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ABSTRACT

The railway industry in European countries is standing a
significant competition from other modes of transportation,
particularly in the field of freight transport. In this
competitive context, railway stakeholders need to modernize
their products and develop innovative solutions to manage
their asset and reduce operational expenditures. As a result,
activities such as condition-based and predictive maintenance
became a major concern. Under those circumstances, there
is a pressing need to implement prognostics and health
management (PHM) solutions such as remote monitoring,
fault diagnostics techniques, and prognostics technologies.
Many studies in the PHM area for railway applications are
focused on infrastructure systems such as railway track or
turnouts. However, one of the key systems to ensure an
efficient operability of the infrastructure is the overhead
contact line (OCL). A defect or a failure of an OCL
component may cause considerable delays, lead to important
financial losses, or affect passengers safety. In addition
maintaining this kind of geographically distributed systems
is costly and difficult to forecast. This article reviews the
state of practice and the state of the art of PHM for overhead
contact line system. Key sensors, monitoring parameters,
state detection algorithms, diagnostics approaches and
prognostics models are reviewed. Also, research challenges
and technical needs are highlighted

Mehdi Brahimi et al. This is an open-access article distributed under the
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1. INTRODUCTION

These last years, railway industry made heavy investments
on the digitalization of its products and services. This
should be a considerable lever for product modernization
and a response to the concurrence from other types of
transportation. The digitalization can have a great impact
in multiple segments such as train control or signaling and
especially in maintenance policies for both rolling stock
and rail infrastructure. This trend can enable railway
operators to provide better customer service and reduce
operational expenditures, particularly in Europe, where the
harmonization and the liberalization of the rail market are
continuously increasing cost pressure on railway operators.
In addition, this is a chance for railway manufacturers
to develop new products and services in an increasingly
competitive global market. Consequently, condition-based
maintenance and predictive maintenance are seen as the
major fields of digital technologies applications aiming
maintenance costs reduction and a better service reliability.

The Prognostics and Health Management (PHM) is a
cutting-edge discipline, at the core of different technologies,
which aims to afford solutions for asset monitoring,
algorithms for health assessment, fault diagnostics, and
failure prognostics, as well as decision optimization and
Human Machine Interface development. Hence, in current
railway context, the use of PHM solutions can help to
deploy efficient condition-based and predictive maintenance
policies. This will enable the operators meeting industrial
challenges such as high service reliability, low operational
expenditures, and high asset availability.

Several solutions have been developed based on PHM
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techniques for the different railway subsystems. Most of
these solutions are based on existing PHM technologies
fitted for rolling stock components such as bearings, railcar
wheels or brakes. In the area of infrastructure systems, point
machines are one of the main subjects of study. In this paper,
we will provide a review of key enablers for the deployment
of a PHM solution for an OCL system. Developing such
technologies, in the railway field, need to address the state
of art and the state of practices for the OCL system. For this
purpose, the section 2, gives a brief overview of the existing
PHM solutions in the railway industry. Section 3 reviews
the main steps for PHM solution deployment. Section 4
describes the OCL system, its most critical components, and
their failure modes. Then, we present the state of practices for
OCL monitoring in sections 5 and 6. In section 7 we address
a review of advanced data analytics and signal processing
techniques for OCL failure detection and diagnostics. Section
8 focus on OCL contact wire (CW) wear prognostics. In
section 9 insights are given for decision-making step, based
on prognostics and diagnostics data. Finally, we conclude in
section 10.

2. PHM IN THE RAILWAY INDUSTRY

Railway operators need new means to drive maintenance,
enhance service reliability and reduce operational costs. This
implies investments in new solutions and products which can
give asset’s current state and enable in-line data capture and
events processing. In this context, several PHM solutions
have been developed. The following section presents some
of the existing PHM solutions in the market.

2.1. Current Development of PHM in Railway Industry

Recent years have seen a keen interest in monitoring systems,
diagnostics and prognostics algorithms, and decision support
solutions for railway maintenance and fleet management.
This trend began with the deployment of several remote
monitoring products for rolling stock systems. In 2006,
ALSTOM launched a remote monitoring system called
TrainTracer (Alstom, 2017) which aims to track the state
of each train during its operation. TrainTracer captures data
from multiple sensor sources coupled with GPS localization
allowing a continuous monitoring of the train. This tool
was completed in 2008 by ”eTrain”, a data collection system
which enables train-to-ground data transmission networks
and a ground processing system. In the same way,
Siemens proposed a solution called EFLEET composed of
a set of wireless data transmission, remote-monitoring and
analysis solutions dedicated to rolling stock. Similarly,
GE developed in early 2000 a remote monitoring system
and fault diagnosis system called RM&D, including the
real-time status, performance information, GPS positioning
and environmental data (Lu, Shan, Tang, & Wen, 2016). The
main purpose of these products is to to capture and store data

remotely from a fleet of vehicles which enables to set up a
condition-based maintenance.

Later, a new type of solutions has appeared on the
market dedicated to predictive maintenance. Orbita,
a Bombardier Transportation solution, can generate
maintenance requirements automatically from different
sensors by gathering data from remote sensors installed on
different sub-systems of the rolling stock and achieving data
analytics for fault diagnostics and prediction (Le Mortellec,
Clarhaut, Sallez, Berger, & Trentesaux, 2013). HealthHub
(Alstom, 2016) is a predictive maintenance solution proposed
by Alstom which makes it possible to determine the status
of rolling stock, infrastructure and signaling systems
automatically. This tool includes TrainTracer for rolling
stock sub-systems monitoring, TrainScanner, a diagnostics
portal which is capable to measure wheels condition, brake
pads, pantograph strips wear and check the train integrity.
HealthHub includes also TrackTracer, a set of monitoring
systems for railway track, and CatenaryTracer, a solution
for OCL monitoring, these two solutions can be integrated
within an operational vehicle. In addition, data provided
from different sources are sent to ALSTOM’s Cloud platform
in order to apply advanced algorithms for diagnostics and
failure prediction. In the same trend, Siemens proposes
Railigent (Railigent - Digital Services, 2017), a remote
monitoring system which is capable to transmit data from
infrastructure and vehicle systems to terrestrial terminals in
real time. This solution is completed by a single platform
called Sinalytics (Gaus & Kayser, 2016) for remote analytics
and maintenance services including railway, energy and data
models to predict and prevent faults and energy consumption
analysis.

The objective of deploying such tools is, at first, to provide
solutions to gather an important amount of data from different
components and subsystems and store them into a cloud
solution in order to enhance analysis algorithms to achieve
a better condition monitoring of an asset and automatic
advisory generation. Combining these different technologies
will constitute a PHM system for each monitored component
or sub-system.

2.2. Beyond the Current Technology

At least a decade ago, rolling stock and infrastructure
maintenance policies were based essentially on planned
inspections and experts’ knowledge. Investments in
remote monitoring technologies is allowing an evolution
of the traditional preventive maintenance policies to a
condition-based and predictive maintenance. For this
purpose, PHM for railway systems can provide key tools
to meet the railway industry needs, namely, safety, service
reliability, and economics. A way to achieve PHM
implementation is to adapt the existing PHM solutions to
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railway industry. Therefore, the available PHM products for
railway are deployed gradually.

The railway manufacturers initially invested on remote
monitoring solutions for train subsystems such as doors,
brakes, HVAC, toilets, engines, etc. Thereafter, data analytics
with cloud computing solutions were deployed. The trend
is currently extending PHM to the other sub-systems of
the rolling stock, and infrastructure. Currently, railway
manufacturers have to design specific monitoring systems
for infrastructure. One of the solutions considered is
to design monitoring systems integrated within operating
trains for infrastructure monitoring. However, it may be
difficult to manage data acquisition within different trains
velocity and operational conditions, particularly in the case of
infrastructure systems. In fact, the infrastructure is generally
maintained by operators, which use dedicated inspection
trains. This capability falls within the specialized inspection
companies such as MER-MEC, Eurailscout, and DMA
companies, or operators trains dedicated to monitoring track
condition and OCL such as ”Doctor Yellow” a high-speed
train used on the Japanese high-speed network for the
Shinkansen (”Bullet Train”), and the IRIS 320 for SNCF
(French National Railway Corporation).

All things considered, designing a PHM solution for
infrastructure components need a global awareness of
practices and application characteristics. The following
paragraphs address the key state of practices and state of art
of PHM techniques for OCL.

3. DESIGN CONTEXT OF A PHM SOLUTION FOR AN
OCL

A successful implementation of a PHM program has
to meet important constraints related mainly to PHM
objectives and asset specificity. The OCL system is
geographically extended. It is composed of a large
population of standardized components and is considered
as a large-distributed system. It is subject to an
evolving environment and different operational conditions.
Consequently, an adapted architecture has to be set up for
such large-scale assets. A PHM system architecture for an
OCL system is proposed in (Brahimi, Medjaher, Leouatni,
& Zerhouni, 2016) considering trains equipped with data
acquisition systems, which enable infrastructure monitoring.
The proposed architecture addresses the constraints related
to the interacting components of both the rolling stock and
the OCL for data capture. In addition to asset characteristics,
PHM objectives can be related to different topics. For the
operators, a main objective is to generate alerts in real time
and promptly submitting it for immediate intervention. More
generally, a PHM system for an OCL has to deal with three
main objectives:

• use a minimum number of dedicated sensors to collect

data and deploy appropriate data collection facilities,
• access, monitor and manage the system health status

remotely with adapted algorithms and manage reference
models based on the collected data and operational
conditions. This objective depends on whether diagnosis
is achieved off-board or on-board (Le Mortellec et al.,
2013),

• propose appropriate advise on the maintenance policy
based on the state of health of the system

PHM systems implementation strategies have been discussed
by various researchers (Uckun, Goebel, & Lucas, 2008;
Kumar, Torres, Chan, & Pecht, 2008; Saxena et al., 2010;
Lee et al., 2014; Lamoureux, Massé, & Mechbal, 2015).
(Kumar et al., 2008) addressed a general description of
a hybrid approach implementation for electronic products.
(Lee et al., 2014) proposed a general methodology for
rotating machinery. These two contributions present a general
description of the requirements for each step of a PHM
program: (1) Data acquisition, (2) Data processing, (3)
Health Assessment, (4) Diagnostics module, (5) Prognostics
module, and (6) Decision. Other methodologies take a
broader view and present a general process dealing with
system requirements, objectives, and validation process
(Saxena et al., 2010; Lamoureux et al., 2015). Lately,
(Aizpurua & Catterson, 2016) formalized a generic approach
called ADEPS (Assisted Design for Engineering Prognostic
Systems) for systematic implementation of a prognostics
solution. This approach allows the verification and
validation of design requirements, but also prognostics
impact assessment based on system engineering and
reliability engineering analysis. More generally, the
proposed approaches for PHM system design share common
characteristics that can be broadly summarized as follows:

1. Definition of the requirements and objectives: this step
often results from a cost-benefit analysis of a PHM
system development regarding defined objectives.

2. Identification of a subset of components to be monitored:
this step relies on critical components identification with
respect to defined objectives. Hazard analysis can be
used in order to select the targeted components.

3. Definition of physical parameters to be monitored: these
parameters are related to failure mechanisms and modes
of the critical components.

4. Design of the PHM system architecture and design of
hardware and software solutions (Saxena et al., 2010):
this step consists of designing the different modules of
a PHM program. It depends on the approach chosen
for prognostics and diagnostics tasks. But also, on the
available data and the accuracy of available models.

5. Integration of the developed hardware and software
solutions: in this phase, the system is deployed at the
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Figure 1. A high-speed pantograph and its main components.

level of each component and then at a system level.
6. Validation and verification of the system: the validation

and maturation of prognostics (Massé, Hmad, & Boulet,
2012) is carried out during this step.

In the proposed design methodology, the steps 2, 3 and 4
need to study the supervised system and review the state
of practices. The following sections present the main
technologies and key methods used through each discipline
of a PHM program: data capture, detection, diagnostics,
prognostics and advisory generation for an OCL.

4. OCL CRITICAL COMPONENTS AND THEIR FAILURE
MODES

The OCL coupled with the pantograph form the current
collection system. Its main function is to ensure a constant
contact between the pantograph head (pan-head) and the OCL
contact wire (CW) in order to keep an uninterrupted power
supply to the train. The figures 1 and 2 (Adapted from (UIC,
2007)) show a definition of the two interacting systems.

An OCL system is subject to multiple sources of faults
during its life-cycle, mostly caused by a failure, a damage
or a bad-fitting of a component. The OCL is a high
availability system and has a design life cycle in exceeding
30 years. However, its failure can cause significant delays or
cancellations resulting in large losses for the operators. For
example, 150 million euros of losses due to an OCL incidents
were recorded in 2005 by the SNCF (Massat, 2007).
In addition, current OCL maintenance policies are based
on preventive maintenance tasks, which involve planned
inspections of the OCL leading to traffic interruptions,
planning and overhauls issues. In this case, utilization
of condition monitoring to reveal incipient faults can be
considered as one way to schedule preventive maintenance
and optimize maintenance costs. Consequently, identifying

Figure 2. A span schematic of the OCL system.

a subset of components to be monitored regarding their
criticality and maintenance objectives is a key step for
designing a PHM solution. In (Brahimi, Medjaher,
Zerhouni, & Leouatni, 2016), a methodology for OCL
critical component selection is presented, where the authors
considers a PHM program deployment. The selection
procedure is related to three objectives: service reliability,
system availability, and maintenance costs. The following
critical components and their failure modes and mechanisms
are presented based on a previous work and Alstom’s experts’
knowledge.

4.1. OCL Contact Wire

The CW is the main component of an OCL. Its main
function is to ensure current transmission to the train through
sliding contact within pantograph strips. It is subject to two
main failure modes: bad positioning and important wear.
Additionally, the CW overhaul is the most-expensive cost of
the OCL maintenance budget.

An excessive stagger or sag of the CW can lead to a
pantograph dewirement (pantograph comes off the contact
wire) which can result in the OCL destruction. A bad position
of the CW can be caused by extreme weather conditions or
bad equipment installation. Consequently, for safety reasons,
infrastructure maintainers organize regular inspections to
measure the height and the stagger of the CW.

During its life cycle, the contact wire is subject to wear due
to environmental or operational parameters such as overheat,
arcs, exceeding contact force and more generally the
pantograph-catenary interaction. The CW wear estimation
is done by the calculation of the ratio between the original
section and the worn area of the CW. The threshold for
its overhaul is fixed at 80% of the original CW section.
Furthermore, it has been shown that the wear mechanism is
due to the combination of three physical phenomena (Bucca

4



INTERNATIONAL JOURNAL OF PROGNOSTICS AND HEALTH MANAGEMENT

& Collina, 2009; Usuda, Ikeda, & Yamashita, 2011; Bucca &
Collina, 2015) :

• Electrical contribution to wear. It is due to the current
flow at the contact between the CW and collector strips.
The power dissipation at the contact point involves a
wear of both strips and CW. This contribution depends
mainly on strips materials, and current levels and voltage.

• The mechanical wear is generated by the friction and
shocks caused during the interaction. This contribution
depends on the hardness of collector strips, surface
condition, contact force, train speed, and weather
conditions.

• Electrical arcs are generated during a loss of contact
between the CW and the pantograph. This power
dissipation may cause an electrical erosion and fusion for
both CW and pan-head strips.

4.2. Cantilever and Steady Arm

The OCL cables are normally supported from lineside masts
by using cantilevers. The messenger wire and the CW are
attached, respectively, to the stay tube (tie bar) and the steady
arm. The cantilever is electrically insulated from the masts
by using insulators (See Figure 3). The components that are
in motion and mechanically loaded are the most sensitive to
wear. Hence, the steady arm, linkages, and insulators are
considered as the most critical. The insulators are generally
made of glass or composite materials and has two main
failure modes: mechanical breakage due to fatigue, and
insulation failure due to environmental conditions (pollution
contamination). The steady arms enable a dynamic upward
movement of the contact wire during pantograph passing
allowing a soft transition under OCL cantilevers. Its uplift
should be sufficient in order to ensure a constant contact
and not too important to avoid a pantograph ”dewirement”.
As a consequence, the steady arm position is an important
parameter for an effective operation and it is considered as
an important parameter to monitor by the maintainers. In
addition, leakages, tubes, brackets, and arms are subject
to corrosion, which represents one of the main degradation
mechanism of these components.

4.3. Droppers

The droppers are considered as critical components since
the CW deflection and stagger depends on droppers lengths.
Furthermore, the droppers ensure the mechanical damping of
the CW during the pantograph-catenary interaction. They are
mainly subject to mechanical fatigue or to claws unfastening
due to OCL dynamic during operation. The Figure 4 shows a
dropper failure due to fatigue.

Figure 3. A Cantilever and its main components.

Figure 4. Dropper failure caused by fatigue.

4.4. Masts

Masts are generally made of H-section of galvanized steel.
Corrosion is the main degradation mechanism of the mast.
It is checked regularly by maintainers by visual inspection
or by using specific ultrasonic devices. However, there are
no remote monitoring systems for masts inspection. By the
same token, we would point out that there are no studies
in the literature regarding corrosion monitoring for the OCL
application.

5. MONITORING DATA FOR OCL

Data for PHM purpose can be classified within two main
categories: monitoring data (the most relevant data for system
behavior) and event data (maintenance tasks, overhauls date,
etc.). Monitoring data for the OCL are mostly derived from
safety constraints, system design requirements, and criteria
for systems interoperability. These parameters are generally
defined in international standards or country regulatory
agency directives (CENELEC, 2012; IEC, 2013; EU, 2014).
Theses standards define the comissioning tests and criteria for
the OCL, and also for maintenance purpose. In (UIC, 2009)
experts from different European operators and infrastructure
maintainers address a review of maintenance and diagnostics
methods for the OCL. Additionally, measurements are
verified regarding safety limits which are often considered as
maintenance thresholds.

In the case of inline inspection purpose, measurement
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parameters for OCL monitoring can be classified into two
main categories: system monitoring data, and auxiliary
data. Auxiliary parameters are related to operational or
infrastructure information such as localization on the track,
train velocity, temperature, wind speed and direction, the
OCL design information (support number, claws, bridges and
tunnels localization, rail switches, etc.). Monitoring data
are those related to the system current condition, which fall
into three categories: geometrical data, mechanical data, and
electrical data.

5.1. Geometry Data

Geometry data are related to components positioning
regarding design definition. The aim is to measure some
lengths in order to detect and correctly assess any deviation
from the safety limits and design definition. The main
geometry parameters are height, stagger, and sag of the CW.
These values are measured relatively to track position. The
Measurement can be achieved in a static way (OCL is in its
static state without pantograph interaction), or dynamically
(pantograph-catenary interaction) with low contact force and
train velocity. Nevertheless, some advanced solutions enable
dynamic measurement with commercial speeds using a train
mounted measurement system (Nezu et al., 2015). The sag
value is checked regarding to a threshold value defined by
standards that allow the trains to reach the desired speed.
The stagger shall not exceed a limit value defined during
the design in order to avoid pantograph ”dewirement” and
cross-wind effect. The wear of the CW is considered as a
geometrical parameter. The wear measurement aims to plan
preventive maintenance tasks to ensure homogeneous wear
of the wires until they reach their limit. Other parameters
can be measured according to the maintenance policies of
infrastructure operator.

5.2. Mechanical Data

Mechanical data are related to the pantograph-catenary
interaction, in other words, they concern data used to assess
the dynamic interaction of the current collection system. The
contact force between the pan-head strips and the CW is
one of the main mechanical parameters for current collection
assessment. It can be described as a contribution of three
forces (Kiessling, Puschmann, Schmieder, & Schneider,
2009): the static force applied by the pantograph to the
OCL, the aerodynamic force which is proportional to the
square of pantograph speed, and the inertial force of the
pan-head during the interaction. The statistical values of the
contact force are considered as the main criteria for current
collection quality assessment (CENELEC, 2012; EU, 2014).
As consequence, they are used for diagnostics purposes.

The steady arm uplift produced by pantograph, the CW
elasticity, as well as the pan-head accelerations are also

Table 1. Data for OCL monitoring.

Geometry Mechanical Electrical
Height and Stagger Contact force Arcing rate

Sag Acceleration
Wear

considered for condition monitoring.

5.3. Electrical Data

Electrical data are used to assess both electrical and
mechanical performances, as well as OCL components
degradations. Current and voltages at injection points allow
energy performance evaluation of the OCL system regarding
design definition. The thresholds for these values are defined
in (CENELEC, 2012).

Electrical arcs are generated during a contact loss between
the OCL contact wire and the pantograph contact strips. This
phenomenon is used to assess the current collection quality
and for diangostics purpose. Specific devices are used to
detect arcs and estimate the contact loss duration and arcs
intensity. An arcing rate is given by (CENELEC, 2013):

NQ =

∑
tarc

ttotal
∗ 100% (1)

where tarc is the duration of an arc exceeding 5 ms, and ttotal
the time during which the value of the pantograph current
exceeding 30% the nominal value. Thresholds for percentage
of arcing NQ are defined for a given vehicle speed.

5.4. Summary

For a PHM purpose, one has to select the most relevant data
related to critical components failure mechanisms or system
abnormal behavior. Contact force, pan-head accelerations
and arcing rate are the main parameters for interaction
assessment. These parameters should give the necessary
information about the current condition of the OCL. The wear
of the CW is a key measure for maintenance tasks forecast
and optimization. Comparatively, measurements such as
height, stagger, and sag are necessary for safety purposes,
however, they are not related to failure mechanisms.

Equally important, auxiliary data must be recorded to take
into account different operational conditions, which are
necessary for data processing. Finally, we address a summary
of the most relevant parameters for fault diagnostics and
prognostics purpose in the Table. 1.

6. SENSORS FOR OCL MONITORING

In a PHM program, sensor selection step requires to take into
consideration several parameters depending on PHM system
architecture and host system configuration. In our case of
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study, sensor selection depends mainly on the measurement
strategy. If commercial vehicles are used for infrastructure
monitoring, systems for data capture and data transmission
have to meet constraints such as compact design, onboard
memory, power management, data transmission software, and
meeting rolling stock safety standards. Comparatively, a
dedicated inspection vehicle has not to meet same constraints.
(Tuchband, Cheng, & Pecht, 2007) reviewed different
constraints to be taken into account for monitoring sensors in
a PHM framework. The criteria can be related to parameters
to be measured, sensors reliability, accuracy, operating range,
sensor resolution, size, weight, and cost.

Recent developments in sensor technologies, such as Micro
Electro Mechanical Systems (MEMS), ultrasonic sensors,
acoustic emission sensors, lasers, etc., afford multiple
solutions. In addition, the latest generation of wireless
technologies, such as Bluetooth or WIFI, provide interesting
solutions for data transfer. For current collection system
monitoring, several technologies have been designed for data
acquisition and monitoring. The following sections present a
survey on current existing sensors for OCL inspection.

6.1. Mechanical sensors

This category includes accelerometers as well as strain
gauges; they are used mainly for mechanical parameters
measurement defined in Table. 1. As explained in Section
5.2, the contact force can be seen as a combination of three
contributions: static force, pan-head inertia, and aerodynamic
force. The measurement of the inertial forces is carried
out using an instrumented pantograph head. The head
is equipped with force cells and accelerometers installed
at pan-head suspensions (Kolbe, Baldauf, & Tiffe, 2001;
Kusumi, Fukutani, & Nezu, 2006a). This allows measuring
the force generated during the interaction. The Figure. 5
shows an example of a strain gauge installed within pan-head
suspensions.

Similarly, pantograph aerodynamic forces are measured
using strain gauges fixed by the means of wires between
the bottom of the pantograph and the pan-head. The
measurement is done during dynamic test in order to estimate
the aerodynamic forces. It is then used to correct the global
estimation of the contact force.

6.2. Optical sensors

For a large-distributed system such OCL, getting access
to each of its components seems to be a hard task. For
this reason, the measurement systems are mainly based on
in-vehicle optical sensors, which allow measurement without
physical contact. These sensors include technologies such
as Laser Detection and Ranging (LIDAR) technology and
laser diode beams as well as ultraviolet (UV) cameras. Most
of these sensors are endowed with embedded processing

Strain Gauge

Contact strip

Figure 5. Strain gauge for contact force measurement.

units for direct data processing. Generally, such systems are
installed on vehicles roofs, or on a dedicated light rail vehicle.
They can also be installed on fixed spots (masts, gantry, etc.).

6.2.1. UV cameras

During a contact loss between the pan-head and the OCL, an
electric arc is generated. UV cameras are used in order to
capture the emissions of copper material during arcing. A
measurement methodology for this kind of sensor is defined
in the standard EN 50317 (CENELEC, 2013). Several
arcing systems based on UV cameras were developed by
railway operators. Examples of such sensors are described
in (Hayasaka, Shimizu, & Nezu, 2009) and (Bruno, Landi,
Papi, & Sani, 2001).

6.2.2. LIDAR

LIDAR technology uses a beam of pulsed laser light to
measure a distance from a target. It is often used for
3D scanning, navigation systems and to high-resolution
maps drawing. Recently, several applications of LIDAR
technology for railway infrastructure inspection purpose have
emerged (Arastounia & Oude Elberink, 2016; Jwa &
Sonh, 2015). It is used for 3D reconstruction of railway
infrastructure systems. In this way, it allows OCL geometry
inspection and broken component detection. Nevertheless,
current accuracy sensors accuracy is not sufficient for
automatic detection of abnormal components. In addition,
the amount of data and processing time remains relatively
high. This technology needs an onboard signal processing
algorithm for an efficient detection and diagnostic and can be
used for specific areas of the OCL such as overlaps between
sections.

6.2.3. Laser Diodes Arrays

CW wear measurement is a key task for OCL maintainers.
Sensors such laser-beam systems provide a high-accuracy of
the wear. The system developped in (Shimada, Kohida, &
Satoh, 1997) uses lasers scanning the whole CW area with
a rotary mirror. The surface of the CW causes irregular
reflection which is measured by a photoelectric transfer
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element and is used to measure the duration of reflection.
Then, the constant speed of the laser beam is used to estimate
the duration of the reflection which is proportional to the
CW thickness. These technologies are based on stereoscopy
techniques for CW section image reconstruction. In addition,
the use of laser technology allow daytime measurement.
However, it requires a large capacity power supply and takes
a lot of space in vehicle rooftop. This makes this kind of
sensors unsuitable for commercial trains. This type of sensors
can also be used to measure the CW position relative to a
defined reference.

6.2.4. Area Scan Cameras

Linear or matrix CCD cameras combined with a light source
and image processing algorithms are mainly used for CW
position and wear measurement. (Borromeo & Aparicio,
2002) present a comparative analysis of measuring systems
for CW wear and position. Most of the systems are based on
image recognition and triangulation using CCD cameras for
wear and position measurement (Torroja, Garcia, Aparicio,
& Martinez, 1993; Borromeo & Aparicio, 2005; A. W. Shing
& Pascoschi, 2006). Similarly, other classification algorithms
are applied to high-speed CCD cameras videos (Petitjean,
Heutte, Delcourt, & Kouadio, 2009) in order to detect objects
missing or broken OCL components.

Linear area scan cameras or line scan cameras are generally
used for pan-head tracking. The technology relies on white
stripes placed on pan-head and image processing algorithms
to measure pan-head position and accelerations, as well as
contact force estimation. An example of this methodology is
given in (Koyama et al., 2014).

6.2.5. Fiber Bragg Gratting

Fiber Bragg Grating (FBG) sensors use optical fibers
containing, in a short section, a distributed Bragg
reflector which allows through wavelengths analysis multiple
applications such as temperature, pressure, and mechanical
stress measurement. They present many advantages, they
have a compact size and they can be used in a dense
electromagnetic environment. For the OCL monitoring, this
type of sensor was mainly used for contact force and pan-head
acceleration measurement (Boffi et al., 2009; Wagner et al.,
2014). Another application is their use for hotspots detection
on OCL (Theune et al., 2010) as well as the steady arm
uplift (Laffont et al., 2009). These sensors have numerous
advantages for contact force measurement regarding their
size and weight and electromagnetic compatibility. However,
their sensitivity to temperature and calibration issues remain
an obstacle for their deployment in commercial vehicles.

Figure 6. An illustration of the link between the sensor
technology, the sensor type, and monitoring data.

6.2.6. Infra-red cameras

Thermal and infra-red cameras for OCL monitoring are
mainly used for ”hot spots” detection. Knowing the sections
of the OCL cables, where the temperature is elevated, can
help to detect premature wear areas. In (Landi, Menconi, &
Sani, 2006), a thermal camera is used to detect electrical arcs
discharge resulting from the pantograph-OCL interaction.

6.3. Ultrasonic sensors

A reflective ultrasonic sensor capable to achieve
measurement at up to 160 km/h was developed for CW
height and stagger measurement relatively to the track
position (Mualem, 1999). Another use of ultrasonic
technology is for the CW crack detection due to material and
which is patented by SNCF (Gasselin et al., 2015).

6.4. Summary

Monitoring systems for the OCL are mainly dedicated to CW
position, wear estimation, mechanical behavior, and arcing
detection and quantification. Knowing these parameters is
necessary to carry out an efficient infrastructure management
and maintenance based on asset condition.

Due to the specific environmental constraints of vehicle’s
rooftop (High voltage, high current levels, wind, speed
constrained), the optical sensors are broadly used in the field
(See Figure. 6), since they allow non-contact measurements.
Multiple optical technologies have been developed and tested
by railway operators for the CW position measurement and
wear estimation. However, there are no standard solutions
for CW monitoring. A comparative study of these solutions,
highlighting sensors reliability, precision, and data processing
capabilities need to be addressed.

Strain gauges and accelerometers are used in order to assess
the mechanical behavior of the pantograph-OCL interaction.
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The development of this kind of solutions, mainly for contact
force measurement, remains a topic of experts’ knowledge.
Improvement of FBG sensors can be a key enabler to
deploy embedded contact force measurement systems in
pantographs.

More generally, sensors definition for OCL monitoring
remains a railway operators competence. The sensors are
often developed for specific inspection cars or mounted on
an adapted auxiliary rail vehicle. There are some huge efforts
to achieve to propose monitoring solutions embedded within
operational vehicles, with the main objective of streaming
data directly from the track to a data center. Additionally,
sensors and data transmission requirements are not addressed
in the literature.

7. DETECTION AND DIAGNOSTICS

A fault can be defined as a deviation of a characteristic
property or parameter of the system from its standard
condition. In a PHM system the state detection module
aims to detect a deviation from a standard behavior of
a component or a sub-system based on monitoring data.
More generally, detection can be completed with diagnostics
analysis. When a fault is detected, diagnostics module
achieves fault isolation by locating the fault to a specific
component. Then, diagnostics system accomplishes fault
identification by determining the root cause of the failure
based on known fault symptoms.

Several classifications have been proposed for detection
and diagnostics methods (Isermann, 1997; Chantier,
Coghill, Shen, & Leitch, 1998; Venkatasubramanian,
Rengaswamy, Yin, & Kavuri, 2003). In most cases,
diagnostic methods are related to available knowledge and
data. We can broadly classify diagnostics into data-driven
and model-based models. For data-driven models, we
distinguish qualitative methods and quantitative methods.
Qualitative approaches include methods such as expert
systems and trend modeling. Quantitative methods are
based on pattern recognition techniques and AI approaches
(Venkatasubramanian, Rengaswamy, Kavuri, & Yin, 2003)
which use advanced classification algorithms for fault
diagnostics, including principal component analysis (PCA),
neural networks, self-organizing maps (SOM), support vector
machines (SVM), k-nearest neighbors (KNN),etc.

For large-scale systems that compose the railway
infrastructure, setting up a sophisticated supervisory
control system is a cost and hard task. The OCL is a linear
asset which is geographically distributed with a large number
of components subject to external conditions and operational
constraints. Hence, the monitoring function for such system
is achieved by using regular inspections and measurements
in order to supervise the system behavior. Consequently, the
fault isolation for an OCL is defined as the localization of a

fault on an area of the OCL network and which component of
OCL is faulty. Fault identification is defined as determining
the component failure or fault. In this context, data-driven
approaches seem well suited for this kind of application in
order to transform monitoring data into an a priori knowledge
of the system through feature extraction. In this way, most of
the studies focus on feature extraction techniques for OCL
diagnostics. There are three main areas of study: CW wear
assessment based on the electric arcing phenomenon, faulty
components diagnostics based on contact force measurement,
and image processing for components assessment.

7.1. Related Works Based on Electric Arcing

Current collection system arcing can lead to important wear
for both collector strips and CW. Consequently, the study of
arcs can be a good indicator for CW wear status.

In 2001, investigations have been conducted by the Italian
railway operator (Balestrino et al., 2001) in order to study
the relationship between the CW contact surface condition
and the electrical arcing. Based on the arcing measurements,
it has been shown that sequences of continuous sparking
are generated due to the so-called ”welding effect”. This
effect generates hot spots and a micro-welding phenomenon
on localized parts of the CW due to irregular sliding
contact caused by the contact roughness. The occurrence
of welding effect implies an important deterioration of the
CW which is more important with higher speeds. Thereafter,
a correlation between break arcs occurrence and traction
current harmonics was revealed in (Bruno, Landi, Papi, Sani,
& Violi, 2001). Based on these results, a methodology was
proposed to assess the arcing phenomena and distinguish
between a singular burst of arcing and the electric welding
effect (Barmada, Landi, Papi, & Sani, 2003). The proposed
methodology is based on Discret Wavelet Transform (DWT)
using a Daubechies multiresolution wavelet analysis applied
to traction current. The results showed that break arcs can
be detected and localized only by using traction current.
However, the welding effect was detected only using UV
sensor. A signal processing approach is also used in (Huang
& Chen, 2008) in order to detect arcs frequencies. A
Fast Fourier Transform (FFT) is applied to the traction
current. However, wide time windows induce information
loss regarding the train location.

Later, researchers investigate the use of clustering techniques
in order to assess current collection quality regarding contact
loss. A SVM is trained using voltage and current levels
data and photosensor information (Romano, Tucci, Raugi,
& Barmada, 2014). The result has shown a correct detection
rate of 80%. A fuzzy c-means and K-means unsupervised
learning algorithms were applied in (Barmada, Tucci, &
Romano, 2014a, 2014b; Barmada, Tucci, Menci, & Romano,
2016), based on extracted features from the traction current
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and voltage. Based on test run data, the Dunn index
calculation indicate that the best number of cluster for the
K-means clustering algorithm should c = 4. A statistical
analysis of the clustering results showed that all the arcs with
a duration higher than 5 ms are localized in the first two
clusters, with 93.5% of the longer arcs in the first one and
6.5% in the second cluster. The remaining clusters are related
to the absence of arcs (arcs with a duration less then 5 ms),
in particular, in the last cluster no current is measured. This
approach allows a reliable detection and localization of arcs
with a duration higher than 5 ms. Knowing that enable to
localize and detect the local wear of the CW. In other words,
achieving CW diagnostics.

In (Aydin, Celebi, Barmada, & Tucci, 2016), an
enhanced feature extraction method is proposed, based on a
mathematical morphology technique applied to current and
voltage signals. The aim of the mathematical morphology is
to enhance arcs frequencies components in the FFT spectrum
of the traction current. Then, three SVM classifiers are
trained based on different data and spectrum obtained from
the feature extraction step. A fuzzy integral is applied to
the output of the three classifiers. The whole performance
of classification was about 96.31%.

7.2. Related Works Based on Contact Force

Several studies focused on pantograph-OCL mechanical
behaviour monitoring (Kusumi, Fukutani, & Nezu, 2006b;
Collina, Fossati, Papi, & Resta, 2007; Cho, Lee, Park, Kang,
& Kim, 2010).. They are mainly related to the study of
the relationship between OCL geometry irregularities and
contact force in order to assess current collection quality.
These studies shows a strong correlation is established
between contact variations due to the OCL geometry and the
contact force.

A diagnostics method for faulty components was proposed
in (Massat, 2007) and is based on a pantograph-catenary
interaction model. Dropper failure, splicers installed on
the CW, and a faulty steady arm were the faulty conditions
considered in this study. The methodology relies on the
wavelet transform of the pantograph-catenary contact force.
For each faulty condition, the defect signature is extracted
from the contac-force to build an adapted wavelet. This
wavelet is then stored in a database in order to be used
for defect detection, localization and identification. For
each adapted wavelet, corresponding to a specific defect, the
continuous wavelet transform (CWT) is calculated in order to
detect and localize the defect. A health indicator is built by
calculating the maximum power of the wavelet coefficients.
This method was, at first, apllied to pantograph-catenary
simulation signals with a rate of 100% for detection. Based
on these results, inline tests were held to validate the
methodology on field data. The detection rate was about 66%

for defect were detected (EUROPAC, 2008).

7.3. Image Processing Techniques

Authors in (Petitjean et al., 2009; Montreuil, Kouadio,
Petitjean, Heutte, & Delcourt, 2008) proposed a methodology
to retrieve dropper information based on high-speed cameras
images. A pattern recognition system, based on k-nearest
neighbors algorithm (k-NN) algorithm, is trained to identify
the components of interest (dropper). Then, a Hidden
Markov Model (HMM) is used in order to verify components
consistency and to detect OCL stave model thanks to a
database model. This method allowed to identify 95.7% of
droppers from videos.

An application of computer vision techniques is proposed in
(Wang, Sun, Gu, & Wang, 2011) in order to measure steady
arm angle and detect faulty positions. This method shows
good results for a speed up to 400 km/h.

7.4. Summary

The pantograph-catenary interaction can provide multiple
information about OCL geometry and its components
conditions. The electrical arcing phenomenon was largely
studied within diagnostics aim, it enables to assess CW
and pantograph strips conditions using advanced signal
processing techniques and machine learning algorithms
applied to traction current and voltage. The study of the
contact force is another important topic of research. Existing
software for pantograph-catenary interaction modeling allow
a better understanding of OCL design impact on contact
force and, thus, developing model-based approaches for
fault detection and diagnostics. However, these models
need to be enhanced with components degradation models
and parameters uncertainties for model-based approaches
development. More field data and tests can be considered to
achieve this aim. More broadly, as for arc detection, the use
of machine learning techniques applied to contact force can
be a key enabler for diagnostics models development.

Another way to detect faulty components is the use of
image processing techniques applied to onboard cameras
videos. These approaches need to be improved and can
be limited to high-speed applications. In addition, vision
techniques need important data storage capabilities and can
be time-consuming for processing.

Finally, the Table 2 summarizes all the approaches and
the target component for fault detection and diagnostics
approaches for the OCL.

8. PROGNOSTICS

Prognostics approaches can be classified broadly into three
categories: physics-based, data-driven and hybrid approaches
(Gouriveau, Medjaher, & Zerhouni, 2016).
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Table 2. Fault detection and diagnostics approaches for the OCL.

Component Contact wire Dropper Steady arm
Fault or

Failure type Local wear Anomaly (Splicer) Fatigue failure Bad position Anomaly
(Hard spot)

Measurement Arcs (current and voltage) Contact force 1) Contact force
2) Image processing Image processing Contact

force

Approach

Machine Learning
(classification and clustering)

and signal processing
(feature extraction)

Signal processing 1) Signal processing
2) Pattern recognition

Computer
vision

Signal
processing

Methods

Features extraction: FFT, DWT
Classification and

clustering: c-means,
K-means, SVM, and fuzzification

Continuous Wavelet
Transform (CWT)

1) CWT
2) kNN and hMM

Multiclass
Spectral

Clustering
CWT

Physics-based (or Model-based techniques) rely on the failure
mechanism to build an explicit model of the degradation
model. This approach is used when there are not enough
time-to-failure data but a good knowledge of the physics of
the system and its failure modes are available. However,
the development of this kind of approaches needs to make
assumptions that limit the applicability of the developed
models.

Data-driven approaches use available data in order to capture
the relationships between the degradation and system’s
extracted information. These approaches can be simpler to
set up than physics-based ones. However, they often need
an important quantity of time-to-failure data and neglect the
physical behavior leading to failures, which can be a lack for
an advisory generation.

Hybrid approaches are seen as a combination of data-driven
and physics-based approaches. They can be achieved
in two ways: by fusion of results of the data-driven
and physics-based approaches or the use of a data-driven
approach in order to tune physics-based model parameters.

In our case of study, contributions have been proposed
to forecast the wear of the CW. Both data-driven and
physics-based approaches were studied for CW wear
prediction.

In (Bucca & Collina, 2015), a heuristic model of wear is
proposed based on previous tribology studies and test rig
data. The model relies on three contributions of wear for
the contact wire: mechanical contribution due to friction,
electrical contribution due to energy dissipation relative to
the current flow and arc contribution during contact loss
between pantograph and OCL. The contribution of each wear
phenomena is fitted by using test data provided by a dynamic
test bench for pantograph-OCL interaction (Bucca & Collina,
2009). With the contact force and the current inputs provided
from a pantograph-catenary simulation software, the model
is used to estimate the wear of CW for a certain period of
time. A correlation between wear measurements and the wear
estimation obtained from the model were established.

A data-driven approach is developed in (W. C. Shing, 2011).
This work is based on monitoring data collected during two
years on the same line. The data includes OCL geometry
parameters, contact force, and traction current. A statistical
analysis on the data allows to select a set of parameters as an
input of an artificial neural network (ANN) model in order
to establish a wear prediction model. The correlation score
obtained for the trained model was about 0.7 on test data.
Additionally, the model was used to characterize parameters
influence on wear evolution.

These approaches use different sources of data in order to
assess the OCL health state. The use of arcs measurement
allows detecting the welding effect on the contact wires due to
long arcs. The processing of contact force was used to detect
a geometrical defect or broken components. Furthermore,
models for the contact wire wear were developed based on
data-driven or physics based approaches. Combining all
these techniques and validate and assess them may lead to
a validation of a contact wire wear prediction model and
diagnostics methods

9. DECISION FOR PREDICTIVE MAINTENANCE

Few contributions addressed the decision part of PHM
dealing with maintenance scheduling and optimization, based
on prognostics and diagnostics information. However, some
approaches have been proposed for rail track and railway
switches maintenance.

(Letot, Soleimanmeigouni, Ahmadi, & Dehombreux, 2016)
addressed the problem of rail track tamping interventions
scheduling. A cost model has been proposed for the
optimization of the maintenance time, for a single track
section, based on three thresholds, namely, comfort penalty,
speed reduction penalty and track closure (failure). Before
that, a prognostics process for the track geometry relying
on a stochastic Wiener process was proposed. Finally, an
adaptive opportunistic maintenance strategy has been defined
for the whole track line composed of several track sections,
each of them being associated with its own degradation
evolution. In this case, a grouping strategy is used to decrease
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the number of interventions based on the optimal time for
maintenance for each track section. Authors showed that
maintenance actions based on prognostics information and
cost optimization gave better results than the systematic one.

In (Camci, 2014) proposed a methodology to schedule
the maintenance of geographically distributed assets in the
case of railway switches. The approach is based on the
Travelling Maintainer Problem (TMP) which aims to find
the most cost-effective routing for the maintenance operator
to visit assets based on RUL information. The TMP is
formulated by the assumption that each location can be
visited several times or not at all during the maintenance
horizon. Hence, an optimization problem is proposed for
maintenance scheduling, it is based on the minimization
of an elaborate cost function, composed of the expected
failure cost, the maintenance cost, and the travel cost. A
genetic algorithm and a Particle swarm have been developed
to determine a maintenance schedule for a fixed number of
maintenance tasks. However, the approach was practically
limited due to the high number of assets which generate
an important computational time and the considered work
duration for maintenance operators. In (Camci, 2015), the
author proposed an enhanced procedure by introducing a
penalty function for the work duration that allows limiting
working hours in a day. In addition, an enhanced genetic
algorithm was proposed for the case where each location can
be visited at least and at most once.

In summary, similar approaches can be applied to the OCL
which is a geographically distributed asset, and necessitate
to schedule maintenance actions based on different criteria
that can be defined, for the OCL, as current collection quality
(speed reduction), travel cost and failure cost. In addition,
merging both rolling stock condition and infrastructure data
can afford better-informed decisions.

10. CONCLUSION

In current railway industry context, developing a PHM
program for condition-based and predictive maintenance
purpose is a key challenge for competitiveness. Designing
a PHM solution for the OCL system, which is geographically
distributed, is not a common task comparing to usual studied
systems in PHM field. To this aim, a comprehensive
review of means for OCL PHM deployment was conducted.
System components and failure modes were reviewed,
and monitoring solutions needs were addressed. Overall,
this paper identifies key parameters and sensors for OCL
monitoring, as well as principal contributions from the
literature for OCL diagnostics and insights for contact wire
wear prediction. Lastly, we reviewed briefly the decision
aspects for railway infrastructure.

While OCL system is well known by railway experts and
engineers, several obstacles to PHM development need to

be highlighted. Sensor for OCL monitoring needs to be
standardized. Furthermore, a comparative study must be
conducted regarding uncertainty, reliability and costs. CW
diagnostics using arc measurement is the main topic of
research and important development has been realized thanks
to the use of machine learning techniques. Detection
and diagnostics of faulty components using contact force
need more research development. The use of data-driven
techniques based on contact force should be explored.
Moreover, image processing techniques are still limited due
to data storage issues and operational parameters such as train
speed. A physics-based model for CW wear prediction is
available. However, this model does not take into account all
operational parameters. Combining a data-driven approach
with this model should be a key enabler for wear prognostics.
Finally, implementation of PHM methods for an OCL needs
real-world operating systems data in order to accelerate
diagnostics and prognostics research.
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