitively large number of samples to get to the target dis-
tribution. A Markov Chain Monte Carlo (MCMC) method is
more suited for posterior simulation in such situations. There
are many MCMC algorithms to choose from, ranging from
well known Metropolis-Hastings (MH) (Chib & Greenburg,
1995) to relatively recent Slice-sampling (Neal, 2003) and
Hamiltonian Monte Carlo (HMC) (Hoffman & Gelman, 2014)
algorithms. For our purpose we used the HMC for posterior
simulation. Unlike IS, HMC yields equally weighted (or un-
weighted) samples. The samples thus generated are used to
obtain the MoG distribution using the standard EM algorithm.

As a closing remark; we adopt a strategy to combine the exact
and approximate methods in our recursive estimators. That is,
carry out the correction step exactly, using the approach pre-
sented in section 5.2.2, and switch to an approximate method
(section 5.2.3) when exact solution is not applicable. Since,
both the exact and approximate methods yield a MoG dis-
tribution in the end, the transition between the two becomes
seamless.

Table 1. The values of dynamic model parameters of the three
wells used for generating production rates in the simulation
study. The parameter symbols correspond to the ones shown
in equations 1 and 2. The unit of initial rates (w̄[0] and ō[0])
is m3/day. The declines rates (λw and λo) are specified by
their half-life in days.

Well w̄[0] ō[0] λw λo γw γo
1 90 10 20 10 0.05 0.05
2 50 50 20 10 0.05 0.05
3 14 6 20 10 0.05 0.05

Table 2. Description of the three cases used to evaluate the
proposed estimators. These cases differ in the following mea-
surement settings. Gaps: no - test separator measurements
(wsep, osep) are available on a daily basis; yes - test separator
measurements are available once per 3 days. Noise: Measure-
ment noise σsep, σli , σc is low or high. twc: A water cut mea-
surement (ci) is available for each well at the start (twc = 1)
or after 5 days (twc = 5. For all 3 cases, daily measurements
of the per-well liquid rate (li) are assumed to be available.)

Case Gaps Noise twc

A no low 1
B yes high 1
C yes high 5

6. EXPERIMENTS

Experiments were conducted in a simulation environment to
assess the performance of different estimators. The need of
simulation stems mainly because it provides access to ground
truth rates for the validation of the estimators. Similar infor-
mation from an oil field is not only proprietary but also cost
prohibitive to obtain, thus preventing us from using real pro-
duction data for any meaningful analysis. The simulations
are governed by the dynamic model described in section 3.
We investigate a configuration of n = 3 wells feeding into
the test separator, as depicted in figure 1. The true production
rates are generated, for a period of 30 days, using the dynamic
model parameters specified in table 1. For the measurements,
the base sampling interval is one day. However, every mea-
surement need not be available on a daily basis. Three test
cases were defined by varying the measurement settings (see
table 2 for details) to generate diverse datasets for reconcilia-
tion. The idea is to generate measurements such that the rec-
onciliation becomes increasingly challenging as we go from
case A to C.

We evaluate the performance of the following estimators on
the three test cases. The recursive rate estimator 1 with fixed
parameters (SS-1), the direct estimator (DIR), the recursive
estimators with estimated parameters (SS-1 E and SS-2 E)
and the deterministic estimator (DET) as described in section
2. All the estimators, except for DIR (which uses Stan), are
implemented in Matlab. In the fixed parameter cases (SS-1),
the transition matrixA is assumed to be an identity matrix and
the process noise covariances Q[t] is obtained by assuming

8
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the coefficient of variation of rates as 0.1. Although crude,
both these assumptions are somewhat reasonable in the ab-
sence of any information about the dynamics of production
rates. For the estimated parameter case (SS-1 E and SS-2 E),
the recursive estimators are seeded with the posterior mean
of the dynamic model parameters obtained from the direct
estimator. The goal was to assess the uplift in the estimation
accuracy if parameters are also estimated from data. As a ref-
erence (REF), we use the true state distributions known from
the simulation settings. Two performance metrics, the mean
Absolute Error (AE) and the scaled likelihood (L) are defined
to quantify the performance of an estimator. The former is
a measure of distance between the estimated mean and the
ground truth, while the later assesses the quality the uncer-
tainty estimates. Note that the likelihood metric (L) is the log
probability ratio of the true distribution fREF (·) and the es-
timated distribution f̂(·) by an estimator. Also, both metrics
are non-negative with smaller value indicating better perfor-
mance.

AE =
1

30

3∑
i=1

30∑
t=1

(|ôi[t]− oi[t]|+ |ŵi[t]− wi[t]|) (27)

L =
1

30

30∑
t=1

2(log fREF (x[t])− log f̂(x[t])) (28)

Figure 5. Estimated oil rates obtained from the three estima-
tors (deterministic (DET), direct (DIR) and state-space 1(SS-
1)) for simulation case C. The dotted red line shows the lo-
cation of the only water-cut measurement. The deterministic
estimator does not quantify the uncertainty. For the other two
estimators, we show the 80 % confidence interval.

Figure 5 shows reconciliation results for a typical simulation
run. For conciseness, we have selected three key estimators
(DET, DIR and SS-1), and only show estimates for the oil
rate. The DET and SS-1 estimators were initialized to have
equal water and oil rates at the start. Unlike the other two,
the deterministic method (DET) does not yield an uncertainty
interval. SS-1 and DET estimators are far off from the ground

truth at the start. Once a water-cut measurement is taken at
t = 5, accuracy of both these estimators improves markedly.
The direct estimator (DIR) performs the best especially early
on as it uses the information from future (water-cut at t = 5)
to improve the estimates during t < 5.

A detailed comparison of the performance of the estimators,
using metrics AE and L, on the three test cases is shown in
figure 6. The following conclusions can be drawn from these
results. The state-space model SS-1, despite having crude
dynamic model parameters, delivers reasonably accurate rate
estimates at a low computational cost. The absolute error is
reduced by approximately a factor of 2 compared to the de-
terministic estimator (DET). Using estimated model param-
eters in SS-1 E, further improves its performance. Also, it
is expected this estimator will remain accurate over a wider
range of circumstances. The direct estimator, DIR, delivers
the most accurate result by further reducing the absolute er-
ror by another factor of 2 compared to SS-1. A part of this
increased accuracy can be attributed to the fact that DIR in-
verts the same model that generates the synthetic data. How-
ever, two other factors contribute to the increased accuracy
here. First, DIR estimates both the parameters (decline rates,
process noise levels) and states (production rates) from the
measurements. Second, by virtue of being a batch estimator,
DIR also uses future measurements to improve the past rate
estimates (smoothing), as oppose to the other estimators that
operate in an online fashion (filtering). Thus, in a way, the
evaluation of DIR provides a lower bound on the error (with
respect to the ground truth) with which the production rates
can be estimated from the measurements of varying fidelities.

The estimation of model parameters ( λoi , λwi
, γoi , γwi

), be-
sides contributing to more accurate rate estimates, can be of
great significance from the viewpoints of production opti-
mization and field management in general. Figure 7 shows
prior and posterior credible intervals of these parameters ob-
tained from the DIR estimator, for the simulation case A. The
the true parameter values are also shown for comparison. For
most parameters, the data is informative about the parame-
ters, leading to a small posterior uncertainty compared to the
prior. The exception is the oil parameters for well 3. This is
caused by the fact that the oil production rate for this well is
low, resulting in a low signal-to-noise ratio.

7. CONCLUDING REMARKS

We propose a probabilistic approach for the task of produc-
tion surveillance in oil fields. Accurate production surveil-
lance is important to ensure productive, profitable and safe
operations in oil fields. The incumbent surveillance approaches
are ill-equipped to handle a variety of real-world issues such
as degrading sensors, sensors with varying sampling rates,
low-resolution and duplicate measurements, time-varying sen-
sor noise, communication drops etc. The proposed approach
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Figure 6. Average error in the estimated production rates per
estimator and per simulation case, averaged over 100 simu-
lation runs. Top: Absolute Error (AE); bottom: scaled log
likelihood (L). For the scaled log likelihood, DET is omit-
ted because it does not define a distribution; for REF, L=0 by
definition.

handles these issues in a systematic way in order to yield pro-
duction estimates of higher accuracy. The underpinnings of
our approach are the dynamic production models (of varying
complexities) that capture the critical aspects of production
in an actual field. We present estimators for these dynamic
models by leveraging state-of-the-art methods from the area
of probabilistic state estimation, with the intent of meeting the
requirements imposed by the operations in a large oil field.
Apart from improved surveillance accuracy, another impor-
tant outcome of the proposed approach is the ability to quan-
tify the uncertainties in production rates; something that is
largely ignored in the current practice. This capability opens
the door for future research opportunities, for example, field
optimization under uncertainty to attain better asset allocation
and facility utilization. Another direction of research pertains
to the idea active surveillance, which aims at collecting mea-
surements, when and where the uncertainty is the highest, by
actively perturbing the sensing environment. If successful,
such research areas will enable a multitude of tasks geared
towards building the next generation of digital oil fields.
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APPENDIX

In the subsequent derivations we make use of the following
two lemmas pertaining to the multivariate Gaussian distribu-
tion.

Lemma 1: If random variables x ∈ Rn and y ∈ Rm have
Gaussian probability distributions given as

x ∼ N (m, P ), and
y | x ∼ N (Wx+ u, V ),

then the joint distribution of x , y and the marginal distribu-
tion of y are given as

x,y ∼ N
(

[ m
Wm+u ] ,

[
P PWT

WP WPWT +V

])
,

y ∼ N
(
Wm+ u,WPWT + V

)
,

respectively.
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Lemma 2: If random variables x ∈ Rn and y ∈ Rm have a
joint Gaussian probability distribution

x,y ∼ N
([µx
µy

]
,
[
Sxx Sxy

Syx Syy

])
then the distribution of x conditional on y is given as

x | y ∼ N
(
µx + SxyS

−1
yy (y − µy), Sxx − SxyS−1

yy Syx
)
.

We derive the update equations for the prediction and correc-
tion step for the SS-2 model from section 4.2. The deriva-
tion corresponds to a single Gaussian distribution. For a mix-
ture of Gaussians, the update equations can be applied to each
mixing components separately. Let the state estimate at time
t (conditional on all the measurements up to time t) be given
as

z[t], x[t] | y[1 : t] ∼ N
([

µz [t]
µx[t]

]
,
[

Σzz [t] Σzx[t]
Σxz [t] Σxx[t]

])
. (29)

Prediction Step: The state evolves to the next time step based
on the dynamics governed by equations

z[t+ 1] | z[t] ∼ N (Az[t], S) and (30)
x[t+ 1] | z[t+ 1] ∼ N (z[t+ 1], F [t]). (31)

Given the linear dynamics, the prediction step yields a Gaus-
sian distribution of the form

z[t+ 1],x[t+ 1] | y[1 : t] ∼

N
([

µ̃z [t+1]
µ̃x[t+1]

]
,
[

Σ̃zz [t+1] Σ̃zx[t+1]

Σ̃xz [t+1] Σ̃xx[t+1]

])
. (32)

In the following steps we derive the expressions of unknown
parameters shown with a circumflex ˜. We invoke lemma 1
first on equations (30), (31) and then again on its result and
equation (29), resulting in the following joint distribution.

z[t], x[t], z[t+ 1], x[t+ 1] | y[1 : t] ∼ N (b, C), (33)

where

b =

[
µz [t]
µx[t]
Aµz [t]
Aµz [t]

]
and

C =

 Σzz [t] Σzx[t] Σzz [t]AT Σzz [t]AT

Σxz [t] Σxx[t] Σxz [t]AT Σxz [t]AT

AΣzz [t] AΣzx[t] AΣzz [t]AT +S AΣzz [t]AT +S

AΣzz [t] AΣzx[t] AΣzz [t]AT +S AΣzz [t]AT +S+F [t]

 .

Marginalizing out z[t] and x[t] from the equation (33), we
obtain

z[t+ 1], x[t+ 1] | y[1 : t] ∼

N
([

Aµz [t]
Aµz [t]

]
,
[
AΣzz [t]AT +S AΣzz [t]AT +S

AΣzz [t]AT +S AΣzz [t]AT +S+F [t]

])
(34)

Comparing equation (34) with (32) gives us the update equa-
tion of the prediction step.

Correction Step: The correction step assimilates a new mea-
surement y[t+ 1] to yield state estimate at time t+ 1 i.e.

z[t+ 1], x[t+ 1] | y[1 : t+ 1] ∼

N
([

µz [t+1]
µx[t+1]

]
,
[

Σzz [t+1] Σzx[t+1]
Σxz [t+1] Σxx[t+1]

])
. (35)

We obtain the expressions of the unknown parameters at t+1
as follows. First note that the observation y[t + 1] depends
only on x[t+ 1] (refer figure 2b). Therefore,

y[t+ 1] | z[t+ 1], x[t+ 1] ∼ N
([

0 H
] [ z[t+1]

x[t+1]

]
, R[t+ 1]

)
.

(36)

Invoking lemma 1 on equations (32) and (36), we get

z[t+ 1], x[t+ 1], y[t+ 1] | y[1 : t] ∼

N

([
ũz [t+1]
ũx[t+1]
Hũx[t+1]

]
,

[
Σ̃zz [t+1] Σ̃zx[t+1] Σ̃zx[t+1]HT

Σ̃xz [t+1] Σ̃xx[t+1] Σ̃xx[t+1]HT

HΣ̃xz [t+1] HΣ̃xx[t+1] HΣ̃xx[t+1]HT +R[t+1]

])
(37)

Finally, invoking lemma 2 on equation (37) followed by some
algebraic manipulations, we obtain the update equations for
the correction step.

µz[t+ 1] = µ̃z[t+ 1] +Kz[t+ 1]× r[t+ 1]

µx[t+ 1] = µ̃x[t+ 1] +Kx[t+ 1]× r[t+ 1]

Σzz[t+ 1] = Σ̃zz[t+ 1]−Kz[t+ 1]HΣ̃xz[t+ 1]

Σzx[t+ 1] = Σ̃zx[t+ 1]−Kz[t+ 1]HΣ̃xx[t+ 1]

Σxx[t+ 1] = Σ̃xx[t+ 1]−Kx[t+ 1]HΣ̃xx[t+ 1]

where,

Kz[t+ 1] = Σ̃zx[t+ 1]HT (HΣ̃xx[t+ 1]HT +R[t+ 1])−1

Kx[t+ 1] = Σ̃xx[t+ 1]HT (HΣ̃xx[t+ 1]HT +R[t+ 1])−1

r[t+ 1] = y[t+ 1]−Hµ̃x[t+ 1].
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