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ABSTRACT

Prognostics or Remaining Useful Life (RUL) Estimation
from multi-sensor time series data is useful to enable
condition-based maintenance and ensure high operational
availability of equipment. We propose a novel deep learning
based approach for Prognostics with Uncertainty Quantifica-
tion that is useful in scenarios where: (i) access to labeled fail-
ure data is scarce due to rarity of failures (ii) inherent noise is
present in the sensor readings. The two scenarios mentioned
are unavoidable sources of uncertainty in the RUL estimation
process, often resulting in unreliable RUL estimates. To ad-
dress (i), we formulate RUL estimation as an Ordinal Regres-
sion (OR) problem and propose LSTM-OR: deep Long Short
Term Memory (LSTM) network-based approach to learn the
OR function. We show that LSTM-OR naturally allows for
the incorporation of censored operational instances in train-
ing along with the failed instances, leading to more robust
learning. To address (ii), we propose a simple yet effective
approach to quantify predictive uncertainty in the RUL esti-
mation models by training an ensemble of LSTM-OR models.
Through empirical evaluation on the publicly available turbo-
fan engine benchmark datasets, we demonstrate that LSTM-
OR is at par with commonly used deep metric regression-
based approaches for RUL estimation when sufficient failed
instances are available for training. Importantly, LSTM-OR
outperforms these metric regression-based approaches in the
practical scenario where failed training instances are scarce,
but sufficient operational (censored) instances are addition-
ally available. Furthermore, our uncertainty quantification
approach yields high-quality predictive uncertainty estimates
while also leading to improved RUL estimates compared to
single best LSTM-OR models.

1. INTRODUCTION

In the current digital era, streaming data is ubiquitous. In
the context of the Industrial Internet of Things, remote health
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monitoring services driven by sensor-driven data analytics are
becoming increasingly popular. Data-driven approaches for
anomaly detection, diagnostics, prognostics, and optimiza-
tion have been proposed to provide operational support to
engineers, ensure high reliability and availability of equip-
ment, and to optimize the operational cost (Da Xu, He, & Li,
2014). Typically, a large number of sensors (order of hun-
dreds or sometimes thousands) are installed to capture the
operational behavior of sophisticated equipment with various
sub-systems interacting with each other.

Recently, deep learning approaches have been proposed
for various data-driven health monitoring tasks including
anomaly detection (Malhotra, Vig, Shroff, & Agarwal, 2015;
Malhotra, Ramakrishnan, et al., 2016; Gugulothu, Malhotra,
Vig, & Shroff, 2018) and prognostics (Malhotra, TV, et al.,
2016; Gugulothu et al., 2017; Zheng, Ristovski, Farahat, &
Gupta, 2017), yielding state-of-the-art results for RUL esti-
mation (Gugulothu et al., 2017) using Recurrent Neural Net-
works (RNNs). In this work, we focus on the problem of
prognostics or Remaining Useful Life (RUL) estimation of
operational instances given the current and historical readings
from various sensors capturing their behavior. Deep learning
approaches for prognostics, and equipment health monitor-
ing in general, have certain limitations as they require large
amount of labeled training data, the outcomes and decisions
are difficult to interpret, etc. as highlighted in (Gugulothu,
TV, et al., 2018; Gugulothu et al., 2017; Khan & Yairi, 2018).

In this work, we address two crucial practical challenges in
deep learning based RUL estimation approaches. The chal-
lenges addressed and the corresponding key contributions of
this work are as follows:

Challenge-I: Deep neural networks are prone to overfitting
and typically require a large number of labeled training in-
stances to avoid overfitting. If failure time for an instance is
known, a target RUL can be obtained at any time before the
failure time. However, labeled training instances for RUL es-
timation are few as failures are rare. Also, any operational
instance (or any instance for which failure time is not known,
or which has not failed yet) is considered to be censored as
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target RUL cannot be determined for such an instance.

We note that deep RNNs (Heimes, 2008; Malhotra, TV, et al.,
2016; Gugulothu et al., 2017; Zheng et al., 2017; Y. Zhang,
Xiong, He, & Pecht, 2018) and Convolutional Neural Net-
works (CNNs) (Babu, Zhao, & Li, 2016) based approaches
formulate RUL estimation as a metric regression (MR) prob-
lem where a normalized estimate of RUL is obtained given
time series of sensor data via a non-linear regression met-
ric function learned from the data. This MR formulation of
RUL estimation cannot directly leverage censored data typi-
cally encountered in RUL estimation scenarios.

Key Contribution-I : In addition to using failed instances
for training, we propose a novel approach to leverage the
censored instances in a supervised learning setting, in turn,
increasing the training data and leading to more robust RUL
estimation models. We cast RUL estimation as an ordinal
regression (Harrell, 2001; Orozco, Abbati, & Roberts, 2018)
problem (instead of the typically used metric regression for-
mulation) and propose LSTM-OR (Long Short Term Memory
Networks based Ordinal Regression) based RUL Estimation
approach. We show that partially labeled training instances
can be generated from the readily available operational (non-
failed) instances to augment the labeled training data in the
ordinal regression setting to build a more robust RUL esti-
mation models. We empirically show that LSTM-OR out-
performs LSTM-MR by effectively leveraging censored data
when the number of failed instances available for training is
small.

Challenge-II: The black-box nature of deep neural networks
makes it challenging to interpret the predictions/estimates,
and in turn, gauge the reliability of the predictions. It is,
therefore, desirable to quantify the predictive uncertainty
in deep neural network based predictions of RUL - it can aid
engineers and operators in risk assessment and decision mak-
ing while accounting for the reliability of predictions.

Key Contribution-II: We propose a simple yet effec-
tive approach to quantify uncertainty based on an en-
semble of LSTM-OR models (using similar idea as in
(Lakshminarayanan, Pritzel, & Blundell, 2017) as detailed in
Section 5). The ensemble of deep LSTM-OR models leads to
improved RUL estimation performance, and also, the empiri-
cal standard deviation (ESD) of the predictions from LSTM-
OR models provides an approximate measure of uncertainty.
We empirically show that when ESD (i.e., the uncertainty
in estimation) is low, the corresponding error in estimation
is also low, making ESD a useful uncertainty quantification
metric.

Organization of the paper: We provide an overview of re-
lated literature in Section 2. In Section 3, we briefly introduce
deep LSTM networks as used to build our deep OR models.
We provide details of LSTM-OR and uncertainty quantifica-

tion approaches in Sections 4 and 5, respectively. We provide
experimental evaluation details and observations in Section
6, and finally conclude in Section 7. Further, we provide an
Appendix section for the detailed analysis of our uncertainty
quantification approach.

2. RELATED WORK

Trajectory Similarity based RUL estimation: An important
class of approaches for RUL estimation is based on trajectory
similarity, e.g. (Wang, Yu, Siegel, & Lee, 2008; Khelif, Mali-
nowski, Chebel-Morello, & Zerhouni, 2014; Lam, Sankarara-
man, & Stewart, 2014; Malhotra, TV, et al., 2016; Gugulothu
et al., 2017). These approaches compare the health index tra-
jectory or trend of a test instance with the trajectories of failed
train instances to estimate RUL using a distance metric such
as Euclidean distance. Such approaches work well when tra-
jectories are smooth and monotonic in nature but are likely
to fail in scenarios when there is noise or intermittent distur-
bances (e.g., spikes, operating mode change, etc.) as the dis-
tance metric may not be robust to such scenarios (Gugulothu
et al., 2017).

Metric Regression based RUL estimation: Another class of
approaches is based on metric regression. Unlike trajectory
similarity based methods which rely on comparison of trends,
metric regression methods attempt to learn a function to map
sensor data to RUL directly, e.g., (Heimes, 2008; Benked-
jouh, Medjaher, Zerhouni, & Rechak, 2013; Dong, Jin, Lou,
& Wang, 2014; Babu et al., 2016; Gugulothu et al., 2017;
Zheng et al., 2017; TV, Gupta, Malhotra, Vig, & Shroff,
2018). Such methods can better deal with non-monotonic
and noisy scenarios by learning to focus on the relevant un-
derlying trends irrespective of noise. Within metric regres-
sion methods, few methods consider non-temporal models
such as Support Vector Regression for learning the mapping
from values of sensors at a given time instance to RUL, e.g.,
(Benkedjouh et al., 2013; Dong et al., 2014).

Temporal models for RUL estimation: Deep temporal mod-
els such as those based on RNNs (Heimes, 2008; Malho-
tra, TV, et al., 2016; Gugulothu et al., 2017; Zheng et al.,
2017) or Convolutional Neural Networks (CNNs) (Babu et
al., 2016) can capture the degradation trends better compared
to non-temporal models, and are proven to perform better.
Despite the advantages of deep models, they are prone to
overfitting in practical scenarios where the number of failed
instances is small. Further, a set of techniques like (Ellefsen,
Bjørlykhaug, Æsøy, Ushakov, & Zhang, 2019) uses semi-
supervised learning for RUL estimation and proves to be ad-
vantageous in case of reduced amount of labeled training
data. Our approach based on ordinal regression provisions
for dealing with such scenarios by using censored instances
in addition to failed instances to obtain more robust models.
Our proposed approach is comparable to such approaches as
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we are using the cesored operational instances along with the
failed instances in the training procedure.

Ordinal Regression for Survival Analysis: Ordinal Regression
has been extensively used for applications such as age estima-
tion from facial images (Chang, Chen, & Hung, 2011; Yang,
Lin, Chang, & Chen, 2013; Niu, Zhou, Wang, Gao, & Hua,
2016; H. Liu, Lu, Feng, & Zhou, 2017), however; the applica-
tions are restricted to non-temporal image data using Convo-
lutional Neural Networks. (Cheng, Wang, & Pollastri, 2008;
Luck, Sylvain, Cardinal, Lodi, & Bengio, 2017) use feed-
forward neural networks based ordinal regression for survival
analysis. To the best of our knowledge, the proposed LSTM-
OR approach is the first attempt to leverage ordinal regression
based training using temporal LSTM networks for RUL esti-
mation.

Deep Survival Analysis: A set of techniques for deep sur-
vival analysis have been proposed in the medical domain, e.g.
(Katzman et al., 2018; Luck et al., 2017). However, it is not
clear as to how such approaches can be adapted for RUL esti-
mation applications, as they focus on estimating the survival
probability at a given point in time, and cannot provide RUL
estimates. On the other hand, LSTM-OR is capable of pro-
viding RUL estimates using time series sensor data.

Uncertainty quantification in RUL estimation models: Uncer-
tainty analysis in data-driven equipment health monitoring
is an active area of research and an unsolved problem. The
approaches described in (Sankararaman & Goebel, 2013),
(Sankararaman, Daigle, Saxena, & Goebel, 2013) use ana-
lytical algorithms to estimate the uncertainty in prognostics.
They consider various sources of uncertainty, such as the
loading and operating conditions of the system at hand, inac-
curate sensor measurements, etc. to quantify their combined
effect on RUL predictions. The various types of uncertainty
are propagated through state space models until failure. Also,
the future states of the system are estimated using the state
space models.

Unlike these approaches, we focus on estimating RUL as well
as predictive uncertainty by using an ensemble of deep neu-
ral networks to model the time-series of sensor data available
till a given point in time, without predicting the future states
of the system. Further, domain knowledge of the underlying
dynamics of a system is not needed to quantify uncertainty,
and therefore, our approach is much simpler to adapt.

Uncertainty quantification for deep neural networks: Re-
cently, (Gal & Ghahramani, 2016) proposed the use of
dropout at the inference time to provide Bayesian approxi-
mation in the RUL estimation. Further, (Lakshminarayanan
et al., 2017) proposed the use of an ensemble of neural net-
works for predictive uncertainty estimation and demonstrated
their use in comparison to Bayesian methods. Similarly, we
also use an ensemble of LSTM networks to estimate the em-

pirical uncertainty in RUL predictions.

3. BACKGROUND: DEEP LSTM NETWORKS

We use a variant of LSTMs (Hochreiter & Schmidhuber,
1997) as described in (Zaremba, Sutskever, & Vinyals, 2014)
in the hidden layers of the neural network. Hereafter, we de-
note column vectors by bold small letters and matrices by
bold capital letters. For a hidden layer with h LSTM units,
the values for the input gate it, forget gate ft, output gate ot,
hidden state zt, and cell state ct at time t are computed us-
ing the current input xt, the previous hidden state zt−1, and
the cell state ct−1, where it, ft, ot, zt, and ct are real-valued
h-dimensional vectors.

Consider Wn1,n2
: Rn1 → Rn2 to be an affine transform

of the form z 7→ Wz + b for matrix W and vector b of
appropriate dimensions. In the case of a multi-layered LSTM
network with L layers and h units in each layer, the hidden
state zlt at time t for the l-th hidden layer is obtained from the
hidden state at t−1 for that layer zlt−1 and the hidden state at
t for the previous (l−1)-th hidden layer zl−1t . The time series
goes through the following transformations iteratively at l-th
hidden layer for t = 1 through T , where T is the length of
the time series:


ilt

f lt

ol
t

gl
t

 =


σ

σ

σ

tanh

W2h,4h

(
D(z

l−1
t )

zlt−1

)
(1)

where the cell state clt is given by clt = f ltc
l
t−1+ iltg

l
t, and the

hidden state zlt is given by zlt = ol
ttanh(c

l
t). We use dropout

for regularization (Pham, Bluche, Kermorvant, & Louradour,
2014), which is applied only to the non-recurrent connec-
tions, ensuring information flow across time-steps for any
LSTM unit. The dropout operator D(·) randomly sets the
dimensions of its argument to zero with probability equal to a
dropout rate. The sigmoid (σ) and tanh activation functions
are applied element-wise.

In a nutshell, this series of transformations for t = 1 . . . T ,
converts the input time series x = x1 . . .xT of length T to
a fixed-dimensional vector zLT ∈ Rh. We, therefore, rep-
resent the LSTM network by a function fLSTM such that
zLT = fLSTM (x;W), where W represents all the parame-
ters of the LSTM network.

4. DEEP ORDINAL REGRESSION FOR RUL ESTIMA-
TION

4.1. Terminology

Consider a learning setD = {xi, ri}ni=1 of n failed instances,
where ri is the target RUL, xi = xi

1 . . .x
i
T i ∈ X is a mul-
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Figure 1. Deep Ordinal Regression versus Deep Metric Regression.
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Figure 2. Steps in LSTM-OR and Ensemble of LSTM-OR.

F

T

RUL r

0 0 1 1 1y

Input

(a) Failed Instance

F

T

Unknown

t
0

0 0 - - -

Masked

y

    Input 

(b) Censored Instance

Figure 3. Target vector creation for failed versus censored
instance.

tivariate time series of length T i, xi
t ∈ Rp, p is the number

of input features (sensors). The total operational life of an
instance i till the failure point is F i, s.t. T i ≤ F i. Therefore,
ri = F i−T i is the RUL in a given unit of measurement, e.g.,
number of cycles or operational hours. Hereafter, we omit the
superscript i in this section for better readability and provide

all the formulation considering an instance (unless stated oth-
erwise).

We consider an upper bound ru on the possible values of tar-
get RUL for training as, in practice, it is not possible to predict
too far ahead in the future. So if the target RUL r > ru, we
clip the value of r to ru. The usually defined goal of RUL
estimation via Metric Regression (MR) is to learn a mapping
fMR : X → [0, ru]. With these definitions, we next describe
LSTM-based Ordinal Regression (LSTM-OR) approach as
summarized in Figure 2(a), and then describe how we incor-
porate censored data into the LSTM-OR formulation.

4.2. LSTM-based Ordinal Regression

Instead of mapping an input time series to a real-valued num-
ber as in MR, we break the range [0, ru] of RUL values into
K intervals of length c = ru

K each, where each interval is
then considered as a discrete variable. The j-th interval cor-
responds to ((j − 1) · c, j · c), and r is mapped to the k-th
interval with k =

⌈
r
c

⌉
, where d.e denotes the ceiling func-
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tion.

We consider K binary classification sub-problems for the K
discrete variables (intervals): a classifier Cj solves the binary
classification problem of determining whether r ≤ j ruc . We
train an LSTM network for the K binary classification tasks
simultaneously by modeling them together as a multi-label
classification problem: We obtain the multi-label target vec-
tor y = [y1, . . . , yK ] ∈ {0, 1}K from r such that

yj =

{
0 j < k

1 j ≥ k
(2)

where j = 1, 2, . . . ,K.

For example, consider a scenario whereK = 5, and rmaps to
the third interval such that k = 3. The target is then given by
y = [0, 0, 1, 1, 1], as illustrated in Figure 3(a). Effectively, the
goal of LSTM-OR is to learn a mapping fOR : X → {0, 1}K
by minimizing the loss function LOR given by:

zLT = fLSTM (x;W)

ŷ = σ(WC zLT + bC)

LOR(y, ŷ) = −
1

K

K∑
j=1

yj · log(ŷj) + (1− yj) · log(1− ŷj)

(3)
where, ŷ is the estimate for target y, W represents the param-
eters of the LSTM network, and WC and bC are the param-
eters of the layer that maps zLT to the output sigmoid layer.

4.3. Using Censored Data for Training

For any censored instance, the data is available only till a time
T prior to failure, and the failure time F is unknown (illus-
trated in Figure 3(b)). Therefore, the target RUL r is also
unknown. However, at any time t0 s.t. 1 ≤ t0 < T , it is
known that the RUL r > T − t0 since the instance is op-
erational at least till T . Considering x = x1 . . .xt0 as the
input time series, we next show how we assign labels to few
of the dimensions yj of the target vector y: Assuming T − t0
maps to the interval k′ =

⌈
T−t0

c

⌉
, since T − t0 < r, we have⌈

T−t0
c

⌉
≤
⌈
r
c

⌉
=⇒ k′ ≤ k. Since k is unknown (as r is

unknown) and we have k′ ≤ k, the target vector y can only
be partially obtained:

yj =

{
0 j < k′

unknown j ≥ k′
(4)

For all j ≥ k′, the corresponding binary classifier targets
are masked, as shown in Figure 3(b), and the outputs from
these classifiers are not included in the loss function for the
instance. The loss function LORC given by Equation 3 can

thus be modified for including the censored instances in train-
ing as:

LORC(y, ŷ) = −
1

K ′

K′∑
j=1

yj · log(ŷj)+ (1− yj) · log(1− ŷj)

(5)
where K ′ = k′ − 1 for a censored instance and K ′ = K for
a failed instance.

Our approach can be seen as an instance of semi-supervised
learning. We have labels for classes corresponding to the un-
masked intervals while the labels for masked intervals are un-
known. In our proposed approach, we are able to use the in-
stances corresponding to the masked intervals despite incom-
plete label information. This approach is orthogonal to the
other efforts made in semi-supervised based RUL approaches
such as (Ellefsen et al., 2019) and can be combined together.

4.4. Mapping OR estimates to RUL

Once trained, each of the K classifiers provides a probability
ŷj for RUL being greater than the upper limit of the inter-
val corresponding to the j-th classifier. We obtain the point-
estimate r̂ for r from ŷ for a test instance as follows (similar
to (Chang et al., 2011)):

r̂ = ru(1−
1

K

K∑
j=1

ŷj) (6)

It is worth noting that once learned, the LSTM-OR model
can be used in an online manner for operational instances:
at current time instance t, the sensor data from the latest T
time instances can be input to the model to obtain the RUL
estimate r at t.

5. PREDICTIVE UNCERTAINTY QUANTIFICATION US-
ING ENSEMBLE OF LSTM-OR MODELS

Uncertainty quantification is essential in the case of RUL es-
timation as equipment and operations involved are often crit-
ical, and reliable predictions close to (but of course, prior
to) failures can help avoid catastrophic failures by generat-
ing suitable alarms beforehand. Lack of sufficient training
data, inherent noise in sensor readings, and uncertainty in the
future usage and operation of the equipment are few sources
of uncertainty in the case of data-driven predictive models for
RUL estimation.

Quantifying uncertainty in RUL estimates can assist ground
engineers and operators to arrive at more informed decisions
compared to scenarios where only RUL estimates are avail-
able without any metric indicating whether the model is par-
ticular about the estimate or not. In other words, uncertainty
quantification of the RUL estimate enhances the reliability of
data-driven models. This is even more relevant in deep neu-
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ral network-based estimation models due to their otherwise
black-box nature.

An uncertainty metric can be considered to be reliable if: i)
for low uncertainty values, i.e. whenever the model is con-
fident about its estimations, the corresponding errors in the
RUL estimations are low, and for high uncertainty values,
the corresponding errors in the RUL estimation model should
be high, ii) it produces RUL estimates with low uncertainty
when a failure is approaching, i.e. the model should be able
to precisely estimate the RUL with a high degree of certainty
close to failures.

To quantify the predictive uncertainty in the target vector es-
timate ŷ and the corresponding RUL estimate r̂, we con-
sider an ensemble learning approach. For training an ensem-
ble of LSTM-OR models, we consider all the training data
while using different (random) initializations of the parame-
ters (W,WC ,bC) of LSTM-OR models and random shuf-
fling of the training instances to obtain m different models in
an ensemble. We consider two measures for predictive uncer-
tainty, i.e., Empirical Standard Deviation (ESD) and Entropy
(ENT), defined as follows-

5.1. Empirical Standard Deviation (ESD)

The final RUL estimate of the ensemble is given by the simple
average of the RUL estimates of the m models in the ensem-
ble, and the empirical standard deviation (ESD) in the RUL
estimates is used as an approximation of the predictive uncer-
tainty in RUL estimation. More specifically, as shown in Fig-
ure 2(b), we train m LSTM-OR models such that we have m
RUL estimates r̂i for any instance, i = 1, . . . ,m. We obtain
the point estimate r̂ for r from r̂i for an instance as follows:

r̂ =
1

m

m∑
i=1

r̂i (7)

The uncertainty û in terms of ESD is given by:

ûESD =

√√√√ 1

m

m∑
i=1

(r̂i − r̂)2 (8)

We use min-max normalization to normalize the uncertainty
value (ûESD) for any instance where the minimum and max-
imum uncertainty values ûESD are obtained from the in-
stances in the hold-out validation set.

5.2. Entropy (ENT)

The uncertainty value in terms of entropy, similar to (Park &
Simoff, 2015), can be defined as follows:

Let Z be the set of possible values of the multi-label target
vector. In our case, since we are using OR, the number of

possible combinations for any givenK isK+1. For example,
when K = 3, Z = {[0, 0, 0], [0, 0, 1], [0, 1, 1], [1, 1, 1]}. For
entropy, we average out the m estimates to get the final ŷ =∑m

i=1 ŷi. The uncertainty for a test instance, considering the
independent nature of all of the K binary classifier is given
as follows:

ûENT = −
∑
z∈Z

P (z) log(P (z))

P (z) =

K∏
j=1

P (zj)

P (zj) =

{
ŷj zj = 1

1− ŷj zj = 0

(9)

For example, consider the case with m = 2 and K = 3.
Let ŷ1 be [0.16, 0.82, 0.97] and ŷ2 be [0.12, 0.86, 0.92], vec-
tors corresponding to the m models of length K. The final
ŷ vector is then given by the average of ŷ1 and ŷ2, ŷ =
[0.14, 0.84, 0.945]. Then, for each z ∈ Z , P (z) is calcu-
lated as follows: suppose z is [0, 0, 0], then P (z) = (0.86 ×
0.16 × 0.055) = 0.008 and P (z)log(P (z)) = −4.88. Simi-
larly, when z is [0, 1, 1], then P (z) = (0.86 × 0.84 × 0.945)
= 0.68 and P (z)log(P (z)) = −0.39. Finally, the uncertainty
value ûENT is given as the summation over such K + 1 val-
ues, corresponding to each z ∈ Z .

We normalize the uncertainty values (ûENT ) using the mini-
mum and maximum uncertainty values across all instances in
a hold-out validation set through min-max normalization. For
entropy calculations, we also tried by calculating the entropy
for each of the K classifiers individually and later averaging
them out to get the final one. But, it was less effective as
compared to the approach defined before.

We found ESD to be the most robust measure of uncertainty
as compared to ENT. We support this with experimental eval-
uation in Section 6.3.

6. EXPERIMENTAL EVALUATION

We evaluate RUL estimation and uncertainty quantification
approaches using the publicly available Commercial Mod-
ular Aero-propulsion System Simulation (C-MAPSS) air-
craft turbofan engine benchmark datasets (Saxena & Goebel,
2008). We provide an overview of the dataset in Section
6.1. We consider metric regression models and ordinal re-
gression models trained only on failed instances as baseline
models, and compare following approaches for RUL estima-
tion: i) MR: LSTM-MR using failed instances only (as in
(Zheng et al., 2017; Heimes, 2008; Gugulothu et al., 2017)),
ii) OR: LSTM-OR using failed instances only and using loss
as in Equation 3, iii) ORC: LSTM-OR leveraging censored
data along with failed instances using loss as in Equation 5.
We describe RUL estimation approaches in Section 6.2 using

6



INTERNATIONAL JOURNAL OF PROGNOSTICS AND HEALTH MANAGEMENT

ORCE model, which is a simple average ensemble of ORC
models. Further, to evaluate the uncertainty quantification ap-
proach as described in Section 5, we study the relationship of
uncertainty estimates with error and ground truth RUL in Sec-
tion 6.3 while also introducing novel metrics to evaluate the
efficacy of uncertainty estimates in the context of prognostics.

6.1. Dataset Description

We consider datasets FD001 and FD004 from the simulated
turbofan engine datasets1 (Saxena & Goebel, 2008). The
training sets (train FD001.txt and train FD004.txt) of the two
datasets contain time series of readings for 24 sensors (21
sensors and 3 operating condition variables) of several in-
stances (100 in FD001 and 249 in FD004) of a turbofan en-
gine from the beginning of usage till the end of life. The time
series for the instances in the test sets (test FD001.txt and
test FD004.txt) are pruned sometime prior to failure, such
that the instances are operational and their RUL needs to be
estimated. The actual RUL values for the test instances are
available in RUL FD001.txt and RUL FD004.txt. We ran-
domly sample 20% of the available training set instances, as
given in Table 1, to create a validation set for hyperparameter
selection.

For simulating the scenario for censored instances, a per-
centage pc ∈ {0, 50, 70, 90} of the training and validation
instances are randomly chosen, and time series for each in-
stance is randomly truncated at one point prior to failure. We
then consider these truncated instances as censored (currently
operational) and their actual RUL values as unknown. The re-
maining (100−pc)% of the instances are considered as failed.
Further, the time series of each instance thus obtained (cen-
sored and failed) is truncated at 20 random points in the life
prior to failure, and the exact RUL r for failed instances and
the minimum possible RUL T − t0 for the censored instances
(as in Section 4 and Figure 3) at the truncated points are used
for obtaining the models. The number of instances thus ob-
tained for training and validation for pc = 0 is given in Table
2. The test set remains the same as the benchmark dataset
across all scenarios (with no censored instances). The MR
and OR approaches cannot utilize the censored instances as
the exact RUL targets are unknown, while ORC can utilize
the lower bound on RUL targets to obtain partial labels as per
Equation 4.

An engine may operate in different operating conditions and
also have different failure modes at the end of its life. The
number of operating conditions and failure modes for both
the datasets is given in Table 1. FD001 has only one operating
condition, so we ignore the corresponding three sensors, such
that p = 21, whereas FD004 has six operating conditions
determined by the three operating condition variables. We

1https://ti.arc.nasa.gov/tech/dash/groups/pcoe/
prognostic-data-repository/#turbofan

map these six operating conditions to a 6-dimensional one
hot vector as in (Zheng et al., 2017), such that p = 27.

6.2. RUL Estimation

In this section, we define performance metrics to evaluate our
RUL estimation models, i.e. ORC and ORCE. Further, we
discuss our experimental settings, which is followed by re-
sults and observations. We also draw a comparison between
our proposed RUL estimation models and already existing
RUL estimation models.

6.2.1. Performance Metrics for Evaluating RUL Estima-
tion Models

There are several metrics proposed to evaluate the perfor-
mance of prognostics models (Saxena, Celaya, et al., 2008).
We measure the performance of our models in terms of Time-
liness Score (S) and Root Mean Squared Error (RMSE): For a
test instance i, the error in estimation is given by ei = r̂i−ri.
The timeliness score for N test instances is given by S =∑N

i=1(exp(γ · |ei|) − 1), where γ = 1/τ1 if ei < 0, else
γ = 1/τ2. Usually, τ1 > τ2 such that late predictions are pe-
nalized more compared to early predictions. We use τ1 = 13
and τ2 = 10 as proposed in (Saxena, Goebel, Simon, & Ek-
lund, 2008). The lower the value of S, the better is the per-
formance. The root mean squared error (RMSE) is given by:

RMSE =
√

1
N

∑N
i=1 e

2
i .

6.2.2. Experimental Setup

Dataset Train Validation Test OC FM
FD001 80 20 100 1 1
FD004 199 50 248 6 2

Table 1. Number of train, validation and test instances. Here,
OC: number of operating conditions, FM: number of fault
modes.

Dataset Train Validation Test
FD001 1600 400 100
FD004 3980 1000 248

Table 2. Number of truncated instances.

We consider ru = 130 cycles for all models, as used in (Babu
et al., 2016; Zheng et al., 2017). For OR and ORC, we con-
sider K = 10 such that interval length c = 13. For training
the MR models, a normalized RUL in the range 0 to 1 (where
1 corresponds to a target RUL of 130 or more) is given as the
target for each input. We use a maximum time series length
of T = 360; for any instance with more than 360 cycles, we
take the most recent 360 cycles. Also, we use standard z-
normalization to normalize the multi-sensor input time series
by using sensor-wise mean and standard deviation from the
train set.

The hyperparameters h (number of hidden units per layer),
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L (number of hidden layers) and the learning rate are chosen
from the sets {50, 60, 70, 80, 90, 100}, {2, 3} and {0.001,
0.005}, respectively. We use a dropout rate of 0.2 for regular-
ization and a batch size of 32 during training. The models are
trained for a maximum of 2000 iterations with early stopping.
The best hyperparameters are obtained using a grid search by
minimizing the respective loss function on the validation set.

6.2.3. Results and Observations

As summarized in Table 3, we observe that: As the num-
ber of failed training instances (nf ) decreases, the perfor-
mance for all models degrades (as expected). However, im-
portantly, for scenarios with small nf , ORC significantly out-
performs MR and OR. For example, as shown in Figure 4,
with pc = 90% (i.e. with nf = 8 and 20 for FD001
and FD004, respectively), ORC performs significantly bet-
ter than MR, and shows 15.1% and 3.6% improvement over
MR in terms of RMSE, for FD001 and FD004, respectively.
The gain in terms of timeliness score S for FD001 dataset
is higher because of the exponential nature of S (refer Sec-
tion 6.2.1). As S penalizes errors in RUL estimates expo-
nentially, substantial gains with decreasing nf in terms of S
further prove the robustness of OR compared to MR.

While MR and OR have access to only a small number failed
instances nf for training, ORC has access to nf failed in-
stances as well as partial labels from nc censored instances
for training. Therefore, MR and OR models tend to over-
fit while ORC model is more robust. Further, the proposed
ideas of ordinal regression and handling of censored data are
orthogonal to the choice of the deep learning architecture, we
hope that the same results would hold true for other exist-
ing approaches from literature such as those listed in Table 4
based on CNNs, DBNs and semi-supervised learning.

We further show the detailed performance comparison be-
tween ORC and ORCE in the Appendix A.1.

6.3. Uncertainty Quantification

For experiments related to uncertainty quantification, we con-
sider ORCE, an ensemble of m = 6 models (we consider
upto 10 models in the ensemble, and found m = 6 to work
best across the scenarios considered). For selecting m = 6
models from available 10 models, we ordered the models in
the ascending order of their respective loss values on the val-
idation set and then selected the first 6 models. The models
are trained on the best hyperparameters selected from the cor-
responding hyperparameter sets of ORC. While training dif-
ferent models, we ensure random initializations of the param-
eters of neural network and random shuffling of the training
instances. Further, we introduce various metrics used to eval-
uate the performance of the proposed ensemble-based uncer-
tainty estimation approach. Using these metrics, we demon-
strate the efficacy of the proposed approach from a practical

point of view. We compare the proposed ESD (Equation 8)
and ENT (Equation9) for uncertainty evaluation.

6.3.1. Performance Metrics for Evaluating Uncertainty
Quantification Methods

We expect our model to be precise (have high certainty) when
the RUL estimates are correct, and less confident (have low
certainty) for highly erroneous RUL estimates. We con-
sider an RUL estimation to be correct if the absolute error
|r−r̂| ≤ τe, and to be certain if the corresponding uncertainty
estimate û ≤ τu. Also, for evaluating the performance of un-
certainty metrics, we restrict the target RUL r to a maximum
of ru = 130 because we train our models with a maximum
target RUL of ru and so r̂ cannot be higher than ru. This is
done because even if the model confidently estimates r̂ close
to ru, a value of r much more significant than ru will lead
to high error and cannot result in proper performance evalu-
ation of the uncertainty metrics. Under the above consider-
ations, we measure precision and recall, refer Appendix A.2
for definitions, to evaluate the performance of the uncertainty
quantification approach.

We analyze the relation of uncertainty with nearness to fail-
ure, to avoid fatal consequences. It is desirable to have low
error as well as low uncertainty when r is low. To evalu-
ate this aspect, we study the variation in precision for differ-
ent RUL thresholds τr, considering test instances with low
ground truth RULs. The modified precision Pl in this context
is given by:

Pl =
#(r ≤ τr) ∩#(û ≤ τu) ∩#(|r − r̂| ≤ τe)

#(r ≤ τr) ∩#(û ≤ τu))
(10)

For given thresholds τr and τu, Pl quantifies the fraction of
test instances with actual RUL r ≤ τr and uncertainty ≤ τu
that also have error ≤ τe .

6.3.2. Results and Observations

For the sake of brevity, we restrict the results and observations
to the uncensored scenario, i.e., pc = 0%. Similar results and
observations for models corresponding to censored scenarios
are presented in Appendix A.3.

Comparing ESD vs Entropy (ENT) as uncertainty metric:
Precision and Recall (as in Equation 11) are used to compare
the two approaches for uncertainty estimation. Precision-
Recall curves are obtained by varying the threshold on un-
certainty 0.1 ≤ τu ≤ 1.5 while keeping τe = 10. We ob-
serve that for R ≥ 0.1, P is higher in case of ESD for FD001
dataset, shown in Figure 6(a). Similar behavior is observed in
case of FD004 dataset, for R ≥ 0.2, shown in Figure 6(b).

We further plot F1 score (as in Equation 11) by varying the
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FD001 FD004
Instances RMSE Timeliness Score (S) Instances RMSE Timeliness Score (S) ×10−3

pc(%) nf nc MR OR ORC MR OR ORC nf nc MR OR ORC MR OR ORC
0 80 0 15.62 15.63 15.63 507.2 367.64 367.64 199 0 26.88 28.33 28.33 4.92 6.44 6.44
50 40 40 17.56 19.06 17.60 444.1 564.14 572.63 100 99 29.71 32.85 31.48 7.97 17.9 9.83
70 24 56 19.92 16.48 18.53 713.31 362.21 561.11 60 139 33.17 33.65 32.13 18.8 17.4 12.0
90 8 72 25.32 24.83 21.51 1.26× 104 3.07× 104 20.64× 102 20 179 41.23 43.88 39.75 102.0 111.0 141.13

Table 3. Comparison of various LSTM-based approaches, considered in the terms of RMSE and Timeliness Score (S) for
FD001 and FD004 datasets. nf and nc denote number of failed and censored instances in training set, respectively. For small
nf , OR and ORC perform significantly better than MR.
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Figure 4. %age gain of ORC over MR with decreasing number of failed instances (nf ) in training.

FD001 FD004
Method RMSE S ×10−2 RMSE S×10−3

LSTM-MR (Zheng et al., 2017) 16.14 3.38 28.17 5.55
MR (ours) 15.62 5.07 26.88 4.92

OR/ORC (proposed) 15.63 3.68 28.33 6.44
CNN-MR (Babu et al., 2016) 18.45 1.29 29.16 7.89

MODBNE (C. Zhang, Lim, Qin, & Tan, 2016) 15.04 3.34 28.66 6.56
CNN + FNN (Li, Ding, & Sun, 2018) 12.61 2.74 23.31 12.47

Semi-supervised setup (Ellefsen et al., 2019) 12.56 2.31 22.66 2.84

Table 4. Performance comparison of the proposed approach
with existing state-of-the-art approaches on the full dataset in
terms of RMSE and Timeliness Score (S).

τu, shown in Figure 6(c) and 6(d), which shows that ESD is
a better uncertainty quantification metric compared to ENT.
(We also analyze the instances for which ESD has unexpected
behavior in terms of low uncertainty while having a high error
in RUL estimate. The observations are given in Appendix
A.3.)

Relation between uncertainty and error: For a reliable model,
RUL estimates with high certainty must be accurate, i.e., have
low RUL estimation errors. To evaluate the performance of
uncertainty metric in this context, we consider instances with
uncertainty û ≤ τu, and compute the average error in RUL
estimation for these instances. As shown in Figure 5(a), we
observe that for low values of τu, the average error thus com-
puted is also low, indicating that the model is more accurate
when it is more specific. Further, as expected, we observe
an increase in average error with increasing τu, suggesting
that the RUL estimates tend to be more erroneous when the
model is uncertain. For censored data we have shown results
in Figure 7, in Appendix.

Relation between uncertainty and actual RUL: For quantify-
ing the relationship between RUL and uncertainty, Pl is cal-
culated as in Equation 10. Pl is computed for varying τr,

ranging from 10 to 130 and, keeping τu and τe fixed as 0.2
and 10 respectively. From a practical point of view, higher
precision (Pl) in case of lower values of τr is expected to cor-
rectly and confidently handle instances that are approaching
failure. A similar trend is observed in our case also, as shown
in Figure 5(b). For τr = 20, Pl = 0.917 for FD001 dataset
and Pl = 0.857 for FD004 dataset suggests that the model
is certain and accurate 91.7% of the times for FD001 dataset
and 85.7% of the times for FD004 dataset. For censored data
we have shown results in Figure 8, in Appendix.

7. CONCLUSION AND DISCUSSION

In this work, we have proposed a novel approach for RUL es-
timation using deep ordinal regression based on multilayered
LSTM neural networks. We have argued that ordinal regres-
sion formulation is more robust compared to metric regres-
sion, as the former allows for the incorporation of more la-
beled data from censored instances. We found that leveraging
censored instances significantly improves performance when
the number of failed instances is small. In future, it would
be interesting to see if a semi-supervised approach (e.g., as in
(Yoon et al., 2017; Gugulothu, TV, et al., 2018)) with initial
unsupervised pre-training of LSTMs using failed as well as
censored instances can further improve the robustness of the
models. Also, an extension to the proposed approach to ad-
dress the usually encountered non-stationarity scenario using
strategies similar to (Saurav et al., 2018) can be considered.
It is to be noted that although we have experimented with
LSTMs for Ordinal Regression, our OR approach is generic
enough to be useful for any neural network, e.g. CNNs.

Further, we have proposed a simple yet effective approach to
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Figure 5. Performance evaluation of ESD as an uncertainty metric showing: (a) lower uncertainty values corresponding to low
RUL estimation errors, (b) highly precise and correct uncertainty estimates close to failures, i.e. when RUL is low.

0.1 0.2 0.3 0.4 0.5
Recall (R)

0.6

0.7

0.8

0.9

1.0

Pr
ec

isi
on

 (P
) 0.1

0.2

0.4
0.6

0.8

0.1

0.2

0.4
0.6

0.8

ESD
ENT

(a) FD001

0.1 0.2 0.3 0.4 0.5
Recall (R)

0.5

0.6

0.7

0.8

0.9

1.0

Pr
ec

isi
on

 (P
)

0.1

0.2
0.3

0.4
0.6

0.1

0.2

0.3

0.4
0.6

ESD
ENT

(b) FD004

0.25 0.50 0.75 1.00 1.25 1.50
Uncertainty Threshold u

0.1

0.2

0.3

0.4

0.5

0.6
F1

 S
co

re

ESD
ENT

(c) FD001

0.25 0.50 0.75 1.00 1.25 1.50
Uncertainty Threshold u

0.2

0.3

0.4

0.5

F1
 S

co
re

ESD
ENT

(d) FD004

Figure 6. Comparison of ESD and ENT as measures of uncertainty in terms of (a)-(b) Precision Recall Curves; and (c)-(d) F1
Scores with varying τu. ESD is a more robust uncertainty metric compared to ENT.

quantify uncertainty in the RUL estimates by using a sim-
ple average ensemble of the deep ordinal regression mod-
els. The proposed empirical standard deviation based metric
for uncertainty provides accurate predictive uncertainty esti-
mates: we observe low errors in RUL estimation for low un-
certainty values. Further, the model is found to be accurate
with high certainty when the remaining useful life is mea-
ger, i.e., the instance is approaching failure. It will be inter-
esting to see if the ensemble based approach for uncertainty
quantification can be extended to metric regression models as
well using uncertainty methods for regression as proposed in
(Lakshminarayanan et al., 2017).

The proposed approach for uncertainty estimation focuses on
aleatoric uncertainty. To make the approach more practical,
it is essential to include techniques that address epistemic un-
certainty factors such as measurement noise and model pro-
cess noise. Modelling epistemic uncertainty in deep learning
models for timeseries has been recently studied in (Zhu &
Laptev, 2017). They consider training an encoder-decoder
framework to obtain latent representation of any given time-
series from the encoder. Once trained, the distance between
any new given timeseries and the training set timeseries is

calculated in the embedded space. If the calculated distance
is found to be smaller, the prediction for the given new time-
series will be certain in nature and vice-versa. Moreover, for
training an ensemble model for the purpose of uncertainty
quantification, bagging can also be considered as an alter-
native approach where different random distributions of the
training set are used to train different models. Further, the
proposed metrics for uncertainty estimation need to be vali-
dated on other datasets such as battery failure as in (D. Liu,
Luo, Peng, Peng, & Pecht, 2012) to establish their effective-
ness and generalizability.
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A. APPENDIX

A.1. Performance Comparison between ORC and ORCE

As expected and summarized in Table 5, we observe that the
ensemble of ORC models (i.e. ORCE, as used for the uncer-
tainty quantification task), performs consistently better than
ORC. Our MR implementation and the results are similar to
LSTM-MR in (Zheng et al., 2017) (except, possibly for the
choice of hyperparameters and train-validate splitting as the
code to reproduce their results is not available). We observe
that OR and ORC is not better than LSTM-MR for the full
data scenario. However, in this work, we only intend to show
the advantage of ORC for RUL estimation in highly censored
scenarios with only a small number of failed instances.

A.2. Precision and Recall

Precision is the fraction of test instances with uncertainty be-
low a threshold τu that also have error≤ τe. Recall is defined
as the fraction of test instances having uncertainty and error
below some threshold τu and τe, respectively. More specifi-
cally:

Precision(P ) =
#(û ≤ τu) ∩#(|r − r̂| ≤ τe)

#(û ≤ τu)
,

Recall(R) =
#(û ≤ τu) ∩#(|r − r̂| ≤ τe)

#(test instances)
,

F1 = 2× P ×R
P +R

(11)

where #(X) denotes the number of instances satisfying the
condition X .

A.3. Detailed Evaluation for Uncertainty Quantification

Instance Level Analysis: We perform a qualitative analysis of
test instances having low uncertainty values despite having
high error values to understand the scenarios where our pro-
posed uncertainty quantification measure is failing. For such
a test engine (test instance), we consider three nearest engines
from the training set where nearness is defined in terms of Eu-
clidean distance between the target vector estimate ŷ of test
and training engines. After finding the nearest training en-
gines, we plot the first PCA component corresponding to the
test and respective nearest training engines.

For the PCA process, each multivariate reading from each

timestamp is reduced to univariate reading by taking the first
principal component, as discussed in (Malhotra, TV, et al.,
2016).

PCA plot for test engine#93 from FD001 is shown in Figure
9(a). Although a large number of cycles have passed for this
instance, it has a significantly high RUL. The entire life of this
instance is 329, making it a rare example as instances with
such high full cycles are not observed in the training data.
Despite the passage of a higher number of cycles, RUL is very
high. Training engines with such high RUL are rare, which is
leading to higher error in spite of having low uncertainty.

Similarly, PCA plot for test engine#166 from FD004 is shown
in Figure 9(b). Due to the assumption of having maximum
RUL r as 130 in ORC formulation, predicted life is around
130, even though the actual life is significantly higher. This
clipping effect causes high error. Moreover, scarcity of train-
ing engines with such high RUL further leads to an increase
in error in spite of having low uncertainty.

Uncertainty Evaluation wrt Error: We expect our model to
be highly uncertain for higher error values. To evaluate the
same, we calculate Ce as follows:

Ce =
#(|r − r̂| ≤ τe) ∩#(û ≤ τu)

#(|r − r̂| ≤ τe)
(12)

where, Ce is the fraction of test instances with error and un-
certainty ≤ τe and ≤ τu respectively.

We compute Ce at varying error threshold, 10 ≤ τe ≤ 130
and fixing uncertainty threshold τu as 0.2. The results are
shown in Figure 11. At lower τe, higher Ce indicates that a
higher fraction of correct predictions is confident in nature.

Relationship Between Error and Uncertainty: RUL estimates
with lower error values are expected to be certain in nature.
For evaluating the uncertainty quantification metric from this
aspect, we plot the relationship between error and average un-
certainty, shown in Figure 10. Average uncertainty value at
given τe is computed by considering the test instances with
RUL estimate error ≤ τe and we then average out the uncer-
tainty values corresponding to these filtered out test instances.
We observe that at lower error thresholds, the computed aver-
age uncertainty is also low, indicating the preciseness of the
RUL estimation model. Further, the increase in average un-
certainty with an increase in error threshold indicates reliable
behavior of the RUL estimation model.
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Figure 7. Average Error at varying τu.
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Figure 8. Uncertainty Evaluation wrt RUL.
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Figure 9. Instance Level Analysis (PCA) showing instances with low uncertainty estimate but high error in RUL estimate.
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Figure 10. Average Uncertainty with varying τe indicating low uncertainty values when error in RUL estimates is low.

FD001 FD004
Instances RMSE Timeliness Score (S) Instances RMSE Timeliness Score (S) ×10−3

pc(%) nf nc ORC ORCE ORC ORCE nf nc ORC ORCE ORC ORCE
0 80 0 15.63 14.62 367.64 292.76 199 0 28.33 27.47 6.44 5.24
50 40 40 17.60 15.98 572.63 372.26 100 99 31.48 30.62 9.83 7.86
70 24 56 18.53 16.57 561.11 404.94 60 139 32.13 31.27 12.0 9.59
90 8 72 21.51 20.38 20.64× 102 13.57× 102 20 179 39.75 38.41 141.13 60.72

Table 5. Comparison of ORC and ORCE considered in terms of RMSE and Timeliness Score (S) for FD001 and FD004
datasets. nf and nc denote number of failed and censored instances in training set, respectively.
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Figure 11. Uncertainty Evaluation w.r.t. Error.
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