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ABSTRACT

Atherosclerosis refers to the plaque deposition in the arter-
ies that can eventually lead to any of the three cardiovascular
diseases, namely, heart attack, stroke, or peripheral vascular
disease, depending upon the site of the blockage in the human
arterial network. This work attempts to prognose this patho-
logical condition via lumped cardiovascular modeling while
utilizing the radial artery blood pressure measurements. To
achieve this, the cardiovascular system has been modeled as
a third order non-linear system with explicit emphasis on the
systemic circulation. The parameters of the model are esti-
mated using non-linear least squares estimation technique by
minimizing the error between the measured and the estimated
arterial pressure waveforms. The arterial pressure is found to
be sensitive to three of the model parameters, namely, arte-
rial compliance, systemic vascular resistance, and the peak
cardiac muscle elastance. Based on the analysis, a growth
model of systolic blood pressure is developed as a function
of the arterial blockage. A particle filter based mathematical
framework is then utilized to predict the time it would take
to reach the stage of critical arterial blockage that may cause
heart attacks.

1. INTRODUCTION

Cardiovascular diseases (CVDs) are the leading cause of the
deaths across the globe as per World Health Organization. An
estimated 17.7 million people died from CVDs in 2015 that
accounts for 31 % of all global deaths. It can be noted that
most of the CVDs can be prevented by addressing behavioral
risk factors such as unhealthy diet and obesity, tobacco us-
age, harmful alcohol usage, and physical inactivity. But once
the CVD has been diagnosed, it needs immediate treatment,
otherwise it may prove to be fatal.

Cardiovascular disease refers to the disorders of the heart
and blood vessels, and includes coronary artery disease, cere-
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brovascular disease (stroke), peripheral vascular disease, heart
failure, rheumatic heart disease, congenital heart disease and
cardiomyopathies. In this work, we shall focus on the cate-
gory of cardiovascular diseases that arise because of the ar-
terial blockage (usually referred to as atherosclerosis). De-
pending upon the site of the blockage in the human arterial
network, atherosclerosis can lead to three types of CVDs.
If the arteries supplying blood to the brain are blocked, the
pathological condition is referred to as stroke. If the arteries
supplying blood to the heart are blocked, the condition is re-
ferred to as coronary artery disease. If the arteries supplying
blood to the lower extremities of the body are blocked, the
condition is referred to as peripheral vascular disease. In this
work, we shall be focused on the cause, that is, atherosclero-
sis. Later in this paper, we shall be using the phrase “cardiac
health status (CHS)” as an indicator of the arterial blockage.

Near the beginning of the 20th century, German physiologist
Otto Frank formulated the two-element Windkessel model
that was viewed as the load against which the heart had to
pump the blood; resistor and capacitor were the two elements
there. The resistor represented the resistance of the arter-
ies and the arterioles, together known as the total periph-
eral resistance. The capacitor represented the capacitance of
the large arteries, better known as the total arterial compli-
ance. Later on, modifications of this model were proposed,
namely, three-element and four-element Windkessel models
(Westerhof, Lankhaar, & Westerhof, 2009). Though wave
transmission and wave travel could not be studied via these
‘lumped’ models; their simplicity and the ease of implemen-
tation made them a preferred choice over distributed models
to understand the pressure-flow relations at the entrance of
the arterial system, which is of clinical relevance.

The instantaneous left ventricular pressure-volume ratio was
shown to be independent of mechanical loading conditions;
however it changed with changes in contractile state of the
ventricle (Suga & Sagawa, 1974). This ratio is referred to as
cardiac muscle elastance and it has long been used to model
the dynamics of the atrial and/or ventricular chambers of the
heart. The ventricle described using time-varying elastance
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function is coupled to the Windkessel arterial load; this net-
work is filled from a constant venous pressure reservoir (Yu,
Boston, Simaan, & Antaki, 1998). In the last six decades,
many models at different levels of complexity have been re-
ported in the literature to describe the cardiovascular dynam-
ics (Williams et al., 2014), (Jain, Maka, & Patra, 2018). While
the higher order models can be potentially more accurate and
physically meaningful, the major pitfall of the higher order
models is the large number of parameters associated with
them. It becomes quite difficult to estimate all the param-
eters with the available measurements, which are often ob-
tained under controlled situations. The proposed work utilizes
a third order subject-dependent non-linear model to describe
the cardiovascular dynamics.

One of the earlier works has developed a mathematical model
of plaque formation via partial differential equations with the
aim to determine the risk of plaque formation for combined
levels of low density lipoprotein (LDL) and high density lipo-
protein (HDL) (Hao & Friedman, 2014). Their work creates a
“risk map” for plaque formation in the LDL-HDL coordinate
plane. In recent works, the prognostic values of coronary and
systemic atherosclerosis in the conditions of coronary artery
disease and myocardial infarction respectively have been in-
vestigated (Assante et al., 2017), (Calais et al., 2018). Most
of the prognostic works in this direction have been carried out
while utilizing statistical models or distributed models. To the
best of our knowledge, the proposed work is a first attempt to
utilize a lumped cardiovascular model for the prognosis of
atherosclerosis.

In order to overcome the aforementioned risk factors associ-
ated with the human heart, a prognostic framework can be
very useful in detecting the systolic blood pressure (SBP)
growth from an early stage of life and in providing a suffi-
ciently accurate estimate of the cardiac health status (CHS)
of a person suffering from atherosclerosis. Based on the lit-
erature it can be observed that prognostics study has been
carried out by researchers on numerous applications such as
structural damage prognosis (Farrar & Lieven, 2007), crack
growth analysis (Sankararaman, Ling, Shantz, & Mahadevan,
2011), Li-ion batteries (Guha & Patra, 2018), human neuro-
musculoskeletal system (Mussleman, Gates, & Djurdjanovic,
2016), etc. Regarding approaches to prognostics study, vari-
ous methods are available in the literature such as Autoregres-
sive Integrated Moving Average (ARIMA), Extended Kalman
Filter (EKF) and Particle Filter (PF) (Saha, Goebel, & Christo-
phersen, 2009). As ARIMA is an exclusively data-driven ap-
proach, it does not consider any physics of the system during
computation, thereby ending up with wide uncertainty mar-
gins. Hence it is not a good choice for long term predic-
tions. In case of EKF, although it is quite robust against non-
stationarity, it is not capable of accommodating un-modeled
effects and thus may diverge quickly. Whereas a PF not only
provides a mean estimate of the time-to-failure but also gen-

erates a probability distribution over time that best charac-
terizes the uncertainties within the system model and mea-
surements. In the work by (Guha & Patra, 2018), internal
resistance growth model of a lithium-ion battery, based on
electrochemical impedance spectroscopy (EIS) test data, is
developed to mark the aging of the battery. This is analogous
to the growth in blood pressure of a human with the gradual
occlusion of the arteries. In the battery model, parameters
are initialized using a curve fitting approach; they are then
updated with the new measurements while utilizing a parti-
cle filter (PF) framework. Tuned parameters are then utilized
to predict the remaining useful life (RUL) of the battery. In
our work, we have adopted a similar approach to predict the
time that would elapse before atherosclerosis reaches a criti-
cal stage where heart attacks may occur.

The remaining paper is organized as follows. Section 2 covers
the methodology adopted for the cardiovascular assessment.
Subsection 2.1 explains the electrical circuit based model of
the cardiovascular system. It also includes the mathemati-
cal framework of non-linear least squares (NLLS) estimation
routine adopted to estimate the model parameters. Subsection
2.2 shows how we generated synthetic systolic blood pres-
sure (SBP) data from the model parameters. Subsection 2.3
explains how SBP gets updated via particle filtering. Subsec-
tion 2.4 computes the time required for the blockage to reach
a critical level. Section 3 highlights the important results and
is divided into two subsections. Subsection 3.1 presents the
results from the parameter estimation part. Subsection 3.2
shows results from the particle filtering approach that has
been utilized to predict the time it would take to reach the
stage of critical arterial blockage that may cause heart attacks.
Section 4 concludes the paper.

2. METHODOLOGY

2.1. Modeling and Estimation of Cardiovascular System

Blood circulation in the body can be viewed as an electrical
system in which the heart acts as a voltage source and the rest
of the body tissues form the systemic load. The volume of
blood in the left ventricular chamber of the heart, the blood
pressures in the systemic arteries, and veins form the three
state variables of the model (Jain, Patra, & Maka, 2018). The
equivalent electrical circuit for blood circulation is presented
in Figure 1. The model is based upon pressure-voltage anal-
ogy. Resistors here represent resistance to the blood flow. Ca-
pacitors indicate the compliance of the vessels. Blood flow is
analogous to current. Pressure in the vessels is analogous to
the capacitor voltage. The complete list of the physiological
variables and the parameters is presented in the Nomenclature
section.

The ordinary differential equations representing the blood cir-
culation are derived using circuit theory concepts. The state
vector for the model is defined as follows:
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Figure 1. The proposed cardiovascular circulation model

x (t) =
[
vh (t) pa (t) pv (t)

]T
Consider the node marked as vh in the circuit diagram. The
flow entering this node would be equal to the flow leaving
this node. That is, the flow through the mitral valve resistance
Rmv would be equal to the rate of change of the ventricular
volume vh plus the flow through the aortic valve resistance
Rav . Mathematically,

pv (t)− ph (t)

Rmv (x (t))
= v̇h (t) +

ph (t)− pa (t)

Rav (x (t))

This can be re-written as:

v̇h (t) =

(
1

Rmv (x (t))

)
pv (t) +

(
1

Rav (x (t))

)
pa (t)

−
(

1

Rmv (x (t))
+

1

Rav (x (t))

)
ph (t)

(1)

This is further explained as follows. The ventricular dynam-
ics are truly described by the time-varying compliance which
is just the reciprocal of the elastance functionEh(t) described
in the paper. However, from circuit theory viewpoint, we pre-
sented the heart’s ventricular chamber as a voltage source rep-
resenting a pump, as it pumps the blood from low (venous)
pressure side to high (arterial) pressure side. The rest of the
equations, derived using the nodal analysis, are listed as fol-
lows.

Ca × ṗa (t) =

(
1

Rav (x (t))

)
ph (t) +

(
1

Rp

)
pv (t)

−
(

1

Rav (x (t))
+

1

Rp

)
pa (t)

(2)

Cv × ṗv (t) =

(
1

Rp

)
pa (t) +

(
1

Rmv (x (t))

)
ph (t)

−
(

1

Rp
+

1

Rmv (x (t))

)
pv (t)

(3)

where,
ph (t) = Eh (t)× (vh (t)− Vd)

The cardiac muscle elastance is quantitatively expressed as
follows, (Williams et al., 2014).

Eh (t) =



Emax−Emin

2

[
1− cos

(
πt
Ts

)]
+ Emin,

for t < Ts
Emax−Emin

2

[
cos
(
π(t−Ts)
Tr

)
+ 1
]

+ Emin,

for Ts ≤ t < Ts + Tr
Emin,
for Ts + Tr ≤ t < T

(4)
The following two expressions are used for the valvular resis-
tances.

Rmv (x (t)) = Rcl −
Rcl −Rop

1 + e(−10(pv(t)−ph(t)))
(5)

Rav (x (t)) = Rcl −
Rcl −Rop

1 + e(−10(ph(t)−pa(t)))
(6)

where, the open valve resistance,Rop is 0.001 units and closed
valve resistance, Rcl is 20 units.

The main assumptions considered while modeling are:
• The right side of the heart as well as the pulmonary circu-
lation have been lumped along with the veins; only the sys-
temic side of the circulation has been considered explicitly.
• The large vessels, namely, the systemic arteries and veins
have been approximated by their compliances whereas the
small vessels, namely, peripheral portion of the circulation
have been approximated via systemic vascular resistances.

Furthermore, the problem of minimizing the error between
the model output, namely, the arterial pressure and the actual
blood pressure data leads to the tuning of the model parame-
ters, thereby, making the model subject-dependent. The fol-
lowing cost function is minimized to obtain the optimized set
of parameters:

J =
1

M

M∑
l=1

∣∣∣∣∣pca,sys,l − pma,sys,lpma,sys,l

∣∣∣∣∣
2

+

∣∣∣∣∣pca,dia,l − pma,dia,lpma,dia,l

∣∣∣∣∣
2

(7)
where, pma,sys,l and pca,sys,l are respectively the measured and
the computed values of systolic arterial blood pressure in lth

cardiac cycle; pma,dia,l and pca,dia,l are respectively the mea-
sured and the computed values of diastolic arterial blood pres-
sure in lth cardiac cycle, and M denotes the number of car-
diac cycles. It can be noted that classical sensitivity analysis
is used to find out the relatively more sensitive parameters
(Batzel, Bachar, & Kappel, 2012). Only these parameters are
tuned and the remaining ones are kept at their initialized val-
ues. The set of relatively more sensitive parameters for the
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proposed model found out to be:

θopt =
[
Ca Rp Emax Emin

]
(8)

2.2. Systolic Blood Pressure (SBP) Data Generation

Let us recall Eq. (8) that contains most sensitive parameters
w.r.t the arterial pressure pa. This vector θopt is utilized to
generate the mean values of systolic blood pressure (SBP) at
different instants (months). The need to generate this data
is explained as follows. We have the arterial blood pressure
data collected for a finite number of seconds. From this data,
we can compute the present mean value of the systolic com-
ponent of the blood pressure. We need to predict how this
mean value would vary with time considering the present
lifestyle of an individual. If an individual has very healthy
lifestyle, it is assumed that the mean value of SBP would not
rise rapidly as the time progresses. However, if the individual
has a sedentary lifestyle, the mean value of SBP is assumed
to rise rapidly. This much of information is utilized to decide
the rate of change of the parameter vector θopt. The vec-
tor changes at a higher rate for an individual maintaining a
sedentary lifestyle.

Before we proceed further, it is worth mentioning that an arte-
rial blockage is often related to high blood pressure (WebMD,
2016). It can be noted that the systolic blood pressure of 180
mmHg can be considered as the threshold value (American
Heart Association, 2014). Therefore it can be said that the
arterial blockage becomes critical when the pressure reaches
its threshold value. Now, we shall be discussing the data gen-
eration in more detail.

Five young healthy subjects each having 20 years of age,
namely, H1, H2, H3, H4, and H5 are considered and their
arterial blood pressure along with the demographical infor-
mation is recorded. The subjects are deliberately chosen to be
of the same age so that a comparative prognostics study could
be done while considering their present lifestyle. It would be
shown via a growth model of SBP that a subject maintain-
ing healthy lifestyle in terms of diet and exercise would reach
the threshold SBP value in greater time span as compared to
those having a sedentary lifestyle.

Now, let us consider subject H1, having gender, height and
weight as male, 180 cm and 75 kg, respectively. The opti-
mized set of parameters are obtained as per the procedure ex-
plained earlier. Let us again recall the set of sensitive param-
eters (with respect to the arterial pressure) denoted by θopt.
Here,

θopt =
[
Ca Rp Emax Emin

]
This parameter vector (excluding Emin, which is compara-
tively less sensitive) is varied gradually in successive steps to
obtain the arterial pressure, pa at each of those steps. The
mean value of the systolic blood pressure is recorded at these
steps. Let us assume that H1 maintains a healthy life style

and therefore the parameter variation ri (see Figure 3) is as-
sumed to be as low as 1 % at every step. These steps are
mapped into the number of months. The blockage increases
to its threshold value in greater time span as compared to
other subjects. It can be noted that the parameter Ca is in-
creased, and the parameters Rp and Emax get reduced by the
same proportion. It is explained as follows. As the plaque
builds up, compliance of the vessel gets reduced; resistance
to the blood flow increases and therefore cardiac muscle con-
tracts with greater force to push the same amount of blood to
the systemic tissues. We further performed this numerical ex-
periment for four more healthy subjects, namely, H2, H3, H4,
and H5. They are assumed to have the parameter variation at
the rates of 1.5, 2.5, 3.0, and 3.5 respectively; all values are
in percentages. The higher the rate of variation, the poorer
the life style in context to health. This means that the person
with the highest rate has a sedentary life style; does not keep
healthy diet and avoids exercise, and thereby catches up with
the threshold blockage in the shortest time span.

While utilizing the parameter vector θopt, the regression model
capable of providing a good fit to the systolic blood pressure
values at different instants is obtained. The regression equa-
tion is given by:

psys,k = p1k
3 + p2k

2 + p3k + p4 (9)

where k is a time instant (in months), and psys,k is the sys-
tolic blood pressure at the kth instant. The fitted curve for
the representative subject is shown in Figure 2. We shall now
proceed to develop the mathematical framework for the prog-
nostics approach.
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Figure 2. The fitted SBP curve for the subject H1

2.3. SBP Model Updating by Particle Filter Algorithm

Dynamic state estimation and prediction do not depend only
on an accurate model but also rely on model parameter tun-
ing to track the variation in health degradation. In order to
identify the dynamic health degradation, the particle filtering
(PF) approach is used to estimate the current health param-
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eter. The basic idea of PF is based on recursive Bayesian
filtering using Monte Carlo simulations. In the PF frame-
work (Arulampalam, Maskell, Gordon, & Clapp, 2002), the
probability density function (pdf) is approximated by a set of
particles constituting sampled values from an unknown state
space along with a set of associated weights, thereby indicat-
ing discrete probability masses. Particles are generated and
recursively updated based on a probabilistic model in addi-
tion to the available measurements.

The coefficients p1 - p4 of the regression model (see Eq. (9))
form the state vector s of the particle filter. The mathematical
framework for the filter is presented as follows. The state
equations are as follows:

pj,k = pj,k−1 + qj,k = f (.) + qj,k (10)

where, j = 1, ..., 4, and qj,k ∼ N(0, σ2
pj ). The measurement

function z (= SBP ) is as follows:

zk = p1,kk
3+p2,kk

2+p3,kk+p4,k+vn = g(.)+vnk (11)

such that, vn ∼ N(0, σ2
SBP ). Here, qj,k is the process noise,

and vnk is the measurement noise. Both the process and mea-
surement noises are assumed to follow a normal distribution
with zero mean and variances σ2

pj (=1e-08) and σ2
SBP (=0.16)

respectively. The weights are such that they sum up to unity:

Np∑
i=1

wik = 1 (12)

where, wik denotes one particle, and Np represents the total
number of particles. The particles approximate the distribu-
tion of sk by:

P (sk|zk) ≈
Np∑
i=1

wikδ
(
sk − sik

)
(13)

where, sik denotes a single estimate of the state sk. With the
advancement of k, the posterior pdf becomes the prior pdf
of the new k with the dynamic model f(.). Here, P (sk|zk)
denotes the posterior pdf and P (sk|zk−1) denotes the prior
pdf.

P (sk|zk−1) ≈
Np∑
i=1

wik−1fk−1

(
sik−1

)
(14)

Once the prior distribution of sk is available, the posterior
distribution of sk can be obtained by:

wik = wik−1P
(
zk|sik

)
(15)

where, P (zk|sik) denotes the likelihood of sik. The likelihood
is calculated by:

P
(
zk|sik

)
=

1

σ
√

2π
e

[
− 1

2

{zk−g(sik)}2
σ2

]
(16)

where, σ represents the standard deviation of the measure-
ment noise vnk. In order to satisfy the condition that the
weights sum up to unity as given in Eq. (12), normalization
is performed as follows.

wik =
wik

Np∑
µ=1

wµk

(17)

The wik in Eq. (17) denotes the normalized weight.

2.4. Prediction of Cardiac Health Status (CHS)

While utilizing the regression model of Eq. (9), the h step
ahead prediction (He, Williard, Osterman, & Pecht, 2011) of
each trajectory at instant k is obtained as:

pisys,k+h = pi1,k(k + h)
3

+ pi2,k(k + h)
2

+ pi3,k (k + h) + pi4,k
(18)

The estimated posterior pdf of the prediction can be obtained
for each trajectory along with the associated weights as fol-
lows:

P (psys,k+h|psys,0:k) ≈
Np∑
i=1

wikδ
(
psys,k+h − pisys,k+h

)
(19)

The mean value of the h step ahead prediction at the kth in-
stant can be obtained as:

p̄sys,k+h =

Np∑
i=1

wikp
i
sys,k+h (20)

Based on the assumption of the failure threshold limit as α
times the systolic blood pressure at the healthy state of the
subject, the CHS estimation Cik of the ith trajectory of the
kth instant can be computed by:

psys,th = pi1,k
(
k + Cik

)3
+ pi2,k

(
k + Cik

)2
+ pi3,k

(
k + Cik

)
+ pi4,k = α.psys,healthy

(21)

where psys,th indicates threshold value of SBP, and α is de-
fined as the ratio of the threshold value of SBP to its initial
stage value psys,healthy.

Therefore, Cik is the value of the CHS corresponding to the
ith trajectory when it crosses the threshold psys,th. After ob-
taining all these Cik values for i = 1 to Np, the CHS pdf is
computed as follows:

P (Ck|psys,0:k) ≈
Np∑
i=1

wikδ
(
Ck − Cik

)
(22)

Basically it is the posterior estimate of the probability den-
sity function provided the measurement is available up to
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the time instant k. For each particle i, a trajectory is ob-
tained which intersects the threshold line at some point of
time. Similarly, for Np particles, Np such trajectories are ob-
tained which intersect the threshold line at different time in-
stants. Finally, based on the mean and variance of all those in-
tersecting points on the threshold line, the CHS pdf has been
obtained in this work. This concept is numerically illustrated
in the Results section. The mean value of the CHS prediction
at the kth instant is given by:

C̄k =

Np∑
i=1

wikC
i
k (23)

It may be noted that we shall be using the abbreviation SBP
for the systolic blood pressure psys, for convenience.

To summarize, an overall block diagram illustrating the pro-
posed approach for the prognosis of atherosclerosis (CHS
prediction) is presented in Figure 3. Firstly, the optimized
parameter vector θopt is obtained for a given subject using
nonlinear least squares (NLLS) algorithm. Secondly, the pa-
rameter vector is varied at a degradation rate rk. The cor-
responding mean values of SBP are recorded at different in-
stants. Next, the regression model for the SBP growth is ob-
tained. The coefficients of this model are then updated via a
particle filter. Finally, the cardiac health status (CHS) is pre-
dicted. In the block diagram, θ0 denotes set of initialized pa-

Figure 3. The proposed approach for the prognosis of
atherosclerosis (CHS prediction)

rameters, θopt denotes optimized parameters, rk is the subject
dependent degradation rate and it equals the rate at which the
parameters would change every instant k, the generated pa-
rameters would be referred as θk, SBPk is the corresponding
value of systolic blood pressure, n is Gaussian noise such that
n ∼ N(0, 0.16), and Np indicates number of particles which
is numerically considered to be 100.

3. RESULTS AND DISCUSSION

3.1. Modeling and Parameter Estimation

Let us consider the aforementioned representative subject,
H1. The model parameters are initialized using empirical for-
mulas that require subject’s age, gender, height, weight along
with the blood pressure recording (Williams et al., 2014).
Further, the classical sensitivity analysis revealed that four of
the model parameters are relatively more sensitive, namely,
arterial compliance, Ca, peripheral resistance, Rp, and peak
elastance values, Emax and Emin. Therefore, only these pa-
rameters are optimized using non-linear least squares estima-
tion technique (as described in Section 2); the remaining ones
are kept at their initialized values. The arterial blood pressure
waveforms for the subject H1, before and after optimization,
are shown in Figure 4. The corresponding parameter values
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Figure 4. (a) Systemic arterial pressure waveforms- measure-
ment and the estimated, before optimization; (b) the wave-
forms after optimization

are presented in Table 1. The solution of the inverse problem
converges to one local minimum (Jain, Patra, & Maka, 2018).
It may be further noted that the healthy blood pressure data
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has been taken from open resources made available by North
Carolina State University (Williams et al., 2014).

Table 1. Relatively more sensitive parameters (values are for
the chosen subject)

S.N. Parameters Initialized
Values

Optimized
Values

1. Emin 0.0348 0.0213
2. Rp 1.14 1.24
3. Emax 2.29 3.17
4. Ca 1.52 1.19

3.2. Prognosis of Atherosclerosis via Particle Filter Frame-
work

In order to analyze the proposed method, the error corre-
sponding to the SBP threshold (psys,th) along with its stan-
dard deviation have been considered as two indicators in terms
of the number of months to assess the prediction accuracy.
A lower value of the standard deviation indicates a predic-
tion with a higher confidence interval. The prediction re-
sult corresponding to the 285th month is shown in Figure 5a
where only the data corresponding to the first 285 months
have been considered to update the model. Similarly, the
prediction results corresponding to the 420th and the 555th
months have been shown in Figures 5b and 5c respectively.
The presumed threshold value for the growth in SBP with re-
spect to a healthy subject, as shown in Figure 5, is chosen to
be 180 mmHg.

From Table 2, it can be observed that with the advancement
of the prediction time towards the threshold value, the pre-
diction accuracy improves gradually. It is observed that the
subject H1 who leads a healthy lifestyle (as mentioned ear-
lier) would reach the threshold value of the critical arterial
blockage at the end of 996 months, that is, at the 83 years of
age. On the other hand, the subject H5 that leads a seden-
tary lifestyle (as mentioned earlier) would probably reach the
threshold value of the arterial blockage as early as at the age
of 564 months, that is, 47 years. In the Table, ‘Sub’ means
Subject; ‘Pred.’ means Prediction/Predicted; ‘Std.’ means
Standard; ‘Dev.’ means Deviation; ‘Err.’ means Error (abso-
lute ); ‘Mon.’ means Months and ‘Act.’ means Actual. The
MATLAB Software from The MathWorks Inc. is used for the
simulation purposes.

4. CONCLUSION

In the paper, the human cardiovascular system is modeled as
a third order lumped parameter model with explicit empha-
sis on the systemic circulation. The model parameters are
estimated using non-linear least squares estimation technique
by minimizing the error between the measured and the esti-
mated arterial pressure waveforms. A growth model for sys-
tolic blood pressure is developed that relies on three of the

240 465 690 915 1140
Months --->

120

140

160

180

200

220

240

SB
P 

(m
m

 H
g)

 -
--

>

SBP threshold

PF prediction k=285
SBP

k = 285

CHS pdf

(a)

240 465 690 915 1140
Months --->

120

140

160

180

200

220

240

SB
P 

(m
m

 H
g)

 -
--

>

SBP threshold

PF prediction k=420
SBP

CHS pdf

k = 420

(b)

240 465 690 915 1140
Months --->

120

140

160

180

200

220

240

SB
P 

(m
m

 H
g)

 -
--

>

SBP threshold

PF prediction k=555
SBP

k = 555

CHS pdf

(c)

Figure 5. CHS prediction results based on SBP growth of
subject H1 at 285th, 420th and 555th months respectively
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Table 2. SBPth prediction results corresponding to subjects
H1-H5

Sub.
Pred.
Point

(Mon.)

Act.
SBPth
(Mon.)

Pred.
mean
SBPth
(Mon.)

Std.
Dev.

(Mon.)

Pred.
Err.

(Mon.)

H1
285 991.5 988.40 14.17 3.1
420 991.5 989.97 10.08 1.53
555 991.5 990.29 8.34 1.21

H2
285 884 882.96 8.55 1.04
420 884 883.14 6.62 0.86
555 884 883.28 5.36 0.72

H3
285 726 725.82 5.18 0.18
420 726 725.91 4.23 0.09
555 726 726.05 3.42 0.05

H4
285 627 629.25 4.05 2.25
420 627 628.8 3.42 1.8
555 627 628.53 2.93 1.53

H5
285 564 563.82 3.56 0.18
420 564 563.87 2.97 0.13
555 564 563.91 2.39 0.09

cardiovascular parameters, namely, peripheral resistance, ar-
terial compliance and peak cardiac elastance. The blood pres-
sure is related to the arterial blockage. A particle filter based
mathematical framework is then utilized to predict the time it
would take to reach the stage of critical arterial blockage that
may cause heart attacks. A person living a sedentary life style
reaches this critical mark quite early as compared to the one
living a healthy lifestyle.
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NOMENCLATURE

σ Standard deviation
θ0 Initialized parameter vector
θk Parameter vector at kth instant
θopt Optimized parameter vector
Ca Arterial compliance
Cv Venous compliance
Cik Cardiac health status estimation of the ith

trajectory of kth instant
Eh(t) Cardiac muscle elastance
Emin Minimum elastance value of cardiac muscle
Emax Maximum elastance value of cardiac muscle
f(.) The dynamic model (in context of PF)
g(.) The observation function (in context of PF)
J Cost function
M Number of cardiac cycles
Np Total number of particles in particle filter

pa Systemic arterial pressure
ph Pressure in left ventricle
pv Systemic venous pressure
pca,dia,l Diastolic value of pa (computed) in lth cycle
pma,dia,l Diastolic value of pa (measured) in lth cycle
pca,sys,l Systolic value of pa (computed) in lth cycle
pma,sys,l Systolic value of pa (measured) in lth cycle
psys Systolic blood pressure (SBP)
psys,th Threshold value of SBP
pisys,k+h The h step ahead prediction of

ith trajectory of psys at kth instant
pj jth coefficient of SBP regression model
P (.) Probability density function

(in context of PF)
qj,k Process noise
rk Subject dependent degradation rate
Rmv Mitral valve resistance
Rav Aortic valve resistance
Rp Systemic vascular resistance
Rol Open valve resistance
Rcl Closed valve resistance
sk State vector for the particle filter
t Time
T Length of cardiac cycle
Ts Systolic time
Tr Relaxation time
vh Left ventricular volume
vnk Measurement noise
Vd vh at zero pressure
wik One particle (in context of particle filter)
x(t) State vector for cardiovascular model
zk Measurement function to be

utilized in PF framework
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