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ABSTRACT 

As an essential process in semiconductor manufacturing, 

Chemical Mechanical Planarization has been studied in 

recent decades and the material removal rate has been proved 

to be a critical performance indicator. Comparing with after-

process metrology, virtual metrology shows advantages in 

production time saving and quick response to the process 

control. This paper presents an enhanced material removal 

rate prediction algorithm based on an integrated model and 

data-driven method. The proposed approach combines the 

physical mechanism and the influence of nearest neighbors, 

and extracts relevant features. The features are then input to 

construct multiple regression models, which are integrated to 

obtain the final prognosis. This method was evaluated by the 

PHM 2016 Data Challenge data sets and the result obtained 

the best mean squared error score among competitors. 

1. INTRODUCTION 

Chemical Mechanical Planarization (CMP) has been widely 

applied in the semiconductor industry as a crucial wafer 

polishing process (Steigerwald, Murarka & Gutmann, 2008). 

In order to evaluate the performance of the CMP and employ 

the process control, the material removal rate (MRR) is 

derived as a performance indicator by measuring the layer 

thickness of the wafer after the process. In recent decades, 

achieving the goals of the advanced process control (APC) 

(Moyne, Castillo & Hurwitz, 2001), there have been two 

major control scenarios: lot-to-lot (L2L) control which only 

samples one or several workpieces from the lot for the 

inspections, and wafer-to-wafer (W2W) control which 

measures each workpiece to fulfill the control purpose. 

Compared with the L2L control, the W2W control is 

obtaining more attentions since it can reduce the variability 

of the wafer processing and assure the product quality. 

However, the W2W control needs gauging every wafer, 

which will increase the production cycle time significantly. 

Further, as an after-process measurement, the MRR 

calculation inevitably delays the control process and will 

degrade the APC performance.  

To overcome the aforementioned issues, the Virtual 

Metrology (VM) has been presented (Kang et al., 2009) to 

predict the metrology results by the state of the process. 

Plenty of approaches have been proposed to implement the 

VM for various semiconductor processes and the VM on 

CMP has been further investigated due to its physio-chemical 

complexity. The mechanism of the CMP process was studied 

first and various physical based models were derived to 

explain the relationship between the state variables and the 

final MRR. Generally, the removing mechanism in CMP can 

be described in particle-scale (Luo & Dornfeld, 2001), die-

scale (Stine et al., 1998) and wafer-scale (Hocheng, Tsai & 

Chen, 1997). Luo & Dornfeld (2003) reviewed these three 

models and investigated their characteristics respectively. In 

addition, the pad condition of CMP tool is essential in all 

three models and the MRR will decrease dramatically 

without proper pad conditioning. Tso & Ho (2007) studied 

factors which would influence the condition of the pad, and 

Yen & Chen (2010) further investigated the pad conditioning 

simulation and its relationship with the MRR. The physical 

model, however, is still difficult to describe the behavior of 

the equipment in practice since there exist unknown factors 

and ambient variables. Consequently, coefficients in the 

model have not been well determined. Therefore, currently 

VM on CMP is mainly employed by data-driven methods. 

By applying data-driven approaches, the VM can be realized 

as a regression task which predicts the metrology variables 

through a machine learning model. Both linear and non-linear 

regression techniques have been developed and applied in the 

VM field. Partial Least-square Regression (PLR) (Geladi & 

Kowalski, 1986) and lasso regression have been widely used 

as linear regression approaches and there have been research 

efforts applying PLR (Hirai & Kano, 2015) and lasso 

regression (Park & Kim, 2016) to estimate the performance 
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in semiconductor manufacturing. A variant of PLR was 

derived (Hirai, Hazama & Kano, 2014) to predict the MRR. 

On the other hand, Neural Network (NN) and Support Vector 

Regression (SVR) are regarded as two major non-linear VM 

technologies (Su et al., 2008). Lenz & Barak (2013) 

investigated the dielectric layer thickness prediction for the 

Chemical Vapor Deposition (CVD) by SVR. A semi-

supervised SVR was proposed to handle the label uncertainty 

in VM (Kang, Kim & Cho, 2016). Due to the complexity of 

the CMP process and unknown correlations between sensor 

data, the prediction has also attracted investigations using 

deep learning techniques. Recently, a deep belief network 

based approach was presented to deal with the MRR 

prediction (Wang, Gao & Yan, 2017). In addition to 

modeling techniques, there also exist two different modeling 

strategies: global modeling, which uses the entire dataset to 

construct a single global model, and local modeling, which 

only uses similar instances in the dataset to construct local 

models. Jebri et al. (2016) proposed that the local modeling, 

or Just-In-Time Learning (JITL) strategy, could resolve the 

bias issue associated with a global model, and obtain higher 

VM accuracy. Nevertheless, the local model relies heavily on 

the number of similar historical instances, and the 

performance will degrade if there are few similar instances 

available. Thus, the global model is still essential for most 

applications.  

The VM for CMP, however, is still challenging due to high 

data complexity and process dynamics. There are a large 

amount of variables measured during the production process 

so that the dimension of the model inputs is sincerely high. 

Consequently, the precision of the prediction would be 

impacted. Also, the individual wafer polishing is not 

independent. The previous polishing performance and the 

usage of replaceable components in the machine bring 

dynamic influence on the MRR prediction. Thus, these unmet 

needs on advanced feature extraction and selection along 

with enhanced modeling techniques are looking for further 

study.  

This paper proposes an enhanced VM approach for the 

prediction of the MRR based on an integrated data-driven 

model. In feature extraction, it not only considers the physical 

mechanism of the CMP process but also takes advantages of 

nearest wafers’ polishing results. In modeling, the prediction 

model is enhanced as well by combining outputs from each 

individual regression approach. The presented approach was 

evaluated by a public data set from the Prognostics and 

Health Management (PHM) Society 2016 Data Challenge 

and it showed promise since the result earned the top score. 

The remaining of the paper is organized as follows: Section 

2 explains the proposed approach for the MRR prediction. 

Section 3 goes through an implementation of the method on 

the data set provided by the competition committee. 

Following the evaluation results and discussions in Section 4, 

conclusions are included in Section 5. 

2. TECHNICAL APPROACH 

This section mainly discusses the proposed integrated 

prediction approach. An overview of the proposed method is 

introduced in Section 2.1. Following the overview, the details 

for each step are then presented. 

2.1. Methodology Overview 

There are four major steps in the proposed methodology, 

which is summarized in Figure 1. In step 1, features, which 

are highly correlated to the MRR, are extracted from the 

sensor measurements. A subset of the features is then selected 

in step 2 to reduce the dimension and the redundancy in the 

feature space. After constructing multiple regression models 

utilizing the feature subset in training data (step 3), a cross-

validation (CV) is employed, and the weights for multi-

model integration are calculated. For testing data sets, 

weighted averaging results will be generated to predict the 

MRR.  

2.2. Feature Extraction 

The feature extraction strategy illustrates that various 

features will be extracted in an exhaustive way from the 

measurements firstly, and then a subset of them is selected. 

Nevertheless, there needs a pre-processing step in advance 

due to the excessive sensor environment in semiconductor 

field.  

Like other tools in semiconductor manufacturing, there are 

hundreds of built-in sensors in the machine in CMP process. 

However, not all sensor measurements are able to be utilized 

in MRR prediction since they bring little impacts to the 

polishing. Thus, specific sensor variables, which are 

correlated to the mechanisms of the CMP treatment, need to 

be selected. Analysis of the physical models can provide 

useful insights into this physical process and can also reveal 

underlying physical features for finer modelling. 

Step 1: Feature Extraction

Physical Features
Removal Rate 

Time Lags

Usage Nearest 

Neighbors

Step 2: Feature Selection

T-test Out-of-bag Feature Importance

Step 3: Model Construction

SVR
Linear 

Regression

Tree 

Bagging

Step 4: Cross-validation & Weight Calculation (training)/

Weighted Averaging (testing)

KNN 

Regression

Persistent 

Model

 

Figure 1. Flow chart of the integrated prediction approach 
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Figure 2. CMP description 

The CMP machine tool and the operation are depicted in 

Figure 2. The tool contains a polishing pad which is attached 

to a rotating table, a rotating and translating wafer carrier, a 

rotating and translating dresser and a slurry dispenser (Jebri 

et al., 2016). The polishing is employed by both the relative 

rotation between the wafer and the pad, and the slurry 

containing the abrasives and the chemicals. Also, the pad 

needs conditioning by the dresser in order to keep its 

polishing property. During the polishing process, the 

performance of both the pad and the dresser is degrading and 

they will be replaced if needed. 

The most frequently used physical model for removal rate 

prediction is an empirical model based on Preston’s equation 

(Luo & Dornfeld, 2001), which is denoted in Eq. (1): 

𝐴𝑅𝑅 = 𝐾 ∙ 𝑃 ∙ 𝑉 (1) 

Where 𝐴𝑅𝑅 represents the average removal rate (ARR); P is 

the mean interface pressure; V is the relative velocity between 

the wafer and the pad table; K is the Preston constant. All 

other physical variables are combined into the constant K. 

However, the ARR will decrease dramatically without 

conditioning. Thus, the pad condition will be investigated 

first. 

The performance of the pad conditioning can be represented 

by Dressing Rate (Tso & Ho, 2007), which is denoted as Eq. 

(2): 

𝐷𝑟𝑒𝑠𝑠𝑖𝑛𝑔 𝑅𝑎𝑡𝑒 = 𝐾𝐷

𝑉𝐷

𝑅𝐴
𝜆𝑑0(

𝑃

𝐻𝑝

)1.5 (2) 

Where 𝐾𝐷  is the dressing coefficient; 𝑉𝐷  is the dressing 

speed; R, A, 𝜆  and 𝑑0  are geometric and material related 

information of the dresser; P is the applied load; 𝐻𝑃  is the 

hardness of the pad. Among these, the usage of the dresser is 

correlated to the geometric and the material related 

parameters. Thus, assuming that the dressing speed, the load 

and the hardness do not variate so much for each run, the 

Dressing Rate could be simplified as Eq. (3): 

𝐷𝑟𝑒𝑠𝑠𝑖𝑛𝑔 𝑅𝑎𝑡𝑒 = 𝐾𝐷𝑈𝐷 (3) 

Where 𝑈𝐷 is the usage of the dresser. Further, the influence 

of the Dressing Rate could be integrated in the MRR model. 

In this study, the particle-scale model (Luo & Dornfeld, 

2001) was selected, which can be described as Eq. (4): 

𝑀𝑅𝑅 = 𝑓(𝐹𝑠, 𝑃, 𝑉, 𝑈𝑃 , 𝑈𝐷) (4) 

Where 𝐹s is the slurry related feature; P is the pressure; V is 

the relative speed between the pad and the wafer; 𝑈𝑃 is the 

usage of the pad; 𝑈𝐷 is the usage of the dresser. On the basis 

of the physical findings in Eq. (4), various machine learning 

algorithms are adopted to model physical relationship 

between the MRR and relevant features. In this study, 

extracted physical features include the statistics (mean, 

standard deviation, range and area under curve) of each 

relevant physical variable. 

Besides the physical features, there are dynamic feature 

representations that are extracted. On one hand, since the 

CMP treatment is a continuous process, the feature of time 

lags treats the MRR as time series and it selects the MRR in 

the most recent past as features. In this paper, we use 𝑟𝑡−𝑖 

denoting the 𝑖-th MRR in the recent past. On the other hand, 

under the same recipe settings, all sensor measurements are 

expected to be steady regarding to different wafers except the 

usages of the consuming components such as the pad and the 

dresser. The wafers which share the same usage state might 

also own similar MRRs. Therefore, the usage nearest 

neighbor features are selected based on the proximity of 

consuming components’ usages. The Euclidian distance is 

implemented to determine the k nearest neighbors (KNN) for 

each training sample, and the MRR of the selected neighbors 

are used as input features (Jia, Jin, Buzza, Wang, & Lee, 

2016). 

2.3. Feature Selection 

Even though the number of sensor variables has been reduced 

by investigating the polishing mechanism, the dimension of 

the feature space is sincerely high. To reduce the redundancy 

in the features and mitigate overfitting, the feature selection 

is employed. In the feature selection step, the Student’s t-test 

(Walpole, Myers, Myers, & Ye, 1993) and the Out-Of-Bag 

(OOB) feature importance (Breiman, 1996) are mainly used 

as criteria to select useful features. Student’s t-test is also 

called the significant test for linear regression, it assumes the 

prediction error of the linear model is independent of the 

input features and is normally distributed (Walpole et al., 

1993). In this scenario, the significant relationship between 

the input features and the target variable can be evaluated 

through Student’s t-test. However, the assumption of normal 

distribution is not always valid in real applications. 

Therefore, we proposed to employ OOB feature importance 

as a supplemental criterion. The OOB feature importance is a 

tree bagging based method. It is obtained by permuting the 

value of each feature across all the training observations and 

then evaluating how much worse the prediction error 

becomes after the permutation. In this study, the Student’s t 

test for linear regression (LR) and OOB feature importance 
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for tree bagging are considered collectively to vote for the 

important features. 

2.4. Regression Model Construction and Integration 

The prediction models employed in this study involve the 

persistent model, KNN regression (Kramer, 2011), LR, tree 

bagging (Breiman, 1996), and Support Vector Regression 

(Basak, Pal, & Patranabis, 2007; Smola & Schölkopf, 2004). 

The persistent model treats the MRR as time series and 

predicts 𝑟𝑡  as 𝑟𝑡 = 𝑟𝑡−1 . The KNN regression averages the 

MRR of k nearest neighbors and these neighbors are 

determined by the usage neighbor features. On the other 

hand, the LR, SVR and tree bagging methods employ the 

selected feature subset in step 2 as inputs to train the models 

and then predict the MRR for testing observations. 

In the final step, the prediction results given by these models 

are averaged following the model integration strategy in 

(Parks, Wan, Wiener, & Liu, 2011). The weight for 

individual predictor is defined by the prediction error 

obtained in the CV. In this study, the Monte Carlo CV is 

applied, which means that the training dataset is randomly 

split into two sets – the training set and the validation set, for 

each CV test. The Monte Carlo method is preferred since it 

can evaluate the fluctuation of the prediction error by 

repeating the CV tests for many times. After the CV is 

finished, the prediction error for individual predictor is 

evaluated by Eq. (5): 

𝑒 = mean(𝝐) + 3 ∗ std(𝝐) (5) 

Where 𝝐 ∈ ℝ𝑵 represents the vector of error obtained in the 

validation tests, 𝑵  represents the times of CV tests and 𝑒 

denotes the upper bound of the prediction error. After CV, 

the weight for each model is calculated. In averaging, the 

model output which obtains smaller prediction error will be 

assigned higher weight. Therefore, the weight is derived in 

Eq. (6): 

𝐰 =
1/𝐞3 

sum(1/𝐞3)
  (6) 

Where 𝐞 = [𝑒𝑝𝑒𝑟𝑠𝑖𝑠 , 𝑒𝐿𝑅, 𝑒𝑆𝑉𝑅 , 𝑒𝐾𝑁𝑁, 𝑒𝑡𝑟𝑒𝑒𝑏𝑎𝑔𝑔𝑒𝑟]  represents 

the vector of prediction error and 𝐰 denotes the weighting 

vector for the individual prediction model. 

3. CASE STUDY 

In this research, the proposed method was evaluated by a 

CMP public data set provided by the PHM Data Challenge 

2016 (PHM Society, 2016). In this Data Challenge, attendees 

competed with others predicting the MRR of the wafer 

through the data collected from a CMP machine. The data 

were briefly introduced in Section 3.1 and the approach 

implementation was employed in Section 3.2 respectively.  

3.1. Data Description 

The Data Challenge provided three different data sets: 

training data, testing data and validation data. All three data 

sets included operating parameters and components usage 

conditions measured from the machine during the CMP 

process. As shown in Table 1, each row of the table represents 

a variable of at any given time. Besides the measurements, 

the metrology information was given as an average MRR for 

each wafer in the training data sets. Each MRR had its 

corresponding wafer identification number and the stage 

type. On the contrary, the MRR was blinded in testing and 

validation data sets.  

There were 1981 MRR records in the training data sets while 

424 wafers were required to predict their metrology variables 

in the testing and validation data sets respectively. The 

evaluation of proposed algorithms was based on the mean 

squared error (MSE) accuracy and the understanding of the 

CMP mechanism. 

3.2. Approach Implementation 

Based on the provided datasets in the Data Challenge, the 

method in Figure 1 was implemented on 3 different recipes, 

which were identified by the Stage and the Chamber. The 

MRR of the training data is plotted in Figure 3, which 

indicates that the MRR for these 3 recipes, named Cond1, 

Cond2 and Cond3, falls in different ranges. Therefore, we 

proposed to predict the MRR separately. The implementation 

details based on multiple recipes are summarized in Table 2. 

As discussed above, the features for each recipe were 

extracted and selected separately. It was also noted that most 

of the wafers went through three chambers in the whole CMP 

process. Preliminary investigation for each recipe revealed 

that the processing time of Chamber 4 or 1 was 

approximately equal to the time of Chamber 5&6 or 2&3 for 

Cond1 and Cond2 & 3 respectively. Therefore, the physical 

features from different chambers were extracted separately as 

listed in Table 3. The extracted features were then selected on 

the basis of Student’s t-test and OOB criteria. Taking the 

selection results for Cond3, as shown in Figure 4, the features 

with OOB value and t-stat value beyond the specified 

threshold were identified as important features. It was also 

worth noting that the selection result in Figure 4 was obtained 

from one CV test and the selected features could be different 

if the training data were split differently. Therefore, in order 

to exclude the bias introduced by random splits of the training 

dataset, the feature selection strategy was implemented 

repeatedly for all CV tests. Only the highly voted features 

were preserved to predict the testing samples. Regarding the 

CV, the prediction error 𝑒 obtained after 20 times CV tests 

was employed to evaluate the performance of individual 

predictor, since we found that the prediction error tended to 

be stable after 20 times tests. 
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Variable Name Description 

Timestamp Seconds 

Wafer_ID 
Number representing ID of 

wafer 

Stage 
A or B representing a different 

type of processing stage 

Chamber 
Chamber in machine for wafer 

processing 

Usage_Of_Backing_Film 
A usage measure of polish-

pad backing film 

Usage_Of_Dresser A usage measure of dresser 

Usage_Of_Polishing_Tab

le 

A usage measure of polishing 

table 

Usage_Of_Dresser_Table 
A usage measure of dresser 

table 

Pressurized_Chamber_Pr

essure 
Chamber pressure 

Main_Outer_Air_Bag_Pr

essure 

Pressure related to wafer 

placement 

Center_Air_Bag_Pressure 
Pressure related to wafer 

placement 

Retrainer_Ring_Pressure 
Pressure related to wafer 

placement 

Ripple_Air_Bag_Pressure 
Pressure related to wafer 

placement 

Usage_Of_Membrane 
A usage measure of polishing 

membrane 

Usage_Of_Pressurized_S

heet 

A usage measure of wafer 

carrier flexible sheet 

Slurry_Flow_Line_A Flow rate of slurry type A 

Slurry_Flow_Line_B Flow rate of slurry type B 

Slurry_Flow_Line_C Flow rate of slurry type C 

Wafer_Rotation Rotation rate of wafer 

Stage_Rotation Rotation rate of stage 

Head_Rotation Rotation rate of head 

Dressing_Water_Status Status of dressing water 

Edge_Air_Bag_Pressure Pressure of bag on edge 

Table 1. Measurements description 

The CV results for the proposed methods are tabulated in 

Table 4. The mean and standard deviation of prediction MSE 

demonstrates that the integrated model tends to outperform 

individual predictors for all the recipes. It obtains the lowest 

mean value of MSE compared with other approaches while 

the standard deviation shows slightly less performance than 

tree bagging method. By weighted averaging, the integrated 

model improves the bias issue of the prediction. Also, it 

demonstrates the robustness of the integrated model in 

respect of various recipes. 

Among the five prediction models adopted, LR is able to give 

rather satisfactory prediction results if the model is tuned 

properly. However, finding important features for the LR is 

not trivial since the performance of the linear model can be 

seriously affected by the input features. In comparison, the 

tree bagging method is more robust than the linear model and 

it is less affected by the input features. The major 

disadvantage of tree bagging method involves that it may 

require more computing resources and the training of the 

bagged trees can be very slow if the model parameters are not 

tuned properly. SVR is a very good candidate to overcome 

the shortcomings of the linear models and the tree bagging 

method (Murphy, 2012). It is robust and efficient, and more 

importantly, it can give rather satisfactory results for all the 

recipes. 

 
Figure 3. MRR for training data 

In contrast, the persistent model and KNN regression are less 

accurate. Even though the prediction accuracy of these two 

models strongly indicates that the removal rate has the 

apparent property of time series, it can be also greatly 

affected by the physical variables. The comparison of the 

persistent model and KNN regression also implies that the 

time series property of removal rate is stronger than the 

affections of usage variables, since the persistent model tends 

to outperform the KNN regression for all the recipes. 

4. RESULTS AND DISCUSSIONS 

In this section, the proposed approach was implemented on 

the testing data sets. The MRR prediction results were 

obtained from each individual regression model firstly. And 

the final prediction was employed by weighted averaging, in 

which the weights were well determined through the CV on 

the training data.   

Step Description 

Step1:  -Train the prediction models for Cond1; 

-Extract testing features for Cond1; 

-Predict the testing MRR for Cond1 following the 

procedure in Figure 1; 

Step 2:  -Train the prediction models for Cond2; 

-Extract testing features for Cond2; 

-Predict the testing MRR for Cond2; 

Step 3: -Train the prediction models for Cond3; 

-Extract testing features for Cond3; 

-Predict the testing MRR for Cond3; 

Step 4: -Sort the predicted MRR and output the results 

Table 2. Pseudo-code for the method implementation 
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List of features Feature Id 

Removal Rate Time 

Lags:  
11 time lags 1~11 

Removal Rate from 

neighbors:  

10 nearest 

neighbors 
12~21 

Polishing time: 

Chamber = 4 or 1 22 

Chamber = {5,6} 

or {2,3} 
23 

Mean, std, decreasing 

rate of usage variables: 

Chamber = 4 or 1 
24~29, 

36~41, 48~53 

Chamber = {5,6} 

or {2,3} 

30~35, 

42~47, 54~59 

Mean, std, area under 

curve of pressure 

variables 

Chamber = 4 or 1 
60~65, 

72~77, 84~89 

Chamber = {5,6} 

or {2,3} 

66~71, 

78~83, 90~95 

Mean, std, area under 

curve of flow rate 

variables 

Chamber = 4 or 1 

96~99, 

104~107, 

112~115 

Chamber = {5,6} 

or {2,3} 

100~103, 

108~111, 

116~119 

Mean of rotating speed 

variables 

Chamber = 4 or 1 120~122 

Chamber = {5,6} 

or {2,3} 
123~125 

Table 3. List of extracted features 

A comparison between the predicted results and the ground 

truth for the testing data sets is depicted in Figure 5. The 

predicted results are denoted as circle while the real MRRs 

are represented as cross. It is revealed that both the predicted 

results and the ground truth are close to each other for all 3 

recipes, which validate the prediction capability of the 

proposed approach. Also, compared with Cond3, Cond1 and 

Cond2 represent higher prediction accuracy. 

To quantify the prediction performance, a summary of MSE 

for both the integrated model and each individual model is 

shown in Table 5. Since the approaches applied in individual 

models have been studied for years achieving the VM in 

semiconductor manufacturing, we can also regard them as 

baseline methods and benchmark with the integrated model. 

It is validated that the integrated model also obtains the best 

prediction performance for the testing data sets. The 

integration is able to achieve higher prediction accuracy than 

other conventional approaches. In addition, compared with 

the MSE from the CV for the training data sets, the prediction 

capability for each model does not vary significantly. This 

consistency not only reveals that the proposed method keeps 

good generalization but also indicates that the Monte Carlo 

CV can well estimate the performance of the model on the 

testing data sets which have not been used. Further, the 

proposed method was compared with that applied deep belief 

networks (Wang, Gao & Yan, 2017). Even going through 

deep learning architecture, the model performs less than the 

proposed approach.  

The MSE on testing data sets were also compared and ranked 

for all the Data Challenge competitors. There were 24 teams 

that attended the competition and the MSE results for top 5 

teams are described in Table 6. The proposed approach is 

verified to outperform others in the Data Challenge as well. 

 

Figure 4. Feature selection for Cond3 on the basis of OOB 

feature importance (a) and Student’s t test (b) 

5. CONCLUSIONS 

This paper proposed an enhanced VM approach on CMP 

process. The influence of nearest neighbors, along with the 

impacts learned by the physical model, were utilized as 

features which were correlated to the MRR. And the 

weighted averaging of all outputs from multiple regression 

models was derived as the final predictions. The algorithm 

resulted in the most accurate prediction result for the PHM 

2016 Data Challenge, which highlighted the effective 

application for VM. The study advances the VM in 

semiconductor manufacturing by two contributions: 1 In 

feature extraction, nearest neighbor related features are added 

so that it is able to capture detailed dynamic behaviors during 

the process. 2 In modeling, the weighted averaging takes 

advantages of all individual regression model hence 

improves the prediction accuracy. 

 

Figure 5. MRR prediction on testing data 
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Persistent Model 

KNN 

Regression 
SVR 

Linear 

Regression 
Tree Bagging Integrated Model 

Mean Std Mean Std Mean Std Mean Std Mean Std Mean Std 

Cond1 7.55 1.27 8.78 5.43 5.54 1.30 5.77 1.10 5.65 0.33 5.43 0.84 

Cond2 11.4 1.36 15.22 2.03 7.43 1.12 10.95 1.15 8.32 1.17 7.33 0.94 

Cond3 5.62 1.06 7.55 0.93 5.05 0.81 5.00 0.92 5.32 0.88 4.91 0.83 

Overall 8.78 0.92 11.21 1.29 6.23 0.85 7.76 0.91 6.48 0.68 6.18 0.77 

Table 4. MSE for different prediction models after 20 CV tests (Cond1: Stage = A, Chamber = {4,5,6}; Cond2: Stage = B, 

Chamber = {4,5,6}; Cond3: Stage = A, Chamber = {1,2,3}) 

Model MSE 

Integrated Model 7.07 

Persistent Model 8.23 

KNN Regression 9.60 

SVR 7.44 

Linear Regression 7.32 

Tree Bagging 7.22 

Deep Belief Networks 7.29 

Table 5. MSE from each approach on testing data 

Team ranking MSE 

NO. 1 7.07 

NO. 2 7.4 

NO. 2 7.4 

NO. 2 7.4 

NO. 5 7.5 

Table 6. MSE for top 5 teams on testing data 

There are several refinements of the method that can be 

employed in the future. In feature extraction step, only a 

summary of statistics is extracted from the sensor 

measurements, which necessitates advanced techniques 

mining more accurate patterns in the data and capturing 

unique characteristics for each variable. Additionally, the 

trained models need updates periodically including the 

parameters of the model and the corresponding weights in 

order to be adapt to the changing settings and recipes in 

online monitoring and prediction. Also, there exists space 

enhancing the approach by fusing the physical representation 

and the data-driven model. Pillai et al. (2016) have proposed 

a hybrid method predicting the turbine blade failure. Finally, 

the proposed method is expected to obtain further validations 

by other data sets.  
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