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ABSTRACT

Adaptive training of a vibration-based anomaly detector for
wind turbine condition monitoring system (CMS) is carried
out to achieve high-performance detection from the early
stages of monitoring. Machine learning-based wind turbine
CMSs are required to collect large-scale data to yield reli-
able predictions. Existing studies in this area have postulated
that both data for training a monitoring system and those dur-
ing the operation of the system are obtained from identical
devices. In addition, constant monitoring of data is desir-
able, but in practice, the data can be observed periodically
(e.g., several tens of seconds of data are observed every two
hours). In this case, collecting sufficient data is time con-
suming, making it difficult to conduct accurate predictions at
the early stage of the CMS operation. To address this prob-
lem, a small amount of vibration data observed at a target
wind turbine is utilized to adapt the anomaly detector that
is trained on relatively large-scale vibration signals obtained
from other wind turbines. In the present study, maximum a
posteriori (MAP) adaptation is applied to a Gaussian mix-
ture model (GMM)-based anomaly detector. Experimental
comparisons using vibration data from the gearbox in the ex-
perimental environment and those used in the wind turbine
demonstrated that MAP-based GMM adaptation yielded an
improvement in anomaly detection accuracy even when only
a small amount of data is observed at the target gearbox.

1. INTRODUCTION

An unexpected arrest of massive infrastructures of renewable
energy sources such as wind turbines inflicts enormous dam-
ages on society. It is important to reduce downtime of a whole
plant by detecting failures of individual machinery at their
presage stages such that maintenance can be carried out in a
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timely manner. Condition monitoring system (CMS) plays
an important role in establishing such condition-based main-
tenance. Therefore, the development of accurate anomaly or
fault detection methods that utilize machine learning tech-
nologies is required to provide autonomous online CMSs.

Many attempts have been made to employ machine learning
technologies in failure diagnosis or anomaly detection of ro-
tating machinery. Most techniques have been developed un-
der the assumption that the vibration signals observed from
the devices follow a single Gaussian distribution (Stander,
2002; Bartkowiak & Zimroz, 2011). In contrast, Gaussian
mixture models (GMMs) are used to represent distributions
of the vibration signals for anomaly detection of wind turbine
components (Ogata & Murakawa, 2016). In actual wind tur-
bines, the vibration data of the components have a wide vari-
ety of characteristics even when collected in normal (healthy)
conditions due to the various operating states of components
and environmental conditions. The effect of such variation is
successfully modeled by using GMMs (Ogata & Murakawa,
2016).

An alternative failure diagnosis approach using machine
learning has been made to predict the remaining useful life
(RUL) of machinery. RUL prediction has been formulated us-
ing a regression model, which predicts an RUL directly from
the feature parameters (Gebraeel & Lawley, 2008; Guclu, Yil-
boga, Eker, Camci, & Jennions, 2010; Wang, 2012; Deutsch
& He, 2016), and a state transition model, in which the state
transits from a normal state to an abnormal state (Camci &
Chinnam, 2010; Kim, Tan, Mathew, & Choi, 2012; Medjaher,
Tobon-Mejia, & Zerhouni, 2012; Liu, Zuo, & Zhang, 2014).
Ideal RUL estimation can specify the status of the machin-
ery or the time to breakdown, making it possible to provide
maintenance appropriate to the machinery’s situation. Rotat-
ing machinery, however, has a large variety of anomalies. It
is inherently difficult to accurately predict RULs for unex-
pected, unknown, or abnormal situations, indicating a need
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for large-scale data. In addition, a few failures can be ob-
served in a massive power-generating system, making big-
data collection unrealistic. We therefore focus on methods
that do not require anomaly data.

Machine learning-based anomaly detection requires data col-
lection to train the detector. In this case, both the development
and operation of monitoring systems being made for the indi-
vidual devices indicate a high accuracy of anomaly detection.
Existing anomaly detection systems including the one using
GMM practically have been assumed to be constructed for
each device. However, since such massive equipment is com-
posed of an enormous number of devices, the operational cost
of vibration sensors cannot be negligible. Current anomaly
detection systems take a practical approach in which the vi-
bration data are not constantly recorded but periodically, e.g.,
every few hours. It requires a long time to collect enough data
to achieve a higher performance in detection systems for the
individual devices. In this work, a method to transfer an ex-
isting anomaly detector to another device with similar charac-
teristics is introduced to boost the accuracy at an earlier stage
of the CMS operation.

We assume that both types of gearboxes and their places to be
installed are different among the training and run-time stages
in the anomaly detector, and attempt to adaptively refine the
existing GMM-based anomaly detector using small amounts
of data obtained in run-time. Specifically, maximum a pos-
teriori (MAP) adaptation (Lee & Gauvain, 1993), which has
been effective in adaptive training for GMM, is applied. The
knowledge obtained from the present work could be useful in
the efficient operation (i.e., reduction in operational cost) of
robust CMS against real environment situations.

The rest of the present paper is organized as follows. Sec-
tion 2 briefly reviews the anomaly detection method using
GMM. Section 3 describes the adaptive training method used
for GMM-based anomaly detectors. Section 4 investigates
the effectiveness of adaptive training of the anomaly detec-
tor using the vibration signals obtained from the gearboxes.
Finally, a summary is presented in Section 5.

2. GMM-BASED ANOMALY DETECTION SYSTEM

Figure 1 illustrates an overview of the anomaly detection sys-
tem used for condition monitoring of a rotary device (Ogata
& Murakawa, 2016). For training a GMM-based anomaly
detector, feature vectors are extracted from vibration signals
collected under the condition that the device is operating nor-
mally. GMMs are then trained on such a vector space to con-
struct a “normal status” model. At a run-time stage, input
vibration signals are transformed into feature vectors in the
same manner as those in the training phase. A likelihood of
the input vector for the normal status model is then calcu-
lated to measure the anomaly of the device operating. In this
case, lower likelihoods indicate more abnormal situations of

the device. Thresholding the likelihood is carried out to judge
whether the target device is normally or abnormally operat-
ing.

Section 2.1 describes feature extraction, in which local au-
tocorrelations on time-frequency patterns are extracted, and
Sect. 2.2 describes a method of developing a GMM-based
anomaly detection system and an algorithm for detecting
anomaly from the input signals.

2.1. Feature extraction method for rotary devices

This subsection describes a method of extracting features
from vibration signals for anomaly detection. In CMS, fea-
ture representations for a device’s health status can affect the
performance in anomaly detection. Other attributes such as
temperature can be combined with the vibration-derived fea-
tures to improve the accuracy. It, however, should be noted
that detail investigation on effective feature representations is
not the focus of this work.

2.1.1. Time series analysis using sliding window

Sliding windows have been employed in analyzing varying
signals with a trade–off between temporal and frequency res-
olution. First, assume that time series data with its length of
T are given as:

D =
{
ξ(1), ξ(2), · · · , ξ(T )

}
.

Then, w-dimensional vectors are extracted from the original
time series D using the sliding window with the size of w as:

X1 = (ξ(1), ξ(2), · · · , ξ(w)),

X2 = (ξ(2), ξ(3), · · · , ξ(w+1)),

· · ·

Xi = (ξ(i), ξ(i+1), · · · , ξ(w+i−1)),

· · ·

where w is determined considering the aforementioned trade
off. A Hamming window is applied to a sub sequence Xt.
Windowed sub sequences are then taken as the inputs to the
subsequent feature extraction, where temporal units of indi-
vidual sub sequences are referred to as “frames.”

2.1.2. Fourier local autocorrelation (FLAC)

The time-frequency feature representations are calculated
from vibration signals using Fourier local autocorrelation
(FLAC) (Ye, Kobayashi, & Higuchi, 2010a). FLAC has been
shown to be effective in analyzing not only acoustic sig-
nals (Ye et al., 2010b, 2012) but also vibration signals (Ogata
& Murakawa, 2016). FLAC is aimed at extracting dynamic
transition information on the time-frequency domain and is
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Figure 1. Schematic diagram of anomaly detection

Figure 2. Autocorrelation patterns in FLAC feature extraction

obtained by calculating the local autocorrelation for individ-
ual time-frequency bins.

In FLAC processing, a series of vibration signals (i.e., the
blocked sequence yielded in Sect. 2.1.1) is first transformed
to a spectrogram with a short-time Fourier transform. The
complex spectrogram f(r) at a time-frequency bin r = (t, v)
develops the local autocorrelation function utilizing the com-
plex values as:

xt,v(a) = f∗(r)f(r + a), (1)

where a denotes a displacement vector that represents local
neighborhoods and f∗ denotes the complex conjugate of f .
Figure 2 illustrates the combination pattern of r and r + a.
In the present study, the displacement vector a is limited to
a 2 × 2 region on the time-frequency plane. In addition,
five masking patterns described in Fig. 2 are applied to indi-
vidual time-frequency bins, expanding each component to a
five-dimensional vector. For each frame, the five-dimensional
parameters are concatenated across all time-frequency com-
ponents, yielding high-dimensional vectors. Mel-filterbank
analysis is conducted before FLAC extraction to reduce the
dimensionality of resulting features. Since local autocorre-
lation is calculated directly from complex values, the result-
ing features take dynamics of magnitudes as well as those of
phases into account, yielding robustness against phase shift.

2.1.3. Normalization and dimensionality reduction

The difference in scales amongst individual dimensions is de-
creased to make anomaly detection systems more reliable. In
the present study, two scale normalization methods were em-
ployed as follows:

x̃d
t =

xd
t − µd

σd
(2)

x̃d
t =

xd
t − vd,min

vd,max − vd,min
(3)

where xd
t denotes the d-th component of a feature vector; x̃d

t

denotes the corresponding scaled component; µd and σd de-
note the mean and standard deviation for d-th components,
respectively; and vd,min and vd,max denote the minimum and
maximum value for d-th components. The former (in Eq. 2)
scales the components {xd

t } such that the mean and variance
of scaled components {x̃d

t } would take zero and one, respec-
tively. The latter (in Eq. 3) scales {xd

t } such that the mini-
mum and maximum values of {x̃d

t } would take zero and one,
respectively. Hereafter, the latter method is focused on be-
cause the better accuracy was obtained in the preliminary ex-
periment.

In addition, the dimensionality of the feature vector is re-
duced with principal component analysis (PCA) (Wold, Es-
bensen, & Geladi, 1987; Jolliffe, 2002) because the dimen-
sionality of FLAC features are high to represent the data dis-
tribution using GMMs. The dimensionality-reduced vectors
are taken as the inputs for the GMM-based anomaly detector.

2.2. Anomaly detection using GMMs

Most existing techniques for machine learning-based failure
diagnosis have exploited single Gaussian distributions to rep-
resent vibration signals obtained from rotary devices. The
distribution of data observed, however, varies due to the dif-
ference in weather conditions even when the device runs un-
der the normal status. An attempt, therefore, is made to em-
ploy a GMM for modeling the normal status of the device.
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The probability density function of GMM is represented as:

p(xt|θ) =
K∑

k=1

πkN (xt;µk,Σk), (4)

where xt denotes a feature vector for partial time series; K
denotes the number of Gaussians; θ = {πk,µk,Σk}Kk=1 de-
notes a parameter set of a GMM; πk, µk, and Σk denote
the mixture weight, mean vector, and full covariance ma-
trix for the k-th component, respectively; and N (xt;µk,Σk)
denotes k-th Gaussian distribution. The parameter set θ
is estimated using an expectation-maximization (EM) algo-
rithm (Dempster, Laird, & Rubin, 1977) on large-scale data
of the devices operating normally.

An anomaly score of the input xt is defined using a logarith-
mic likelihood as:

a(xt) = − log p(xt|θ) (5)

This negative logarithmic likelihood of the normal model
takes lower values for the inputs with the normal status and
higher values for the abnormal inputs. In this system, the
input is regarded as the abnormal status when the anomaly
score a(xt) exceeds a predefined threshold.

3. ADAPTIVE TRAINING OF GMM-BASED ANOMALY
DETECTOR

The present study provides a technique to transfer an existing
anomaly detector to other similar devices. A mismatch be-
tween the vibration data used in developing a type of general-
purpose anomaly detector and those observed at run-time
can induce the errors in detection. To suppress the effect of
such a mismatch, an attempt is made to adapt a GMM-based
anomaly detector trained on relatively large-scale data, using
a small amount of data obtained from the target device. In
the present study, maximum a posteriori (MAP) adaptation is
employed to exploit prior information obtained from the other
device. This approach makes it possible to boost the accuracy
of detecting anomaly even at an early stage of monitoring.

3.1. MAP adaptation

MAP adaptation has been frequently applied to GMM-based
prediction systems for reducing mismatches in domains be-
tween the development and run-time data. For example,
in automatic speech recognition, MAP adaptation has been
shown to be effective in compensating the effect of the dif-
ference in speakers on the accuracy of GMM/HMM-based
acoustic models (Lee, Juang, & Lin, 1991; Gauvain & Lee,
1994).

In MAP adaptation, a new parameter is estimated so as to
maximize p(θ|{xt}), which is the posterior probability of
the data observed during run-time being generated from the
model. In the present study, only the mean vector out of the

GMM parameters is updated due to a small amount of adap-
tation data. The mean vector of the k-th Gaussian compo-
nent is estimated into µ̂k by weighted averaging of a mean
of the pre-trained model µ(0)

k and a mean calculated on data
observed {xt} as:

µ̂MAP
k =

τkµ
(0)
k +

∑
t p(k|xt)xt

τk +
∑

t p(k|xt)
, (6)

where µ
(0)
k denotes a mean vector of the k-th component of

the pre-trained normal status GMM; τk denotes a contribu-
tion weight for the pre-trained model; xt denotes an input ob-
served during run-time; and p(k|xt) denotes a posterior prob-
ability of xt being generated from the k-th component. MAP
adaptation explicitly exploits prior information, which are ac-
cumulated in the other devices in the present study, through
the contribution weight τk. The use of statistics on prior in-
formation (i.e., τkµ

(0)
k in Eq. 6), can contribute to the im-

provement in robustness of the parameter estimates against
the small size of data.

3.2. ML training

Compared to MAP adaptation, a normal status GMM is
trained on data collected from only the target device (i.e.,
without any prior information obtained from other devices) in
maximum likelihood (ML) manner. Here, ML estimates are
obtained such that the likelihood p({xt}|θ) would be max-
imized. The ML estimate of the mean vector is represented
as:

µ̂ML
k =

∑
t p(k|xt)xt∑
t p(k|xt)

. (7)

In this case, a small amount of data obtained during run-time
implies lower reliability of the posterior probability p(k|xt),
indicating that large-scale data are required during training.

4. EXPERIMENTS

Experimental comparisons using vibration signals collected
from different gearboxes were carried out to validate the im-
pact of adapting an existing GMM-based anomaly detector to
vibration signals obtained from a “target” gearbox. In order
to demonstrate an advantage of MAP adaptation using prior
information from other similar devices, the two anomaly de-
tection systems were evaluated as follows:

• ML-train : a system trained on data obtained from only
the target device in maximum likelihood manner.

• MAP-adapt : a system in which a prior model is adapted
to data obtained from the target device using MAP adap-
tation.

Section 4.1 describes the data sets used. Section 4.2 describes
the criterion for evaluating the accuracy of vibration-based
anomaly detectors. In Sections 4.3 and 4.4, the accuracy of
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an anomaly detector developed on the basis of ML training
and that using MAP adaptation were evaluated for various
lengths of training/adaptation data to clarify the effectiveness
of MAP adaptation at an early stage of collecting data.

4.1. Vibration materials

Two types of vibration data were used; NREL data, which
were recorded in the experimental environment, and HSG
data, which were obtained from the actual wind turbines. In
the present experiment, NREL data were used for develop-
ment of a prior model and HSG data were used for adaptation
and validation. In addition, these data were sampled at dif-
ferent sampling rates. The data with the higher sampling rate
were down-sampled to the lower sampling rate.

4.1.1. NREL dataset

The National Renewable Energy Laboratory (NREL) has pro-
vided the “wind turbine gearbox condition monitoring vibra-
tion analysis benchmarking datasets” (Sheng, 2014) for de-
veloping novel technologies on the diagnosis analysis of ro-
tary devices for wind turbine generator systems. Vibration
signals were collected in an NREL dynamometer test facility
(DTF) under two conditions; a normal operation and an ab-
normal operation (induced by oil-loss). The turbine tested is
a three-bladed, upwind turbine with a rated power of 750 kW.
The turbine generator operates at 1800 rpm and 1200 rpm.
Eight accelerometers were mounted on the bottom (i.e., six
o’clock position) of the ring gear radial to obtain vibration
signals in the normal and abnormal status. The vibration data
were sampled at 40 kHz. The data was assigned either a
“healthy” or “damaged” status label. Each class includes ten
files, each of which contains ten seconds of vibration signals.

4.1.2. High speed gear (HSG) dataset

“High speed gear (HSG) dataset” was measured
by Eric Bechhoefer and provided through data-
acoustics.com (Bechhoefer, 2014). Vibration signals were
collected under three conditions; one abnormal condition in
which the device was stopped one week after a failure on a
pinion gear was found, and two normal conditions in which
no known failures were found. The target wind turbine is a
three-bladed, upwind turbine with a rated power of 3 MW.
The data were sampled at 97.656 kHz. An accelerometer
was installed to sense the signals. The data were assigned
“case1,” “case2,” and “case3” labels. The “case1” data were
collected under the abnormal condition, and the others were
obtained under the normal conditions. The “case1,” “case2,”
and “case3” data included eleven, seven and six files, respec-
tively. Each file contained six seconds of vibration signals.

Figure 3. ROC curves yielded from anomaly detection sys-
tems with and without MAP adaptation to calculate AUC val-
ues. This figure was drawn for the case in which the number
of Gaussians was 512 and dimensionality of feature vectors
was reduced to two using PCA. Numbers in legend express
best AUC values for individual systems.

Table 1. Data set used and their lengths

data length [frame]
data set normal abnormal

training NREL 59892 0
adaptation HSG 4130 (case2) 0
validation HSG 3540 (case3) 6490 (case1)

4.2. Evaluation criterion

The anomaly detection system developed judges an input to
be an abnormal status if the anomaly score described in Eq. 5
exceeds the predefined threshold. In this case, the accuracy
of the system has a trade-off between the false positive rate,
which represents a ratio of misjudging abnormal data to be
normal status, and false negative rate, which represents a ra-
tio of misjudging normal data to be abnormal status. To con-
sider such trade-off in evaluation, receiver operating charac-
teristic (ROC) curves are exploited (Lusted, 1971; Goode-
nough, Rossmann, & Lusted, 1974; Metz, 1978). Figure 3
shows an example of ROC curves. The horizontal and verti-
cal axes are the false positive and false negative rate, respec-
tively. Since the purpose of anomaly detection is to reduce
both the false positive and false negative rate, the area under
the curve (AUC) (Hanley & Mcneil, 1982) should be small to
achieve better accuracy in anomaly detection.

4.3. Experimental setup

Table 1 lists the size of data used for training, adaptation,
and validation. HSG data, which were originally sampled at
97.656 kHz, were down-sampled to 40 kHz to match the sam-
pling rates of two datasets. NREL data with the “healthy”
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status label were used for developing the prior GMM and
PCA projection matrix. In the present study, HSG data were
considered to be vibration signals from the target gearbox
and used during adaptation and validation. Specifically, the
“case2” normal status data from HSG data were used to es-
timate the GMM parameters in maximum likelihood scheme
or update the prior GMM parameters using MAP adaptation.
The “case1” abnormal status data and “case3” normal status
data were used for testing. The “case2” data included 7 out
of 13 files. The present experiment investigates the AUCs as
a function of adaptation data sizes (one file to seven files) to
demonstrate that MAP adaptation performs better than ML
training, particularly at the earlier stage of collecting data.

Here, anomaly scores were calculated as described in Eq. 5
and thresholded frame-by-frame to draw ROC curves and cal-
culate AUCs for all the validation data. In addition, tuning pa-
rameters in the system developed were determined from the
preliminary experiments. The sliding window length used
was 0.1s (i.e., w was 4000 samples); the number of mel-
filterbanks was 15, yielding a 75-dimensional (15× 5) FLAC
vector and reducing the dimensionality into two using PCA
for both ML training and MAP adaptation; τk in Eq. 6 was
set to four; and the number of Gaussians in MAP adaptation
and ML training were respectively set to 512 and 64. In MAP
adaptation, the number of Gaussian components in a prior
GMM can be large because the prior GMM to be adapted was
trained on large-scale data while in ML training, all the GMM
parameters were trained on small amount of data. This is the
reason why the optimal number of Gaussians varies between
MAP adaptation and ML training.

4.4. Experimental results

Figure 4 and Table 2 show the AUC values calculated from
two anomaly detection systems (i.e., ML-train and MAP-
adapt) as a function of data lengths (i.e., one file to seven
files). This result suggests that both ML training and MAP
adaptation make it possible to improve the accuracy of de-
tecting anomalies as an increase in data lengths. In this case,
MAP adaptation works much better than ML training, espe-
cially when only a small amount of data is available (i.e., 6,
12, · · · , 30 sec). For example, more than 83% and 73% of
AUCs were reduced when using MAP adaptation instead of
ML training for six and twelve seconds of adaptation data,
respectively. MAP adaptation yields comparable accuracy to
ML training with 42 seconds of data. This result demonstrates
that MAP adaptation achieves a reliable estimation of GMM
parameters at the early stage of collecting data by explicitly
using the prior information obtained from other devices while
ML training does not exploit any prior information, requiring
larger amounts of data to develop the model.

Figure 4. Effectiveness of adaptive training of normal status
GMM: AUC values as a function of adaptation data size. In
ML-training, adaptation data is used for training. In MAP
adaptation, prior GMM is trained on training data and then
adapted with adaptation data.

Table 2. Effectiveness of adaptive training of normal status
GMM: AUC values as a function of length of adaptation data

system
data length [sec] ML-train MAP-adapt

6 0.60972 0.09582
12 0.75651 0.19045
18 0.24248 0.19588
24 0.30769 0.16849
30 0.13627 0.07452
36 0.01217 0.01011
42 0.00210 0.00624

5. CONCLUSION

In the present study, an adaptive training of a vibration-based
anomaly detector for wind turbine CMS was conducted to
achieve high accuracy from the early stages of monitoring.
GMM was trained on data recorded from a normally operat-
ing gearbox in an experimental environment (NREL data set).
For testing, run-time data observed from the gearbox in an
actual wind turbine (HS data set) were input to the anomaly
detector. The pre-trained GMM was adapted to the run-time
data using MAP adaptation. The negative logarithmic likeli-
hoods of run-time inputs for the adapted normal status GMM
were exploited as anomaly scores. Experimental comparisons
using vibration signals from different gearboxes for wind tur-
bines (i.e., NREL and HS data sets) demonstrated that the ef-
fective use of prior information obtained from other devices
in MAP adaptation yielded significant improvement in the ac-
curacy of detecting anomalies over ML training without any
prior information, especially when only small amount of data
were available for parameter estimation.
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The datasets used in the present study are relatively well orga-
nized. In the future, the effectiveness of adaptive training of a
general purpose anomaly detector to the target device will be
investigated on more realistic data, collected from currently
available operating devices.
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