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ABSTRACT 

Punctuality is regarded as an important measure of the 
performance of a railway system, and is the one most 
commonly used and discussed measure both in the industry 
and among travelers. In many countries, the punctuality of 
trains, and thus the performance of the railway system, is 
deemed as lacking. The aim of this article is to study and 
quantify how several weather-, timetable, operational and 
infrastructure-related variables influence punctuality in 
passenger train traffic. This can contribute to better 
understanding of the performance of railway systems, and 
help identify possible improvements.  
The study is based on a dataset containing detailed timetables 
and records of all 32.4 million train movements for all trains 
in Sweden during the year of 2015, over 1.1 million 
departures. Supporting this is a comprehensive register of 
over 80 000 infrastructure elements, and almost 87 million 
weather observations.  
We consider the size and allocation of margins, the existence 
of negative margins, two measures for traffic volume, the 
journey time and distance, how often different vehicle 
individuals are used, the number of line and station 
interactions between trains, the amount of precipitation, the 
temperature, wind speed, snow depth, and eight types of 
infrastructure elements. We show how these variables affect 
punctuality, and estimate how much of the variation in 
punctuality can be explained by them. 
The findings can be used to design timetables, change 
operational parameters and modify infrastructure design so 
that punctuality improves. They can also help identify areas 
which should be prioritized in planning, maintenance and 
research.  

1. INTRODUCTION 

Punctuality is an important factor for the attractiveness and 
efficiency of the railway sector. In Sweden, a target has been 

set and agreed upon by the industry, that by 2020 the 
punctuality across all trains should be 95%, measured as 
arriving at the destination with a delay of at most five 
minutes. Since 2012 the punctuality has been steady at 
around 90 % for passenger trains and slightly below 80% for 
freight trains (Transport Analysis, 2016). Large and rapid 
improvements are thus required, if the target of 95% is to be 
reached on time.  

The purpose of this study is to identify and quantify the 
impact of several weather, timetable, operational and 
infrastructure variables on the punctuality of passenger trains 
in Sweden. This is a much broader scope than is typically 
seen in the literature, using an extensive dataset. Most 
previous research is focused on a single type of influencing 
variables, such as weather or timetable properties, using 
limited time periods and geographies to illustrate the effects. 
While this is often necessary, there is a gap in the research 
that attempts to synthesize this knowledge in a more holistic 
approach. This paper is intended to bridge that gap.  

1.1. Previous Research 

1.1.1. Weather 

The influence of weather and climate change on train delays 
and punctuality has received considerable attention in the 
literature recently. Brazil et al. (2017) found that precipitation 
delayed trains on a metropolitan rail line in Dublin, 
combining a dataset of over 6 000 train departures with 
hourly observations of several weather variables. Zakeri and 
Olsson (2017) investigated the impact of weather on 
punctuality of local trains in the Oslo area, and found strong 
correlations between punctuality and temperatures below -
7℃ and snowfall of at least 15 cm. Xia, Van Ommeren, 
Rietveld and Verhagen (2013) estimate how wind, 
temperature and precipitation cause disturbances in the 
railway, mainly by damaging the infrastructure. Qin, Ma and 
Jiang (2017) model how rain, snow, and different 
temperature thresholds affect delays on a regional railroad in 
Sweden. Ludvigsen and Klæboe (2014) describe how long 
cold spells, heavy snowfall and strong winds have severely 
delayed freight trains across five European countries. Xu, 
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Corman and Peng (2016) analyze the disruptions in the 
Chinese high-speed railway, and find that almost 90% of 
these are due to bad weather. Nagy and Csiszar (2015) 
highlight the effects of weather conditions on the punctuality 
of Hungarian passenger trains. Ferranti et al. (2016) study 
how heat causes failures in the railroad infrastructure in 
England, particularly in the signaling systems. They also 
discuss the concept of failure harvesting, in which 
components that fail early in the season are replaced by newer 
and more resilient components, reducing the vulnerability 
and number of failures later in the season.  

Falling leaves often impact punctuality in the autumn, as 
described by Xia et al. (2013), and Brazil et al. (2017) among 
others. The leaves create a mulch on the rails which lowers 
the adhesion between the rails and wheels, increasing both 
braking and acceleration times, and thus causing delays. 
Because falling leaves are not typically measured or recorded 
like other weather-related variables, both sets of authors use 
dummy variables for each month to try to capture this effect.  

Tahvili (2016) describes extensively and in detail how snow, 
cold temperatures and strong winds cause problems for the 
railroad, and how the Norwegian rail sector is undertaking 
winterization measures to reduce these problems in the 
future. Lehtonen (2015) described the conditions of four 
snow-rich winters in the Helsinki-area, and how they caused 
significant issues for the railroads there. Jaroszweski, 
Hooper, Baker, Chapman and Quinn (2015) describe how a 
storm in the UK caused very severe delays for both road and 
rail transport, severing the main link between England and 
Scotland. Doll et al. (2014) present a case study for adapting 
rail roads in Austria to the different climate of 2050, and 
conclude that the damages due to weather will increase. 
Kellermann, Bubeck, Kundela, Dosio and Thieken (2016) 
simulated how the changing climate will affect the frequency 
of critical meteorological conditions in the Austrian railroads, 
concluding that while snowfall and extremely cold 
temperatures will become less frequent, intense rainfall and 
heat waves will become more common. Ford et al. (2015) 
simulate how extreme weather events like heat waves and 
floods will become more common in the UK as global 
warming continues, leading to increasing disruptions to the 
railroad system. Oslakovic, ter Maat, Hartmann and Dewulf 
(2013) also study how weather conditions cause failures in 
infrastructure elements in the Randstad region of the 
Netherlands, and how these conditions are likely to become 
more frequent as the climate changes. 

1.1.2. Timetable 

As Parbo, Nielsen and Prato (2016) show, timetable 
characteristics are important influencing factors for delays 
and robustness in railway traffic. Kim, Kang and Bae (2013) 
present and categorize different types of train delays, 
concluding that the important causes in South Korea are short 
headways, short scheduled run times, delays of preceding 

trains, and excessive passenger loads. Cerreto, Nielsen, 
Harrod and Nielsen (2016) present a preliminary study on the 
quality of time supplement allocation in timetables, and on 
how trains recover or increase delays that occur during a 
journey. Our own previous studies also indicate that 
properties of the timetable have significant impact on delays 
and punctuality (Palmqvist, Olsson & Hiselius, 2017a). This 
often stems from several strategic decisions that a planner 
must consider when designing a timetable. On a high level, 
these strategies address several issues. This includes the 
balance between precision and slack (Olsson et al., 2015), 
and the balance between using headways to assign buffers 
between trains or using time supplements to assign margins 
within train journeys (Nelldal, 2009). Other issues are the 
degree to which a cyclic timetable is desired, the 
heterogeneity of traffic and the degree to which 
homogenization measures are to be employed (Nelldal, 
Lindfeldt & Lindfeldt, 2009). In addition, questions arise 
about geographical accessibility and the design of the 
network to be utilized, the balance between stops at end 
points or intermediate stations, and other issues.  

An overview of the state of the art in timetable research is 
provided by Hansen (2009). The author concludes that the 
key issue for high quality timetables is a precise estimation 
of blocking times, considering the signals, platforms, train 
processing, and using realistic run and dwell times. This is 
often not the case in practice. Similarly, queuing and 
simulation models inadequately reflect speed variations and 
the behavior of railway staff. Planners have tools to make 
timetables robust against delays, for example by adding time 
supplements, lowering heterogeneity in the timetable by 
having uniform stopping patterns, finding optimal speed and 
reducing interdependencies between trains (Parbo et al., 
2016).  

Carey (1999) discusses several different heuristic measures 
of timetable reliability, with special consideration to knock-
on delays. These include probabilities of delays, calculated in 
several ways, and different headway based measures. The 
latter are found to be easier to use and calculate, because they 
do not require nearly as much data. 

Scheepmaker and Goverde (2015) demonstrate that it is more 
energy-efficient to distribute time supplements evenly along 
a train route. Vromans (2005) introduces the measure WAD, 
or the Weighted Average Distance, to describe how 
supplements are distributed along the journey, and attempted 
to optimize this using both analytical and numerical methods 
for some hypothetical and real cases, concluding that a slight 
shift towards the beginning is best. This is further discussed 
in Andersson (2014). Using simulation-based methods, 
Vromans (2005) and Vekas, van der Vlerk and Haneveld 
(2012) found that a uniform distribution was sub-optimal for 
delay recovery, given some assumptions of the delay 
distributions. 
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1.1.3. Operational 

Influencing factors on train punctuality in Norway are 
presented by Olsson and Haugland (2004). In short, the 
authors found that in congested areas the management of 
boarding and alighting passengers is the key factor, while on 
single track lines the management of train crossings is the key 
success factor. Gorman (2009) used statistical analysis to 
study which factors contributed the most to delays for freight 
trains in the US. He found that the number of meets, passes 
and overtakes consistently had the highest impacts, 
suggesting that congestion was the primary cause for delays.  

Wiggenraad (2001) studied seven Dutch train stations in 
detail. He found that dwell times are longer than scheduled, 
that the dwell times at peak and off-peak were the same, and 
that passengers concentrated around platform access points. 
This suggests an improvement potential of shorter real dwell 
times if travelers could be distributed more evenly along the 
platforms. Along the same lines, Nie and Hansen (2005) 
studied trains in the station area of The Hague. They found 
that trains operate at lower than design speeds, and that dwell 
times at platforms are systematically extended because of 
other trains blocking their routes, and because of the behavior 
of train personnel. 

1.1.4. Infrastructure 

Veiseth, Olsson and Saetermo (2007) links infrastructure data 
with delay and punctuality data to study the infrastructure’s 
influence on rail punctuality. They report that some 30 % of 
delay hours in Norway are caused by infrastructure failures, 
and suggest that the quality of punctuality data can be 
improved by connecting it with infrastructure and operational 
databases. Thaduri, Galar and Kumar (2015) discuss how the 
many systems and sub-systems in the railway can be studied 
using big data analytics, and gives an overview of the main 
databases used in the Swedish railways. Norrbin, Lin and 
Parida (2016) discuss the concept of robustness for railway 
infrastructure, and present a roadmap for studying and 
improving it.  Stenström, Parida, Lundberg and Kumar 
(2015) develop a composite indicator for benchmarking and 
monitoring of rail infrastructure, considering four factors: 
failure frequency, train delays, logistic time and repair time. 
Nikolic et al. (2016) discuss the poor quality of the Serbian 
railway infrastructure, and adapts the measure of Overall 
Railway Infrastructure Effectiveness, which is another 
composite indicator developed in Sweden, for use in their 
national network.  

2. METHOD 

This section describes in turn the datasets used, the variables 
analyzed, and the method of analysis.  

2.1. Datasets 

This study is based on a database containing three main 
datasets. The core set contains all train movements in 
Sweden, over 32.4 million, derived from the track blocking 
and signaling systems for the timetable year of 2015, which 
we use to determine the punctuality of trains. The second set 
contains detailed exports of all train timetables in Sweden 
during the timetable year of 2015, this covers almost 46,000 
distinct timetable versions and over 1.1 million departures. 
The third dataset contains all historical meteorological 
observations of snow depth, temperature, wind strength, 
precipitation in Sweden, which we use to estimate the 
weather conditions in which the trains operated. These 
datasets were linked together, and several filters were applied 
so that it focuses on only passenger trains, and excludes 
incomplete observations. The remaining data covers over 
883 000 completed passenger train journeys across Sweden 
during one year. Freight and service trains are not included in 
the analysis, only passenger trains, because the pre-
conditions between the different types are considered too 
different, as is the handling of both timetable planners and 
traffic control. 

2.2. Analyzed Variables 

We analyze how 36 variables across four categories affect 
punctuality. The breakdown by category is as follows: six 
variables related to weather, seven variables related to the 
timetable, seven variables related to operations, and 16 
variables relating to eight types of infrastructure elements. 
These are described in the following sections.  

2.2.1. Punctuality 

We define punctuality in the following way: trains arriving at 
their scheduled stops with a delay not exceeding five minutes 
are considered punctual at that stop and are given a value of 
1, otherwise a value of 0 is given. In this manner, 
cancellations are counted as non-punctual. For each train, we 
calculate the average of these values to arrive at a punctuality 
measure. A train that has four stops and arrives at three of 
them punctually, but is not punctual at the fourth, thus 
receives the punctuality value of 0.75. In any aggregate of 
trains, the punctuality is calculated as the average of these 
values and presented as a fraction. This additional step, of 
taking the average across all scheduled stops, gives a more 
holistic picture. In our case, it also improves the overall 
punctuality of passenger trains by 2.43 percentage points, to 
92.17%, compared to when punctuality is only measured at 
the destination. We only consider the punctuality of trains, 
not the size, frequency or distributions for delays or 
disturbances.  

Manually reported causes for delays are not utilized in this 
study, for a number of reasons. The reported error causes are 
already relatively well known and publicized in both Sweden 
and Norway (see for instance Swedish Transport 
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Administration, 2017, and Veiseth et al., 2007). Delays must 
be relatively large and obvious for causes to be reported, in 
our material 55% of delays are small enough that they would 
not be categorized. Manual attribution of delays is also prone 
to errors and often quite inconsistent (Nyström, 2008), with 
an estimated reliability around 80 % (Nilsson, Björklund, 
Pyddoke & Vierth 2015). Research is ongoing on combining 
the attributions with data of the kind that we use in this study, 
to cross validate among the different sources.  

In practice calculating punctuality is more challenging than it 
may appear, as a substantial number of observations are 
missing in the data. These are points where the train has not 
been canceled but there is no record of the train arriving or 
departing, and there are records of it arriving at surrounding 
stations. One specific example is for airport trains which 
depart from Arlanda North and stop at Arlanda South one 
minute later, before heading towards Stockholm C. Very 
often the record for Arlanda South is missing, despite there 
being records of the train leaving Arlanda North, only 570 m 
to the north along the same track, and then subsequently 
arriving in Stockholm. There are many other examples, 
especially for regional trains. We have dealt with this by 
going through a loop of (1) using the average delay at the two 
adjacent stations, when both of these records exist, and 
otherwise (2) using the delay at the previous control point if 
there is an observation there, or if not then (3) using the delay 
at the next control point, if there is one there, and if the 
observation was missing there as well then starting again at 
(1). In this way, small gaps in the record are filled 
immediately, and larger gaps are filled in step by step, as the 
loop is repeated. By iterating this process six times, we 
reduced the share of missing observations from 7.5 to 0.1 %. 
After this we calculate the punctuality, in the way described 
above.   

2.2.2. Weather data 

Temperature is measured, on average, about 18.7 times per 
day and station. The average of these was taken to get a daily 
temperature value for each station. Wind strength was 
measured at fewer stations, with an average of 23 
observations per day. To convert to a daily wind value for 
each station, we took the maximum value for each day, 
because we are mainly interested in stronger winds. Snow 
depth and precipitation is measured daily, but with data 
missing on average 9 % and 0.5 % of the days, respectively. 
An overview of this data is given in Table 1.  

Table 1. Overview of weather variables 

Variable Unit No. 
stations 

Obs. 
freq. 

No. 
obs. 

Temperature ℃ 247 Hourly 1 680 k 
Wind speed m/s 166 Hourly 1 400 k 
Snow depth cm 276 Daily 91 k 
Precipitation mm 585 Daily 212 k 

Trains often travel long distances, through varying weather 
conditions. To account for this, and because the locations of 
meteorological observations are typically different from 
those of the train stations, we created an algorithm that 
matches each of the train stations to the nearest 
meteorological station. The matching was done separately for 
each weather variable, because not all meteorological stations 
observe the same variables. And because some stations lack 
observations on some days, the algorithm was set to match 
the two station sets for each day, to ensure that an observation 
could always be given.  

As each train passes several train stations, which can have 
different values of the weather variables, there are several 
ways in which to convert these different values to one single 
variable. With wind, we were interested in the highest speeds 
and chose to take the maximum. With temperature, we tried 
both the average, the minimum and the maximum. We ended 
up choosing the minimum temperature for cold weather, and 
the maximum temperature for hot weather, arguing that we 
are most interested in the extremes, but found that the choice 
made little difference in the analysis. For precipitation and 
snow depth, we considered the average, maximum and sum 
of the measured variables. In the end, we found that the sum 
best explains the effect of precipitation on punctuality, 
despite the complicating factor of introducing the distance 
and number of measuring stations into the variable, we find 
that the added explanatory value more than makes up for the 
reduced independence of the variable. For snow depth, we 
found the average to work very well.  

One of the variables we use to explain punctuality is the 
difference in temperature. It basically represents the 
difference in temperature that a train is exposed to. Because 
of how we have chosen to handle the temperature data, this 
temperature difference should be interpreted as being across 
the geography, not across time.  

We do not have access to any information on falling leaves, 
and because the weather and change of seasons varies quite 
considerably within Sweden, we do not think that falling 
leaves can be captured as well by monthly dummies in our 
dataset, as may have been the case in countries like the 
Netherlands or Ireland. Accordingly, without access to data 
or good proxies, we exclude this phenomenon from our 
analysis.  

2.2.3. Timetable variables 

The seven timetable variables are summarized in Table 2.  

In this paper, we look at the size of margins in two slightly 
different ways: as a percentage of the scheduled runtime 
without margins, and as seconds per kilometer.  

To measure the distribution of margins within a timetable, we 
use the measure of Weighted Average Distance (WAD) 
described in Vromans (2005). This is used to describe how 
the various time supplements in a timetable are balanced,  
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Table 2. Overview of timetable variables 

Variable Unit 
Total margins % 
Supplement density s/km 
WAD of margins % 
Negative margins binary 
Avg. speed with stops km/h 
Travel time (without margins) h 
Distance/no. of scheduled stops km 

 

being more towards the beginning or end of the journey, or in 
between. It is expressed as a decimal and normally takes 
values between 0 and 1, with lower values expressing a shift 
towards the beginning and higher values a shift towards the 
end of the journey.  

In some timetables, there are negative margins: cases where 
the scheduled time has been manually set to be shorter than 
the technical minimum. We use a dummy variable with the 
value of 1 if there are any instances of this in a timetable, and 
0 if there are not.  

The travel time without margins, or the scheduled duration of 
the journey, is included to help differentiate between the 
distance covered and the time in the system.  

The average speed is calculated to include stopping times, 
and is derived by dividing the distance by the duration of the 
journey (as defined in the timetables).  

Another timetable characteristic is the average distance 
between stops, which is calculated by dividing the distance 
with the number of scheduled stops. 

This paper does not consider headway or buffer times, or 
other measures of margins between trains, only margins 
assigned within each train path.  

2.2.4. Operational variables  

An overview of the seven studied operational variables is 
given in Table 3.  

The distance covered by trains has been known to influence 
punctuality since at least Harris (1992), who showed that 
distance covered was statistically significant in determining 
punctuality. We include travel distance as a parameter, 
measured in kilometers.  

In this paper, as in a previous one (Palmqvist et al., 2017a) 
we consider and count interactions between trains. We define 
an interaction as an instance when two trains are at the same 
place at the same time, which can happen at a station, or on a 
line section. When on a line section, the trains need to be 
traveling in the same direction to be counted as an interaction. 
This happens relatively frequently on double tracks, but is 
also possible on some single tracks, if there are multiple 
blocks between two stations. The number of interactions are  

Table 3. Overview of operational variables 

Variable Unit Number of 
observations 

Station interactions count 2 091 619 
Line interactions count 20 945 
Trains to same station & hour count 4 355 911 
Movements per vehicle count 970 
Movements per day count 364 
Days run per train number count 5 726 
Travel distance km 883 715 

 

counted, and the count is used as a variable to explain 
punctuality variations. 

As a measure of traffic intensity and station size, we count 
the number of trains arriving at the same station at the same 
hour as the train. Another measure of traffic intensity is the 
number of movements per day during the studied year, which 
we count across the whole network. Some vehicles are used 
more frequently than others, and to study the effect of this on 
punctuality we count the number of movements per vehicle 
individual during the timetable year. A movement is defined 
as crossing one line section, between two control points.  

Some train numbers are also run more frequently than others: 
some run almost every day, others only a handful of times or 
even once during a year. Those that run more often might be 
expected to perform better, because of increased routine and 
increased incentives. To study this, we count the number of 
days run per train number.  

While passenger volumes on both trains and stations are 
believed to be an important factor for delays, this type of data 
is often confidential and difficult to access, so the effects of 
these must be left for future studies.  

2.2.5. Infrastructure elements  

From the Swedish rail asset management database BIS, see 
Thaduri et al. (2015) for a description, we have high level 
information on eight types of infrastructure elements: their 
type and location. An overview of these is given in Table 4. 

We match all but 1 500 of 82 700 elements to the train 
stations and railway links. We can distinguish between 
elements in station areas and those on links, but choose not to 
do so in this analysis to keep the number of variables from 
growing too large, and because the results are largely the 
same for most variables.  

To add a dimension to this analysis, we also consider the 
density of elements, not only their number. We do this by 
dividing the distance traveled by a train by the count of 
elements of a given type passed by the same train, to arrive at 
an average distance between the elements.  
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Table 4. Overview of infrastructure elements 

Infrastructure element Approximate number 
of elements  

Signal 31 000 
Switch 15 500 
Bridge 4 000 
Tunnel 200 
Level crossing 11 000 
Cutting 10 000 
Embankment 2 000 
Fence 9 000 

 

Whereas the number of infrastructure elements correlates 
strongly with the distance traveled, as trains covering longer 
distances pass by more infrastructure elements, the density 
measures instead depend on where the trains travel and how 
dense the infrastructure is there, they are not dependent on 
the distance covered. 

We do not study the age or condition of infrastructure 
elements, or reported faults on them, because we do not have 
access to that data, only their number. Track works and 
temporary speed restrictions are not covered, for the same 
reason. 

2.3. Data Analysis  

The relationship between punctuality and the studied 
influencing factors is analyzed using a regression, t-tests and 
visual analysis of plots. Correlation coefficients are also 
presented.  

A linear regression is performed over all the studied variables 
found in Table 7, with punctuality as the dependent variable 
and the other 36 variables as independent. The regression is 
performed in R. This is primarily done to see how much of 
the variation in punctuality is explained by the studied 
variables.  

Thereafter the variables are studied individually, with regards 
to their influence on punctuality. This is done by first setting 
up several threshold values, then by performing t-tests to see 
if the punctuality above a threshold is significantly higher or 
lower than the average punctuality across all the trains in our 
dataset. See below for an example. Welch’s two-sided t-test 
is used to allow for the fact that the samples are of unequal 
size and variances. The threshold is used to distinguish 
between observed trains with higher or lower values of the 
studied variable. When the p-value is found to be lower than 
0.01, the punctuality for trains in the subset, surpassing the 
threshold, is compared to the punctuality across all trains in 
our dataset, and the difference is noted.  

For instance, in our dataset there are 41 614 (out of 883 678) 
trains which have travelled for at least 400 km during their 
journey. They had a punctuality of 79.62 % which is 12.55  

 
Figure 1. Punctuality and the distance traveled in km 

%-points lower than the average of 92.17 %, plotted in Figure 
1, and this difference is found to be statistically significant 
using a two-sided Welch’s t-test, with a p-value approaching 
0. From these t-tests we construct one plot per studied 
variable, as in Figure 1, with the threshold values on the x-
axis and the differences in punctuality, compared to the 
average across all trains in our sample, on the y-axis. To 
continue the example above, we plot an x-value of 400 and a 
y-value of 12.55 %, and then repeat the same procedure again 
for the x-value of 450, determine the y-value and check 
whether this difference in punctuality is statistically 
significant with a p-value lower than 0.01.  

This procedure is repeated at intervals for each studied 
variable, and the results plotted in scatter diagrams, to which 
trend lines are fitted. This is done in Microsoft Excel. The 
results are robust with regards to the range of the studied 
variable and the number of points per plot.  

For each plot, we in turn try linear, exponential, logarithmic, 
second-degree polynomial and power functions, and choose 
the function which provides the best fit, as determined by the 
R2-value. In some cases, where the difference in R2 was less 
than 0.02, we instead opted for a linear trend line function, 
for simplicity.  

3. RESULTS 

The following section first describes the results of the linear 
regression containing all studied variables, and how each type 
of variable contributes to the overall picture, then a table 
summarizing the results for each variable separately. The 
results for each studied variable are then described and 
discussed category by category, to better illustrate the results.  

3.1. Linear regressions  

A linear regression across all 37 studied variables listed in 
Table 7 was performed in R. Due to the large number of 
variables considered, we omit the estimated coefficients for  

y = 0.0003x1.0068

R² = 0.95451

0.0%

10.0%

20.0%

30.0%

0 200 400 600 800

Pu
nc

tu
al

ity
 d

ro
p 

ag
ai

ns
t a

ve
ra

ge
of

 
92

.1
7%

 

Distance in km

Distance Power  (Distance)



INTERNATIONAL JOURNAL OF PROGNOSTICS AND HEALTH MANAGEMENT 

 
 

7 

Table 5. Summary results of the linear regression 

Statistic Value 
Residual standard error: 0.2142 on 883641 degrees of 

freedom 
Multiple R-squared:   0.04302 
Adjusted R-squared: 0.04298 
F-statistic: 1103 on 36 and 883641 DF 
p-value:  < 2.2e-16 

 

space concerns, and only present the summary statistics of the 
regression, which are presented in Table 5, below. 

The results of the regression show that all but 5 variables (#2, 
#17, #33, #36 and #37 in Table 7) have significant impact 
with p-values < 0.00001. They also show that less than 5% of 
the variation is explained by this model, as well as a large 
residual standard error, showing that it has a low predictive 
accuracy even if the effect of the factors is shown to be 
significant. Changing the specification to consider 
polynomial functions only improves these numbers 
marginally.  

We also carried out a series of regressions to study the impact 
of groups of variables, and their relative importance in 
explaining punctuality variations. Some summary results of 
these are presented in Table 6. These results show that the 
variables we have categorized as operational have the largest 
impact on punctuality, whereas the infrastructure density 
variables we used only contributed marginally. There is also 
some overlap between the types of variables, in the 
punctuality differences they explain. The rightmost column 
is calculated as the Adjusted R2-value for that row, divided 
by the corresponding value in the bottom-most row, 
containing the combined model of all 37 variables.  

3.2. Summary table 

Table 7 summarizes the results for each variable, based on 
the method described in section 2.3. The #-column contains 
an identifier. The Variable-column contains brief, descriptive 
names of the variables. The Trend line function-column 
contains the trend line functions from the plots, described in 
section 2.3, where x is the threshold value of the variable, and 
F(x) is the decline in punctuality of trains where the threshold 
is superseded, compared to the average punctuality across all 
trains of 92.17 %. Punctuality is measured at all scheduled 
stops, and cancelations are treated as non-punctual. The R2-
column describes how well the trend line function fits the 
points plotted in each diagram. The Range plotted-column  

 

 

 

 

Table 6. Regressions by type of variable 

Type of 
variables 

No. 
variables 

Adjusted 
R2-value 

Relative 
performance 

Weather 6 0.02068 0.48 
Timetable 7 0.02538 0.59 
Operations 7 0.02943 0.68 
Infrastructure 8 0.02355 0.55 
Infrastructure 
density 

8 0.00643 0.15 

All of the above 
combined 

37 0.04298 1.00 

 

lists the smallest and largest threshold values of the studied 
variable included in the plots, that are used to derive the trend 
line functions. The Pts./plot-column describes how many 
different thresholds were plotted to make up the diagrams, to 
which the trend lines were fitted. The Highest corr. to-column 
presents the correlation coefficient to the other studied 
variable which is the highest, as well as the identifier for that 
variable. 

3.3. Weather 

The result show that punctuality falls exponentially as the 
temperature drops below 0 ℃. At -5 ℃ the punctuality is about 
7.5 %-points lower than average, and at -30 ℃ it is about 50 
%-points lower. The same pattern is found at high 
temperatures. At 23 ℃ punctuality is about 5 %-points lower 
than average, and by 27 ℃ it has fallen by 26 %-points. In the 
face of increasing temperatures and more frequent heat 
waves, this suggests that more ought to be done to increase 
the railway systems’ resilience to high temperatures, similar 
to the findings of Ferranti et al. (2016), Ford et al. (2015) and 
others. Xia et al. (2013) used a series of dummy variables for 
temperature, and their plot of the effect on punctuality looks 
similar to ours. 

The variation in temperature across the geography that the 
train passes through is also significant.  We find a logarithmic 
relationship between punctuality and the difference between 
minimum and maximum temperature across the journey. 
Even a difference of 5 ℃ lowers punctuality by about 9 %-
points. This variation is highly correlated (a correlation 
coefficient of 0.47) with the distance traveled, which is to be 
expected, as a train that travels longer passes through a larger 
geography and potentially larger temperature variations. That 
the temperature gradient affects punctuality is to be expected, 
some of the mechanisms are described in Tahvili (2016), but 
the effect we find is larger than in Xia et al. (2013). 
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Table 7. Summary of results from the analysis 

 
# Variable (x) Trend line function R2 Range  

plotted 
Pts. 
/plot 

Highest corr. to 

1 Punctuality, at all stops Target variable, y-value N/A N/A N/A -0.16 to #21 
 Weather      
2 Temperature, below 0℃ 0.035e-0.088x 0.97 3 - 32 18 -0.46 to #4 
3 Temperature, above 0℃ 1E-04e0.2838x 0.96 15 - 27 12 0.13 to #2 
4 Temperature, difference ℃ 0.05041ln(x)+0.0082 0.90 1 - 26 25 0.50 to #26 
5 Wind speed, max in m/s 0.0001x2.1182 0.93 5 - 25 16 0.22 to #7 
6 Snow depth, average in cm 0.113ln(x)-0.0134 0.92 1 - 14 14 -0.37 to #2 
7 Precipitation, sum of mm 0.0002x + 0.0172 0.97 1 - 1000 31 0.29 to #24 
 Timetable       
8 Total margins, % 1.3461x2-0.632x+0.0526 0.94 0.1 – 0.5 9 0.91 to #9 
9 Supplement density, s/km 0.0003x2-0.0055x+0.01 0.75 2 - 20 10 0.91 to #8 
10 WAD of margins, % 0.5178x2-0.556x+0.1375 0.69 0.35 – 0.80 11 -0.09 to #14 
11 Negative margins, binary 0.0277x-0.0116 1.00 0 - 1 2 -0.35 to #8 
12 Avg. speed with stops, km/h 0.0003e0.0457x 0.81 40 - 120 10 -0.43 to #9 
13 Travel time without margins, h 0.0163x+0.0145 0.95 0.5 - 10 20 0.89 to #21 
14 Distance/Scheduled stops, km 0.0013x-0.0199 0.98 10 - 125 12 0.49 to #26 
 Operations      
15 Station interactions, count 0.0104x-0.0208 0.95 2 - 20 10 0.73 to #24 
16 Line interactions, count 0.022x+0.0236 0.97 1 - 5 5 0.08 to #24 
17 Trains to same station & hour -0.0014x+0.0059 0.92 3 - 30 11 0.53 to #18 
18 Movements per vehicle -1E-12x2+4E-07x-0.025 0.98 100k–300k 9 0.53 to #17 
19 Trains per day 1E-11x2-2E-06x+0.0819 0.94 70k - 110k 5 0.15 to #17 
20 Days run per train number -4E-05x+0.0012 0.99 100 – 350 6 -0.20 to #32 
21 Travel distance, km 0.0003x1.0068 0.96 50 – 750  21 0.89 to #13 
 Infrastructure      
22 Signal, count 5E-05x-0.0055 0.93 1 - 4500 10 0.95 to #24 
23 Distance/Signal, km 0.0081x2-0.0059x+0.013 0.88 0.1 - 5 16 0.79 to #25 
24 Switch, count -6E-08x2+0.0002x-0.027 0.88 1 - 2000 14 0.95 to # 22 
25 Distance/Switch, km 0.0033x2-0.012x+0.0154 0.98 0.1 - 10 15 0.82 to #27 
26 Bridge, count 0.0007x-0.0017 0.93 1 - 300 19 0.93 to # 22 
27 Distance/Bridge, km 0.0029ln(x)+0.0085 0.55 0.1 - 60 18 0.82 to #25 
28 Tunnel, count 0.0001x2-0.0006x+0.009 0.94 1 - 40 10 0.75 to #22 
29 Distance/Tunnel, km 0.0.0156x0.1501 0.77 0.1 - 160 25 0.44 to #13 
30 Level crossing, count 0.0005x+0.0057 0.98 1 - 160 12 0.65 to #24 
31 Distance/Level crossing, km 0.0016x2-0.0096x+0.004 1.00 0.1 - 10 12 0.34 to #23 
32 Cutting, count 0.0004x+0.0007 0.96 1 - 200 14 0.83 to #36 
33 Distance/Cutting, km -8E-06x2-0.0013x+0.004 0.92 0.5 - 100 16 0.19 to #35 
34 Embankment, count 0.0053x0.5479 0.87 1 - 160 12 0.48 to #32 
35 Distance/Embankment, km 1E-06x2+0.0001x+0.004 0.94 0.1 - 160 25 0.25 to #30 
36 Fence, count 7E-07x2+3E-05x+0.002 0.97 1 - 400 21 0.92 to #26 
37 Distance/Fence, km -4E-05x2+0.002x+0.009 0.76 0.1 - 60 19 0.48 to #25 

  



   9 

The result suggests that a power curve best describes the 
influence of wind speed on punctuality. When wind speeds 
exceed 10 m/s punctuality is almost 2 % lower than average, 
and about 9 %-points lower when they exceed 23 m/s. This is 
a larger effect than found by Xia et al. (2013), who estimated 
that wind speeds of 23-26 m/s reduced punctuality by about 
3.3 % in the Netherlands.  

A linear function approximates the relationship between 
precipitation, measured as the sum of precipitation across the 
train stations passed by the train, and punctuality. A quarter 
of all trains accumulate at least 30 mm of precipitation, 
associated with a punctuality drop of 1.8 %-points compared 
to the average, and the drop increases about 2 %-points per 
100 mm. Xia et al. (2013) used a slightly different measure, 
but found mostly linear effects of a similar magnitude.  

The effect of snow depth on punctuality is best described by 
a logarithmic function fitted to the average snow depth, 
recorded at stations across the journey. While less than 6 % 
of the observations in our dataset have average snow depths 
larger than 1 cm, the magnitude of the effect, when it is 
present, is quite large: at an average of 5 cm the drop in 
punctuality is about 17.5 %-points. These effects are 
substantially larger than the estimates by Xia et al. (2013). 
The logarithmic function may suggest an increased 
preparedness and ability to deal with snow in the regions 
where large snow depths are often found, which decreases the 
harmful influence of snow.  

3.4. Timetable 

The results regarding timetable variables suggest that 
increasing margins benefits punctuality up to a point, after 
which it begins to decline. That point occurs at around 12 
s/km, or 25-30 % of the minimum run time, at which point 
punctuality is around 2 %-points higher than the average of 
92.17 %. These two different ways of measuring punctuality 
are very highly correlated with one another: the correlation 
coefficient is 0.91. This is well in line with earlier studies on 
margins (Palmqvist et al., 2017a). 

Similarly, increasing the weighted average distance (WAD) 
of margins raises punctuality up to a point. The highest 
punctuality, almost 1 %-point higher than average, can be 
seen when the WAD is around 0.60. This confirms earlier 
findings by the authors, and shows that the effect exists even 
when punctuality is measured at intermediate stops, rather 
than just at the end destination. 

The presence of negative margins in a timetable has a 
negative impact on punctuality, lowering it by on average 2.8 
%-points compared to when there are no negative margins 
present. This figure is slightly lower than what we have found 
in earlier research (Palmqvist et al., 2017a), but on the same 
order of magnitude.  

Overall, increasing average speeds of trains is linked with 
decreasing punctuality. Between average speeds of 60 and 

120 km/h, including stopping times, an exponential curve 
provides the best fit. There is a very notable decrease in 
punctuality around 120 km/h, as the airport trains have an 
average speed of 118 km/h and a punctuality which is 5 %-
points better than average, whereas the high-speed trains 
average 128 km/h (including stops) and 12 %-points lower 
punctuality than average. This makes for a clear break in the 
plot, and suggests that the speed is perhaps more of a proxy 
variable than the real issue.  

Plotting punctuality against the scheduled duration of 
journeys, without margins, the result is a linear decrease in 
punctuality of about 1.6 %-points per hour. The duration of 
the journey is very highly correlated to the distance expressed 
in kilometers, with a correlation coefficient of around 0.87. 
The average distance between stops also appears to affect 
punctuality in a mostly linear fashion, by about 1.3 %-point 
for every 10 km. These findings are largely in line with our 
expectations, and with the fact that long distance trains often 
perform significantly worse in terms of punctuality.  

3.5. Operations 

The results in Table 7 furthermore suggest that punctuality 
drops linearly with the number of interactions at stations and 
on line sections. For interactions on line sections, which are 
rare in our data, the drop is about 2.2 %-points per interaction. 
For interactions at stations, which are much more common, 
the decrease in punctuality is approximately 1 %-point per 
interaction. These findings largely confirm what we have 
found in earlier research (Palmqvist et al., 2017a), and with 
the research on congestion by Gorman (2009). 

The number of trains that arrive at a station during an hour is 
linked to punctuality in a linear manner. Punctuality increases 
slightly as the stations are handle more trains. At volumes of 
at least 20 trains per station and hour, the punctuality is about 
2.5 %-points higher than average. This is an interesting 
finding, as increasingly congested stations are often 
suggested as a problem for punctuality (Palmqvist et al., 
2017b). 

We find that vehicles that are used more often have a higher 
punctuality than those that are used less frequently, with a 
quadratic relationship between the two variables. At 125 000 
movements punctuality is about 0.5 %-point better than 
average, and at 300 000 it is 5 %-points higher. This is 
somewhat surprising, but suggests that operators prefer to use 
the more reliable vehicles for more intensive routes, and does 
a good job of keeping them in a working condition. One 
possibly confounding factor is that airport train vehicles 
seem, in our data, to be utilized much more heavily than other 
types of passenger trains, and the punctuality for these trains 
is very good.  

How the number of trains per day affects punctuality is best 
described using a quadratic function, but the effect is 
relatively small. The largest number of trains operating in a 
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day we consider is 110 000, which is associated with a 
punctuality drop of 1.2 %-points.  

Train numbers that are run more frequently are slightly more 
punctual than those that run less frequently. We find a linear 
relationship, with those running almost every day being about 
1.2 % more punctual than average. This is in line with the 
suggestion earlier, that punctuality is improved when 
vehicles are operated more frequently, or that more reliable 
vehicles are used to run the most important routes. 
Unfortunately, the risk of the variable working as a proxy for 
the kind of passenger train is also present, as airport trains 
have the most days run and the highest punctuality, followed 
by commuter trains, and so on for regional, long distance and 
high-speed trains.  

The single best indicator for punctuality is the distance 
traveled by a train. A linear function best fits our 
observational data, with a decline of about 3 %-points for 
every 100 km. The correlation coefficient with punctuality is 
-0.20, which is the highest in our findings.  

3.6. Infrastructure 

Finally, plotting the number of switches, tunnels and fences 
against punctuality, we find that they fit best to quadratic 
functions. Bridges, signals, level crossings, and cuttings 
show linear relationships to punctuality. Embankments fit 
best to a power function. Signals have the largest effects in 
terms of magnitude, being associated with punctuality drops 
of around 22 %-points at the most.  

The quadratic relationships we find between punctuality and 
the number of switches, suggests a potential of gaining 
disproportionately large punctuality benefits by limiting their 
number. Particularly in large stations, where the current 
numbers are large and even small gains in punctuality are 
highly valuable. 

When considering the distance between elements, the results 
are broadly similar across the different types of infrastructure, 
and the overall picture is that punctuality is better where the 
infrastructure is dense. An exception is for cuttings, where 
larger distances between them is associated with higher 
punctuality. Level crossings are another exception, where 
punctuality first improves as the distance between them rises 
to around 3 km, before it declines rapidly with increasing 
distances.  

4. CONCLUSIONS, DISCUSSION AND FUTURE RESEARCH 

In this paper, we have quantified how temperature, 
precipitation, snow depth and wind speed affect punctuality. 
Especially high and low temperatures can have large impacts 
on punctuality, and the effects are exponential. This is an 
important finding, which indicates that much more attention 
should be given to increasing the resilience of the railways 
with regards to heat, as the climate changes and temperatures 
rise. Overall, our findings with regards to weather are in line 

with what others have found, though the magnitude of the 
effect is larger than in the Netherlands, for instance.  

For timetabling, the highest punctuality is obtained when 
margins are around 25% of the minimum run time, or 12 
s/km, with a slight shift towards the end of the journey and 
no negative margins. Punctuality also improves slightly when 
the train numbers are run more frequently and the vehicles 
less frequently. Traffic volume does not appear to be a major 
concern: variations due to a higher number of trains per day 
are small, and punctuality is slightly higher at more busy 
stations and times. However, the number of interactions 
between trains should still be minimized, as they are shown 
to lower punctuality. Many of these variables can be affected 
directly by planners and managers at train operating 
companies and infrastructure managers, such that punctuality 
improves. Even simple measures, such as reducing the 
number of trains with negative margins, have large impacts 
on punctuality.  

Similar impacts are found with different types of 
infrastructure elements. Most infrastructure elements are 
highly correlated both with each other, and with the distance 
traveled, and for that reason it may be appropriate to construct 
a sort of infrastructure complexity index. The overall picture, 
however, is that a simple infrastructure with less components 
performs better. This, too, is something that planners can 
affect over time, as existing infrastructure can be modified, 
and new infrastructure can be designed in a manner that 
supports good punctuality.  

The method of conducting a series of t-tests and plotting the 
results was successful in illustrating the relationship between 
punctuality and the studied variables individually. It 
illuminates and quantifies impacts that are elusive when 
using other methods. However, more work needs to be done 
to disentangle the effects of many of these variables from 
each other. The number of infrastructure elements depends to 
a high degree on the distance traveled, which was already 
known to be correlated with punctuality. Dense infrastructure 
and stops are, on the other hand, associated with local trains 
traveling shorter distances at lower speeds with more margins 
and higher punctuality. The linear regression of all studied 
variables together in this paper was intended to handle the 
sometimes-significant covariation of different variables.  

We believe that one reason for the mediocre R2-value in this 
regression, compared to earlier ones, is that we study all 
passenger trains in the national network for one year whereas 
other studies have looked at a smaller subset of trains, on one 
or two selected lines or regions, during which the conditions 
have been adverse, or using a measure that is more tailored to 
only find the faults that are under consideration. What we 
have tried to do is much broader, and it is no surprise that the 
degree to which we can explain the variation is smaller, 
simply because the variation studied is much larger. We also 
expect that data on passenger volumes, more detailed dwell 
times, as well as headway times in both the timetable and in 
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realized traffic would help explain more of the variation in 
punctuality. 

It is our hope that this research can help both researchers and 
practitioners hone in on what can be done to improve 
punctuality. From improved heat-resilience of components, 
to better allocation of margins, more standardized train 
routes, and a simpler infrastructure with fewer components, 
there are many things that can be improved. The findings in 
this paper can also be used to assess the possible impacts of 
different measures, and to help prioritize between them.  
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