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ABSTRACT 

Tumor hypoxia results in most of the anticancer drugs 

becoming ineffective. However, due to lack of proper signaling 

in the hypoxic micro environment, the condition cannot be 

detected in advance, leading into unnecessary delay in the 

diagnosis and treatment. The main objective of the work is to 

identify the 'hypoxia prone SNPs to help the patients to predict 

their possibility of hypoxia formation and to Design and 

develop a machine helping in diagnosing the hypoxia from 

pathological images using deep learning with 'convolution 

neural network'. The genetic signatures corresponding to 

'tumor hypoxia development' have been identified by 

pharmacogenomic method, comprising of genomics, 

epigenomics, metagenomics and environmental genomics. All 

the common hypoxia related mutations have been included in 

the study. The formation of the hypoxia condition has to be 

carefully identified and monitored during the process of 

treatment to ensure that the right drug is being administered. In 

the present manuscript, a novel method of elucidating the 

condition using 'deep convolution network' from simple 

pathological image has been suggested. The efficiency of the 

suggested machine is found to be 92.8% making it as a potential 

device for prediction of hypoxia mutation and thereby helping 

us to monitor the hypoxic conditions effectively. Thus, the 

hypoxia prone SNPs corresponding to common mutations have 

been identified. The patients having the hypoxia prone SNPs 

are advised to guard against hypoxia formation with the help of 

diagnostic tests using the machine. The machine helps to warn 

the patients against the respective mutations from simple 

pathological image of the tumor cells. 

1. INTRODUCTION 

Cancer is one of the terminal diseases leading to large scale of 

mortality every year all around the world (Fitzmaurice et al., 

2015). The normal symptoms of cancer include increased 

proliferation, decreased apoptotic pathway functions, 

deregulated metabolism and depletion in the cellular oxygen 

content. 

Although treatment strategy for cancer involves multiple 

protocols such as chemotherapy, radiation therapy, surgical 

intervention etc., the failure rate remains unexpectedly high. One 

of the major reasons behind this is the development of a cellular 

condition known as hypoxia in cancer cells along with prolonged 

treatment of cancer, making these cells highly resistant to most 

of the anti-cancer drugs. The condition is characterized by 

maintaining insufficient oxygen within the cancer cells leading 

into a decrease in the cellular metabolic rate. This results in a 

different cellular environment, where most of the anti-cancer 

drugs fail to function, providing a natural 'drug resistance'. The 

'hypoxia condition' can be considered as a ‘protective adaptation’ 

by the cancer cells especially solid tumor cells to increase anti-

cancer drug resistance (Sriraman, Aryasomayajula & Torchilin, 

2014). In most cases, this unfavorable condition of cancer cells 

triggers off extensive metastasis and accelerated malignant 

progression. The hypoxia in sarcomas leads to distant metastasis 

while hypoxia in cervical cancer results in local and regional 

spreading of cancer 

Another major challenge associated with hypoxia is the difficulty 

in its early detection as the condition does not support proper 

signaling for recognizing the reactive oxygen species (ROS) 

(Fleet, 2006) , used for the diagnosis of hypoxia. This may lead 

the tumor cells to over-populate and promote metastasis (Brown 

& Wilson, 2004), (Wilson & Hay, 2011) excessively. Even an 

effective drug delivery system may fail to reach the region of 

hypoxia because of the poorly developed blood vessels, 

deregulated metabolism and increased drug resistance. 
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 Though oxygen sensors such as Eppendorf needle are 

suggested to monitor hypoxia condition, due to the operational 

difficulty in introducing individual needle sensors, the 

technique is not widely accepted. The non- invasive analysis 

using indirect assays, studying the hypoxia inducible factors 

(HIF), bio-reductive metabolism, etc. has been suggested to 

measure and monitor the condition. Few imaging technique 

such as blood oxygen level-dependent magnetic resonance 

imaging (BOLD-MRI), phosphorescence have been 

introduced. The major disadvantage of using BOLD-MRI is 

that it measures only deoxyhemoglobin concentrations. The 

toxicity of phosphorescence dye used in the analysis and the 

inability to assess deeper tissues are the drawbacks of the 

phosphorescence based imaging technique. Moreover, the 

pharmacogenomic individual variations seen in the diagnostic 

finger prints of patients demand a 'person-specific diagnostic 

system' incorporating the attributes such as genomics, 

epigenomics, metagenomics, environmental genomics and 

drug genomics (HimaVyshnavi et al., 2017), (Iyer, 

Karthikeyan, Sanjay Kumar & Krishnan Namboori, 2017), 

(Iyer, Palayat, Shanmugam & Namboori, 2017). The early 

diagnosis of hypoxia condition associated with cancer is still a 

challenge. 

The 'deep convolution neural network (CNN)' based learning 

environment has been reported as a novel efficient theranostics 

technique to get biological functional information from cellular 

images (Rawat & Wang, 2017). Well established 'tensor flow 

Convolution Neural Networks for CIFAR-10' as shown in 

("TensorFlow Tutorial | Deep Learning Using TensorFlow | 

Edureka", 2018) has been widely used to address biological 

functionalities including molecular biology and genomic 

imprinting. 

The CNN has been used in the analysis of histopathological 

images for a few biological conditions and found to be very 

efficient in retrieving diagnostic and prognostic information 

about the disease conditions (Khosravi, Kazemi, Imielinski, 

Elemento & Hajirasouliha, 2018), (Komura & Ishikawa, 2018), 

(Qu et al., 2018). In the present work, a novel approach has 

been used in studying the possibility of using this technique in 

identifying the ‘hypoxia condition’ associated with cancer 

treatment by incorporating deep CNN learning environment 

and correlating the same with pharmacogenomic variants. 

2. MATERIALS AND METHODS 

2.1. Pharmacogenomics 

The SNPs have been identified as the most effective genetic 

variant incorporating pharmacogenomic finger prints (Sherry, 

2001). The hypoxia or de-oxygenation causing mutations, 

ABCC1, ABCB1, MTHFR, RFC1, HPRT1, CYP2B6, 

CYP2C8, CYP2C9, ADAM17, CYP2C19, CYP2D6, HIF2A, 

HIF1A, CYP1A1, CYP1A2, CASP1, AKR1C1, AKR1C2, 

PTGS2, CASP6 and their genomic and epigenomic 

contributions have been identified. The genetic signatures 

(SNPs) behind all the relevant pharmacophoric attributes 

genomics, epigenomics, metagenomics, environmental 

genomics and drug genomics have been listed out. 

These SNPs are further characterized and classified into 

damaging, tolerated, benign, possibly damaging, probably 

damaging and deleterious using Sorting Intolerant from Tolerant 

(SIFT) and Polymorphism Phenotyping (Polyphene) analysis 

(Ng, 2003), (Adzhubei, Jordan & Sunyaev, 2013). The probable 

metagenomic contribution in the formulation of hypoxia is 

identified by comparing the microbial genome with the genes 

responsible for hypoxia using Basic Local Alignment Search 

Tool (BLAST) of National Center for Biotechnology 

Information (NCBI) (Ye, Ma, Madden & Ostell, 2013). 

The environmental factors causing the mutations have been noted 

down from the 'Comparative Toxicogenomics Database (CTD)' 

(Davis et al., 2016). The anti-tumor drugs were taken from the 

drug bank and coding SNPs that are most likely to have an impact 

on biological function were identified from LS-SNP/PDB tool. 

Solid tumor related genes have been taken up for the analysis and 

their epigenetic contributions towards variations have been 

studied (Bock, Walter, Paulsen & Lengauer, 2007), (Dworkin, 

Huang & Toland, 2009). The DNA methylation is found to be the 

most prominent epigenetic mechanism responsible for causing 

variation in CpG dinucleotide (Thienpont et al., 2016). The 

attributes corresponding to methylation of DNA have been 

identified. 

2.2. Data Collection 

The tumor pathological images corresponding to the 'hypoxia 

causing mutations' namely ABCC1, ABCB1, MTHFR, RFC1, 

HPRT1, CYP2B6, CYP2C8, CYP2C9, ADAM17,CYP2C19, 

CYP2D6, HIF2A, HIF1A, CYP1A1, CYP1A2, CASP1, 

AKR1C1, AKR1C2, PTGS2, CASP6 have been acquired from 

'Human Protein Atlas'. To support the classification need, non-

hypoxic tumor cell-images corresponding to the mutations 

BRCA1, BRCA2, BCAR3, BRMS1 and BCAS1 have been 

collected. 

2.3. Deep learning Implementation 

Totally, 300 breast cancer sample images were included in the 

present analysis, among which 150 were hypoxia positive breast 

cancer images and the remaining were hypoxia negative breast 

cancer images to avoid class imbalance. From the 300 samples 

‘pathology images’, 80% have been considered as the training set 

and the remaining 20% as the testing set. The labels are encoded 

and used for training purpose and the python library tensor flow 

is used for performing deep CNN in the model ("The Human 

Protein Atlas", 2018). 

2.4. Algorithm and optimization of the conditions 

The structure of the prediction model is depicted in Figure.1. In 

this manuscript, the pathological images collected are of larger 

pixel values. In order to avoid higher weights in the initial hidden 

layers, the CNN is not fully connected instead is attached to few 

regions of the layer to avoid over fitting by changing the hyper 

parameters such as the filter size (to 7), epochs (to 50) and 

increasing the number of layers. 

In the optimized process, there are totally 23 layers consisting of 

alternating convolution layer, maxpooling layer and rectified 
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linear unit activation layer along with two fully connected 

layers, where the output of alternative individual layers is 

stacked together. The cross entropy is calculated and an 

'adaptive moment estimation' has been used to optimize the 

network weights by an iterative method. The deep neural net 

has been trained to different epochs to converge the results and 

provide maximum prediction accuracy (Figure 2). 

 

Figure 1. The model structure of tensor flow convolution 

neural network 

 

Figure 2.  Optimized model structure  

 

3. RESULTS AND DISCUSSION 

Through classification, the upregulation of hypoxia gene 

mutations has been identified. The hypoxia related SNPs have 

been identified from the pharmacogenomic analysis through 

online database such as dbSNP – NCBI and SNP Nexus. The 

pharmacogenomic and deep learning analysis have been 

carried out parallelly and a correlation has been set up between 

the results. Thus, deep CNN is used for image classification 

task to identify the specific mutations responsible for hypoxia. 

Early detection of the development of hypoxia is made possible 

through the deep CNN model, while the proneness of hypoxia 

formulation has been made possible through the 

pharmacogenomic model (Namboori et al., 2011). 

3.1. Genomics 

The primary mutations responsible for setting up of bio 

reductive conditions are ABCC1, ABCB1, MTHFR, RFC1, 

HPRT1, CYP2B6, CYP2C8, CYP2C9, ADAM17, CYP2C19, 

CYP2D6, HIF2A, HIF1A, CYP1A1, CYP1A2, CASP1, 

AKR1C1, AKR1C2, PTGS2, and CASP6. The major SNPs 

responsible for the variations are included in Table 1. 

Obviously, the people with the SNPs expressed in their 

respective genes are more prone to the mutations. 

Sl. 

no. 

 

Genes 

Total no. 

of SNPs 

 

Frequent deleterious SNPs 

1 ABCC1 28895 rs183032276, rs186193767, 

rs201020041 

2 ABCB1 24289 rs1128501, rs137996914, 

rs139820108 

3 MTHFR 10624 rs121434296, rs200138092, 

rs116620395 

4 RFC1 19539 rs12502450, rs147804632, 

rs190369900 

5 HPRT1 3353 rs137852480, rs137852493, 

rs137852496 

6 CYP2B6 3948 rs117872433, rs12721655, 

rs138594605 

7 CYP2C8 4512 rs369552457, rs141209951, 

rs150733212 

8 CYP2C9 12018 rs150663116, rs200382419, 

rs28371687 

9 ADAM1 7 8194 rs370514738, rs142946965, 

rs201123474 

10 CYP2C1 9 14307 rs148593307, rs267602634, 

rs41291556 

11

 

  

CYP2D6

  

1714 rs369390846, rs369772253, 

rs1058172 

12 HIF2A 12595 rs191706577, rs28940297, 

rs119476044 

13 HIF1A 6635 rs28940297, rs28940298, 

rs142376463 

14 CYP1A1 1304 rs367604147, rs371662141, 

rs373568981 

15 CYP1A2 1488 rs200571120, rs201537008, 

rs28399424 

16 CASP1 1800 rs368177280, rs371404424 

17 AKR1C1 1920 rs142200840, rs368611374, 

rs372782197 

18 AKR1C2 2431 rs201515806 

19 PTGS2 1663 rs148160346, rs201588411, 

rs371762608 

20 CASP6 2153 rs144996365, rs1042887 

Table 1. Genes with total no. of Single nucleotide 

polymorphisms and deleterious SNPs  

3.2. Epigenomics 

While considering the attributes corresponding to epigenetic 

variations, it has been found that the repetitive DNA, 

evolutionary history, transcriptome, epigenome & chromatin 

structure are the factors contributing most towards 'hypoxia 

micro environment (Figure 3). The SNPs in the 'methylation 

prone region' called Methylation prone SNPs (MeSNPs) have 

been identified (Table 2). The persons with these SNPs are more 

inclined to epigenomic variations. 
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Figure 3. Epigraph of attributes compared to average mean 

correlation of the mutation genes  

Sl. 

no. 

 

Genes 

 

MeSNPs 

1 CYP1A1 rs146622566, rs149687459, rs151244239 

2 CYP1A2

  

rs376179316, rs45565238, rs55802037 

3 AKR1C1 rs142200840, rs370027719 

4 ABCC1 rs200922662, rs201533167 

5 ABCB1 rs199551851, rs201564736 

6 MTHFR rs373747884, rs200379144 

7 RFC1 rs12502450, rs147804632, rs199688793 

8 CYP2B6 rs142421637, rs144760726, rs148009906 

9 CYP2C8 rs113008582, rs188111115, rs369552457 

10 CYP2C9

  

rs28371674, rs12414460, rs141489852 

11 CYP2C19

 

  

rs148593307, rs149590953, 

rs17884712 

12 CYP2D6 rs1058172, rs138229048, rs139441693 

13 CASP6 rs200347007, rs370198937 

14 HIF2A rs139763806, rs149676792 

15 ADAM17

  
rs370064783 

Table 2. Major hypoxia genes and corresponding methylated 

SNPs (MeSNPs) 

3.3. Metagenomics  

The metagenomic analysis describes the influence of microbes 

living in our body in supporting the mutations. The microbes 

having genome similar to the hypoxia genes have been identified 

as most influencing in causing the mutation (Banerjee, Mishra & 

Dhas, 2015). The corresponding SNPs have been included in 

Table 3, suggesting the people with these SNPs are more 

susceptible towards metagenomic variations. 

 

Sl. 

no. 

 

Genes 

 

Microbe 
 

Deleterious SNPs 

1 HIF1A Mycobacterium 

tuberculosis 

rs1015149462, 

rs778992658 

2 CYP1A1 Rhodoferax 

ferrireducens 

rs146622566, rs577523247 

3 CYP1A2 Rhodoferax 

ferrireducens 

rs59410695, rs139412032 

4 AKR1C1 Sulfurospirillum 

multivorans 

rs756699697, rs916659284 

5 AKR1C2 Mycobacterium 

tuberculosis 

rs11818926, rs34371823 

6 PTGS2 Klebsiella 

pneumoniae 

rs572342120, rs775143480 

7 ABCC1 Klebsiella 

pneumoniae 

rs113607327, rs746604799 

8 ABCB1 Haemophilus 

influenzae 

rs886871489, rs894658296 

9 MTHFR Mycobacterium 

tuberculosis 

rs2066462, rs17854808 

10 RFC1 Niabella 

ginsenosidivora

ns 

rs923604401, rs977954175 

11

 

  

HPRT1  Clostridium 

perfringens

  

rs956631698 

12 CYP2B6 Mycobacterium 

tuberculosis 
rs747003572, rs995224549 

13 CYP2C8 Klebsiella 

pneumoniae 
rs61757319, rs372960611 

14 CYP2C9 Ehrlichia 

ruminantium

  

 

rs143715236 

15 CYP2C19 Klebsiella 

pneumoniae 
rs966182584, rs984474043 

16 CYP2D6 Mycobacterium rs77449786, rs368135263 

17 CASP6 Mycobacterium 

tuberculosis 
rs74973078, rs369682210 

18 HIF2A Xanthomonas citri rs888134923, rs993940618 
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Table 3. Hypoxia genes and proneness to microbial influence. 

3.4.  Environmental factors 

Many epidemiological studies prove that the environmental 

factors also contribute towards mutations (Boffetta & Nyberg, 

2003). The mutagens such as resveratrol, deferoxamine, 

quercetin, benzopyrenes, methylcholanthrene, beta-

naphthoflavone, estradiol, dinoprostone, tetrachloro 

dibenzodioxin, celecoxib, indomethacin etc. are found to be 

most influential in causing the mutations. The chemicals 

interacting with the genes and having toxic effect are included 

in the table 4 

Sl. 

no. 

 

Genes 

 

Chemicals involved 

1 HIF1A Resveratrol, 

Deferoxamine, Quercetin 

2 CYP1A1

  

Methylcholanthrene, 

Benzo(a)pyrene, 

resveratrol, Estradiol 

3 PTGS2 Dinoprostone, resveratrol, 

Tetrachlorodibenzodioxin, 

Celecoxib, Indomethacin, 

nimesulide 

4 ABCC1 Vincristine, Etoposide 

5 ABCB1 Verapamil, Paclitaxel, 

Cyclosporine, valspodar, 

Vinblastine 

6 MTHFR Folic Acid, Fluorouracil, 

Arsenic 

7 CYP2D6 Tamoxifen 

Table 4. Genes and Environmental factors influencing 

mutation. 

3.5.  Drug genomics  

The drug genomics study correlates between the genetic 

signatures for various proteins specific to hypoxia genes and 

anti-cancer drugs that could be effective when advised under 

identification of the corresponding SNPs (Table 5) 

Sl. 

no. 

 

Drug 

 

Proteins 
 

SNPs 

1 Flurouracil 1OG2, 

1OG5, 

1R9O, 4NZ2 

rs142123260, rs148615754 

2 Irinotecan 3IBD rs138264188, rs183427203 

3 Oxaliplatin 4I8V rs112517897, rs142388113 

4 Regorafenib 1PQ2, 

2NNH, 3IBD 

rs150733212, rs138264188 

5 Paclitaxel 4C3Z rs186193767, rs200085313 

6 Cyclophosph

amide 

2F9Q, 3QM4 

 

rs1058172, rs141289473 

Table 5. Hypoxia associated proteins and proneness to drug 

action. 

3.6. Deep CNN  

The predictive machine attained convergence in 33 iterations 

with an accuracy of 92.8%, trained to 50 epochs. The parameters 

have been defined and the machine is set to give a paramount 

accuracy in detecting the hypoxic condition from a given 

pathological image (Figure 4). 

 

Figure 4. The accuracy and loss % versus epochs where the 

accuracy and loss tend to converge at epochs 33 and 37 

respectively. 

4. CONCLUSION 

The hypoxia leading mutations, ABCC1, ABCB1, MTHFR, 

RFC1, HPRT1, CYP2B6, CYP2C8, CYP2C9, ADAM17, 

CYP2C19, CYP2D6, HIF2A, HIF1A, CYP1A1, CYP1A2, 

CASP1, AKR1C1, AKR1C2, PTGS2, CASP6 have been 

included in the analysis. The genetic signatures corresponding to 

proneness of these mutations have been listed. Moreover, the 

epigenetic, metagenomic and environmental factors and their 

SNPs leading into hypoxic conditions have been computed. Early 

identification and a continuous monitoring of hypoxia is essential 

in making the cancer treatment effective. This can be made using 

the 'deep CNN based image processing' of pathological images. 

The predictive model designed has been identified as a potential 

tool for identifying the tumour hypoxia and the mutation behind 

it. The machine gives a predictive accuracy of 92.8%, suggesting 

the tool as a useful device for tumor hypoxia prediction. The tool 

helps in incorporating the theranostic pharmacogenomic 

approach for the early detection and continuous monitoring of 

tumor hypoxia. 

The deep CNN based support systems have been identified as 

potential theranostic devices in modern diagnostic and 

prognostic scenario especially in the pharmacogenomic 

approach, where a person specific continuous monitoring system 

is highly appreciated. The strategy followed in the paper helps in 

making similar correlations with all diseases and conditions and 
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providing ‘simple, effective and economic theranostic’ 

devices. This may further be extended to address critical 

biological and medical conditions that are expensive and time 

consuming to detect in the early stage and providing a 

‘personalized’ strategy. The individual mutations can be 

identified specific to the setting up of tumor micro 

environment. 
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