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ABSTRACT

Modern vehicles are more and more connected. For instance,
in the aerospace industry, newer aircraft are already equipped
with data concentrators and enough wireless connectivity to
transmit sensor data collected during the whole flight to the
ground, usually when the airplane is at the gate. Moreover,
platforms that were not designed with such capability can be
retrofitted to install devices that enable wireless data collection,
as is done on Airbus A320 family. For military and heavy
helicopters, HUMS (Health and Usage Monitoring System)
also allows the collection of sensor data. Finally, satellites
send continuously to the ground sensor data, called telemetries.
Most of the time, fortunately, the platforms behave normally,
faults and failures are thus rare.

In order to go beyond corrective or preventive maintenance,
and anticipate future faults and failures, we have to look for
any drift, any change, in systems’ behavior, in data that is
normal almost all the time. Moreover, collected sensor data
is time series data. The problem is then anomaly detection or
novelty detection in time series data.

Among machine learning techniques that can be used to an-
alyze data, Deep Learning, especially Convolutional Neural
Networks, is very popular since it has surpassed human capac-
ities for image classification and object detection. In this field,
Generative Adversarial Networks are a technique to generate
data similar to a potentially high dimension original dataset.
In our case, generate new data could be useful to enrich the
learning dataset with generated abnormal data to make it less
unbalanced. Yet we are more interested in the potential of such
techniques to perform anomaly detection for high dimensional

Mélanie Ducoffe et al. This is an open-access article distributed under the
terms of the Creative Commons Attribution 3.0 United States License, which
permits unrestricted use, distribution, and reproduction in any medium, pro-
vided the original author and source are credited.

data, comparing newly observed data with data that could
have been generated from a distribution built from normal
examples.

1. INTRODUCTION

For years, aeronautics industry has been working on prognos-
tics and health management in order to anticipate faults on
aircraft and provide predictive maintenance services for its
customers. Several PHM tools have been developed that suc-
cessfully anticipate faults and give advice to airlines in order
to reduce the operational impact. The main difficulty is usu-
ally to determine the health indicators that allow to accurately
estimate components health and predict remaining useful life.
First, we have used data that was available to build health indi-
cators for components that had the most operational impact for
our customers. The data was composed of snapshots of sensor
values taken at specific moments of flight and event data, such
as fault occurrences and maintenance actions. Building health
indicators was done by gathering data analysts with system
experts together to make sense of data by comparing sensor
values in faulty conditions and in normal conditions. Thanks
to good results with this first way of working, it was possible
to convince our customers to give us access to their full flight
sensor data, that became the cornerstone for the Skywise plat-
form. With this new type of data available, we continued to
work with the same setup, just adapting to the much richer
data available.

The next step we are preparing is building health indicators
for faults that have never occurred on the fleet. To achieve this
objective, we cannot rely on labeled data and system expertise
to determine health indicators. The strategy is to use anomaly
detection and use the anomaly score as a health indicator
candidate. As degradation progresses with the aging of the
component, the anomaly score will increase until reaching
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the end of life. Of course, as we do not know what will be
the level of anomaly score when reaching the end of life, it is
not possible to make a prediction without adding additional
knowledge. The potential usage of anomaly scores will be
discussed in the last section of the paper.

We have tested different approaches for anomaly detection in
multivariate time series data. In this paper, we will focus on a
technique using deep learning and generative models, namely
Generative Adversarial Networks (GAN).

In the first section of this paper, we will present related works
for anomaly detection, anomaly detection using deep learning
and anomaly detection using GAN techniques. The second
section will describe the adaptation we propose on GAN for
anomaly detection, followed by a section describing experi-
ments on MNIST datasets to benchmark with classical meth-
ods and on an accelerometer dataset to give an example of
fault detection. In the fourth section, we will discuss how
anomaly detection can be used concretely in a PHM context,
addressing different questions that are important when dealing
with anomaly detection.

2. RELATED WORK

Anomaly detection sums up techniques whose goal is to pre-
vent the apparition of non-conforming data, denoted as abnor-
mal data. It has been applied in various domains, ranging from
fraud detection, cyber-security or image classification... It is
a prevalent topic into the PHM community, with applications
such as aircraft engine fault detection (Chandola, Cheboli, &
Kumar, 2009) or wind turbine fault detection (Tolani, Yasar,
Ray, & Yang, 2006) among others.

Firstly, we briefly overview shallow models for anomaly de-
tection. Note that we do not consider cases where we have
access to both normal and abnormal data and thus focus on
the unsupervised setting consisting of training data made only
of normal data.

Among the possible methods adopted in the literature to per-
form anomaly detection, Local Outlier Factor (LOF) and Iso-
lation Forest are widely used candidates (Breunig, Kriegel,
Ng, & Sander, 2000),(Liu, Ting, & Zhou, 2008). LOF aims
to detect whether a sample is isolated or not by computing
its distances to its neighbors. Whereas Isolation Forest com-
putes a random partitioning of the features and it results that
anomalies require less splitting to be identified. Although
those previous methods may be efficient when considering
low dimensional input data, their performance is limited when
dealing with high dimensional data. Eventually, they have
been naturally extending to the high dimensional cases using
deep features: in (Deecke, Vandermeulen, Ruff, Mandt, &
Kloft, 2018), Deecke used LOF, and Isolation Forest and com-
bine them with deep features to represent the input data. Such
deep features are intermediate vector representations outputs

by popular networks trained on ImageNet. Those methods
underperform deep learning methods for anomaly detection;
thus they have been mainly used as a baseline. Since shallow
methods are inadequate for the analysis of high-dimensional
data, recent works have tackled anomaly detection using deep
neural networks. Part of those works extend one class support
vector machines to detect anomalies, also known as OC-SVM
(Chen, Zhou, & Huang, 2001; Erfani, Rajasegarar, Karunasek-
era, & Leckie, 2016), but replace the support vector machine
by a deep network: most of the normal input data are mapped
into a hypersphere whereas mapping of anomalies is supposed
to fall outside the hypersphere. Similarly, One Class Neural
Network (OC-NN) learns a hyperplane on top of a neural
network to separate normal from abnormal data (Chalapathy,
Menon, & Chawla, 2018).

Note that certain works are image specific and rely on geo-
metrical transformation invariance which is out of the scope
of this paper. A recent work casts deep anomaly detection as
a four player game. They assume that normal training data
are local minimizers of an unknown function (a standard as-
sumption for anomaly scoring), thus any neighbor to a normal
training data that minimizes locally this function is necessar-
ily an anomaly, based on the previous assumption. They use
this strategy to generate “hard anomalies” that challenge the
training process of a classifier that predicts whether the data
is normal or not. Finally, this classifier is used for anomaly
detection. However, the training of this method is highly un-
stable, and create hard anomalies without physical structure
(Wolf, Benaim, & Galanti, 2018).

Generative Adversarial networks have been proposed as a new
framework for estimating generative models via an adversarial
process by (Goodfellow et al., 2014). Two models are trained
simultaneously: a generative model G that captures the data
distribution and a discriminative model D that estimates the
probability that a sample came from the training data rather
than from G. Figure 1 describes the training procedure.

Figure 1. Generative Adversarial Networks

Indeed, several works derive generative deep modeling (either
variational autoencoders or GANs) for anomaly detection (An
& Cho, 2015; Schlegl, Seeböck, Waldstein, Schmidt-Erfurth,
& Langs, 2017; Deecke et al., 2018). The principle is as
follows: they learn the induced distribution and then assert
whether a sample was part of this distribution, by mapping it to
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the closest sample in the generated distribution. They tackled
this mapping, either by learning an autoencoder learnt during
the training like VAEs or DCAEs (An & Cho, 2015; Masci,
Meier, Cireşan, & Schmidhuber, 2011; Donahue, Krähenbühl,
& Darrell, 2016), or by doing optimization scheme in the latent
dimension directly (Schlegl et al., 2017),(Deecke et al., 2018).

(Schlegl et al., 2017), (Deecke et al., 2018), whose methods
are respectively denoted as AnoGAN and AD-GAN, optimize
the latent dimension with gradient descent to approximate at
best a given input. If they do succeed in reconstructing the
data up to a certain threshold, then the data is recognized as
normal. Otherwise, it is detected as anomalous. The main
difference between both works consists of the loss function
used for the reconstruction: while AD-GAN uses solely the
euclidian distance between the input and the generator’s out-
put, AnoGAN balances this loss with the euclidian distance
between a hidden layer of the discriminator. Indeed, AnoGAN
assumes that the discriminator should not make any differ-
ence between the real sample and its projection. Moreover,
AnoGAN runs the optimization only once by setting the initial
value of the latent dimension randomly, while AD-GAN uses
several seeds. Also, AD-GAN finetunes the generator during
the optimization.

When it comes to generating time series data, previous works
proposed to use Recurrent Neural Networks for both the gen-
erator G and the discriminator D to take into account the
sequential nature of the input data. Eventually they generated
fake time series with sequences from a random noise space.
Note that those works still requires the duration of the input
signal to be fixed.

None of (Schlegl et al., 2017), (Deecke et al., 2018) yield
an efficient way of estimating the input noise that outputs a
given input data. Moreover, training GANs is a challenging
optimization task, even more, when considering non-image
data, so that adding the encoder during the training stage as
in (Donahue et al., 2016) may harness the generated samples
quality.

In this work, we propose an end to end approach to perform
anomaly detection with deep generative models. Unlike previ-
ous approaches using GANs for anomaly detection, we train
an encoder that maps the input data to the noise distribution
post-hoc. Simultaneous and independent work by (Schlegl,
Seeböck, Waldstein, Langs, & Schmidt-Erfurth, 2019) also
considers this approach to perform anomaly detection on med-
ical images.

3. WASSERSTEIN GAN FOR ANOMALY DETECTION

3.1. Motivations

The original formulation of GAN usually suffer from the mode
collapse problem. Instead of learning a good representation
of the data, the generator only learns to reproduce a small

fraction of the variability of the dataset. This is mainly due to
GAN training procedure: since the generator is rewarded if it
produces good realistic samples (by fooling the discriminator),
it is not encouraged to produce other samples that might be
not as good for the discriminator as the ones already found.
Nevertheless, these other samples might help capture other
existing ”modes” in the dataset. To address this problem, a re-
cent investigation focused on directly learning the distribution
of the dataset using the 1-Wasserstein distance.

The Wasserstein distance is a powerful tool based on the the-
ory of optimal transport to compare data distributions with
wide applications in image processing, computer vision, and
machine learning.

More formally, let X be a metric space endowed with a met-
ric dX . Let p ∈ (0,∞) and Pp(X) the space of all Borel
probability measures µ on X with finite moments of order p,
i.e.
∫
X
dX(x, x0)

pdµ(x) <∞ ∀ x0 ∈ X . The p-Wasserstein
distance between µ and ν is defined as:

Wp(µ, ν) = inf
π∈Π(µ,ν)

( ∫ ∫
X×X

d(x, y)pdπ(x, y)
) 1
p (1)

When p = 1, W1 is also known as Earth Mover’s distance
(EMD) when considering discrete distributions. In this case,
EMD can be computed exactly using linear programming at
a cubic cost. Wasserstein Generative Adversarial Networks
(W-GAN) (Arjovsky, Chintala, & Bottou, 2017) were first
introduced as a solution to the mode collapse problem. Indeed,
since the Wasserstein distance is continuous and is a global
function, it forces the network not to focus on a subset of the
distribution. Wasserstein GAN learns a generator on a noise
distribution (generally gaussian) so that the output distribution
matches the groundtruth distribution. They measure the quality
of the generated distribution with the 1-Wasserstein distance.
In its primal form, the Wasserstein distance requires to mea-
sure the expectation of the distances between two continuous
distributions which may not be tractable in high dimension.
Instead, the formulation of Wasserstein GAN relies on the
dual expression of the 1-Wasserstein distance, which allows
nicer optimization properties:

W1(Pr,Pθ) = sup
f,||f ||L≤1

(
Ex∼Pr [f(x)]−Ex∼Pθ [f(x)]

)
(2)

Based on the primal form of the 1-Wasserstein distance, W-
GAN considers solving the following objective function:

max
D,||D||L≤1

(
Ex∼Pr [D(x)]− Ez∼p(z)[D(G(z))]

)
(3)

Assuming that we would reach this supremum, then one could
optimize the generator G to minimize the Wasserstein dis-
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tance between the distribution of generated samples with Pr.
Eventually, by iterating on this process, the output of the gen-
erator would theoretically converge to the true distribution Pr
(Arjovsky et al., 2017).

The formulation of W-GAN relies on using a universal approx-
imator of 1 Lipschitz function for the discriminator. Lipschitz
functions are defined as follows:

Definition: Lipschitz

Let a function f be M-Lipschitz continuous if there exist a
constant M > 0 such that:

∀ x1, x2 ∈ X, dY
(
f(x1), f(x2)

)
≤MdX

(
x1, x2

)
While deep neural networks are Lipschitz by design 1, there are
no necessary conditions than their Lipschitz constant equals
1, as required in Eq.(2). However, note that if we optimize
Eq.(2) using a M bounded Lipschitz discriminator f , we end
up converging to M ∗W1(Pr,Pθ), thus optimizing the gener-
ator to a cost function proportional to the exact Wasserstein
distance. This implies that we only need to enforce that the
discriminator has bounded Lipschitz constant. In practice, the
only known method to upper-bound the Lipschitz constant
of a neural network is by using weight clipping. Although
this regularization scheme is theoretically sounded, its usage
renders the training stage unstable. As a consequence, soft
approximations are preferred in the literature, such as gradi-
ent regularization (Gulrajani, Ahmed, Arjovsky, Dumoulin, &
Courville, 2017) or spectral regularization (Miyato, Kataoka,
Koyama, & Yoshida, 2018).

3.2. Dealing with time series of various duration

In practice, data generated by sensors are of varying length.
Except for satellites that have a mission with a periodic pattern,
airplanes and helicopters have missions that do not last always
the same time. On the other end, Wasserstein distance assumes
that the samples live in the same space and thus have the same
dimension: the same number of parameters and the same time
length.

In the case where the phenomenon of interest is much smaller
than the total mission length of the asset, the most common
way is to fix the time length and cut the total mission into
smaller chunks of fixed size. The choice of this length is some-
times tricky. It has to be small in order to avoid too many
dimensions but large enough to capture the phenomenon. In
the case where the phenomenon is the full-time series of the
mission, one can pad the time series to obtain a unique time
length (the largest of the dataset), but the user must be aware
of the impact of padding and the false positive it might create,

1By feed-forward neural network we mean a function composed by affine
transformations and point-wise non-linearities which are smooth Lipschitz
functions (such as the sigmoid, tanh, elu, softplus, etc)

as the way the sequences are extended will become normal-
ity. Another solution consists in embedding the data using for
example dictionary learning (Yazdi, Douzal-Chouakria, Galli-
nari, & Moussallam, 2018) where the atoms are time series of
different length. However, this extension is left as future work.
Finally, Dynamic Time Warping is a technique to compute
distances between time series of different length and can be
used to project on a common time mesh. Nevertheless, as we
want to capture the dynamics of the signal, warping time is
not desirable as it impacts the dynamics.

3.3. Evaluating and Monitoring Wasserstein GAN on time
series

Among the possible issues occurring when training a GAN,
the lack of correlation between the losses and the quality of
the generated samples is probably the most challenging. When
it comes to image generation, it has been frequently observed
that the generator cost and the samples’ quality were not al-
ways correlated: often the generator’s cost increases but the
samples’ quality is actually improving. Hence, tuning a GAN
requires a human in the loop to assert the loss visually. Al-
though, when dealing with image generation, specific scores
have been proposed like Parzen windows (Borji, 2019), those
estimates can be deceptive (Theis, Oord, & Bethge, 2015).
Thus, GANs for image generation are usually asserted by hu-
man evaluation using a distributed platform for human labor
such as Mechanical-Turk. However, when dealing with time
series, those scores are not adapted and the evaluation gener-
ally requires a domain expert. Also, (Li et al., 2019) attempt
to evaluate the quality of their GAN using derived statistics.
Indeed, unlike image generation, it may not be possible to
evaluate visually how well the generator has captured the un-
derlying distribution of time series data. Moreover, optimizing
the hyperparameter setting become challenging as one cannot
provide an evaluation metric. For all this reason designing a
thoughtful metric to analyze the performance of the generator
appears highly relevant.

When it comes to 1-Wasserstein distance, an approximation
would consist in measuring the loss of the Discriminator. In-
deed since the discriminator should converge up to a multi-
plicative constant, to the Wasserstein distance, we can use the
discriminator’s loss as a reference when the discriminator has
converged. Also, a well-known estimator of the Wasserstein
distance is the Earth Mover distance. In (Weed & Bach, 2017),
authors demonstrate that the EMD of n random samples from
both distributions is an estimator of the 1-Wasserstein dis-
tance. The quality of this estimator naturally depends on the
size of the subset, as it convergences at a 1

nd
speed with d

the number of parameters. Hence, the main limitation of this
estimator is the computational cost of EMD, which is polyno-
mial in n, and thus not tractable for large dimensions (many
sensors, many time steps). A possible trick is to approximate
the EMD with faster metric distributions such as Sinkhorn, or
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Sliced Wasserstein distance (Cuturi, 2013; Kolouri, Nadjahi,
Simsekli, Badeau, & Rohde, 2019).

4. ANOMALY DETECTION

Anomaly detection for time series consists of identifying
whether the testing data conform to the normal data distri-
bution. We depict the overall architecture of the proposed
method in Figure 2

First, we train a Wasserstein GAN: a discriminator D tries to
maximize the expectation of its predictions over natural data
minus the expectation of its predictions over generated data,
as depicted in Eq. (3). In a second step, a generator G tries to
fool the discriminator by maximizing the expectation of the
discriminator’s predictions on generated data. This iterative
process approximates the minimization of the 1-Wasserstein
distance between the distribution of normal samples and the
distribution of generated samples.

A third step consists in deriving the generative process into
an anomaly scorer. This stage is independent of the training
of GANs adopted. In that aim, previous works decoupled the
anomaly scoring into two sub-metrics:

1. A Discriminator-based Anomaly Scorer:
Since the Discriminator is trained to recognize normal
data from generated data, (Schlegl et al., 2017) proposed
to use the euclidian loss on some latent dimensions of
the discriminator. However, we have no proof whether
the anomaly is part of any distribution (either normal or
generated). Thus, we do not know how the discriminator
will behave when confronted with an anomaly.

2. A Reconstruction-based Anomaly Scorer:
One of the main flaw raised towards those methods is that
they are computationally extensive since they require to
optimize the noise distribution to fit a sample. Other GAN
frameworks integrate into their loss a cost to reconstruct
the training data thanks to an encoder. Hence, they learn
a bijective mapping such as VAEs or BiGAN. Eventually,
thanks to the encoder, they compute the reconstruction
error that will be used as an anomaly scorer. However,
requiring a bijective mapping through the training im-
pacts the quality of the Wasserstein GAN. Indeed, opti-
mizing a Wasserstein GAN with a deterministic encoder
comes to solving the Monge Mapping problem which
is a non-convex optimization problem for which neither
the existence nor the unicity is guaranteed in the general
case (Brenier, 1991). When it comes to the Wasserstein
distance, also known as the Kantorovich mapping, it as-
sumes a probabilistic mapping between the distribution
of normal data and the distribution of generated data.

Wasserstein distance assumes a probabilistic mapping. Adding
an encoder during the training phase creates an additional de-

(a) Step 1: training a W-GAN

(b) Step 2: freeze the generator and train an
encoder

(c) Step 3: use the reconstruction error as an
anomaly scorer

Figure 2. Description of the different steps involved in our
anomaly detection
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terministic constraint that makes the training of the generator
harder. Nevertheless, at convergence of the W-GAN, it seems
reasonable to assume that an almost deterministic mapping
has been built. Eventually, it appears that a natural trade-off
between learning a deterministic encoder and optimizing over
the noise space is to train an encoder after training the gen-
erator. For this peculiar reason, we take a counter step to
the previous approaches and train an encoder after training
a W-GAN. Instead of constraining the output of the encoder
to be sampled from a Gaussian distribution, we freeze the
generator and stack it on top of the encoder to minimize the
reconstruction over white noise.

5. EXAMPLES

We studied two use cases: one anomaly detection on images
and the second one is an industrial Airbus use case made of
one-dimensional time series. Our code and the description of
the related hyperparameters will be made available on a public
repository github.

5.1. First example on images

In this section, we investigate the usage of the Wasserstein
GAN for anomaly detection on MNIST dataset.

5.1.1. Description of the image use case

The dataset has 60,000 digits for training and 10,000 for test-
ing. Each digit is an image of 28x28 pixels and represents
the first step towards the study of high dimensional data. We
perform anomaly detection considering one class of digits as
being abnormal and train the W-GAN and the encoder on the
other digits of the training dataset. Testing is performed on the
test dataset plus all the anomalous samples. This procedure
has been used in (Zenati, Foo, Lecouat, Manek, & Ramase-
shan Chandrasekhar, 2018) to investigate the performance of
GAN in the field of anomaly detection. We find this approach
closer to PHM context since normal data is usually multimodal
and we want to represent this normality in order to measure
the distance of anomalous samples to this normal representa-
tion. Note that the results presented here are different from the
normal MNIST ones where normality is learnt on one digit,
all other digits being considered as anomalies.

5.1.2. Results and comparison to AnoGAN

We train the W-GAN with encoder and perform the anomaly
detection for each digit considered abnormal. The area un-
der the precision-recall curve is computed and the model is
compared to VAE (An & Cho, 2015), BiGAN and AnoGAN
as shown in Table 1. Results are taken from (Zenati et al.,
2018) and we can see that W-GAN with encoder outperforms
these models. We believe that this is achieved thanks to the
focus of the learning procedure on the distribution of normal
data rather than samples. We can see from Figure 3 that when

Figure 3. One vs. all: highlighting anomaly for digit 0

Figure 4. One vs. all: highlighting anomaly for digit 1

the model learns all digits except 0, the reconstruction error
increases and becomes a significant anomaly detection score.
The resulting reconstruction can be seen in Figure 5 where the
model tries to interpret zero as another digit. When digit one is
considered abnormal, the model has difficulties to recognize it
as such as it is shown in the box-plots of reconstruction errors
in Figure 4. We believe it is because digit 7 is in the training
data and it is difficult to detect 1 when 7 is normal. It is the
same when one tries to detect 7 when 1 is considered part of
normality.

Figure 5. Images of zeros and their reconstruction when the
digit is considered abnormal
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Table 1. Area Under Precision Recall Curves (AUPRC) for
each digit considered an anomaly

Abnormal digit VAE AnoGAN BiGAN our model

0 51.7 % 63 % 80 % 97 %
1 6.3 % 30 % 30 % 51 %
2 64.4 % 57 % 70 % 89 %
3 25.1 % 45 % 55 % 78 %
4 33.7 % 43 % 50 % 83 %
5 32.5 % 44 % 55 % 72 %
6 43.2 % 47 % 63 % 87 %
7 14.8 % 40 % 40 % 57 %
8 49.9 % 40 % 57 % 90 %
9 10.4 % 37 % 38 % 70 %

5.2. Example on sensor data

5.2.1. Description of sensor use case

In this section, we investigate the usage of the Wasserstein
GAN for anomaly detection on time series data. We analyze
the performance of W-GAN on time series from an external
Airbus challenge: ’Airbus Helicopters Accelerometer Chal-
lenge’. The challenge was open between January and May
2019 on the platform AIGym (https://aigym.airbus.com).

The challenge consists in learning the normality from time
series of 1-minute duration made of accelerometer measures
during the flight test phase of helicopters. The training set
is made of 1677 time series and the validation and test sets
are made of 594 and 1917 time series made of both normal
and abnormal time series. The participants of the contest have
to detect abnormal sequences in test and validation dataset,
outputing 1 if the sequence is considered abnormal and 0 if
this sequence is considered normal. Table2 provides more
details on the dataset. The main difficulty is to learn only
from normal data with lack of data, data diversity and also
high dimension because of the temporal domain. The dataset
consists of accelerometers signal from different directions,
different positions, different helicopters and different flights,
sampled at 1024Hz. It results into more than 60,000 time steps
for each time series.

Two types of anomaly coexist in both the validation and test
sets. Note that these are provided for information purposes
only, as in an unsupervised setting, the type of anomalies is
not known beforehand. For the challenge, competitors did
not know that there were two types of anomalies. They were
able to do multiple submissions on the validation dataset and
only two submissions on the test dataset. Note that for the last
dataset, there was another type of anomaly that was never seen
in training and validation. Note that the type II of anomaly is
local and thus harder to detect with a global reconstruction-
based anomaly scorer.

We illustrate the shape of normal time series and the anomalies
encounter in the test phase in Figure 6:

Table 2. Description of the 3 subset of data of the ’Airbus
Helicopters Accelerometer Challenge’. Type 0 samples are
normal samples and Type I and II refers to the number of
anomalies given their nature.

Type 0 I II Total

TRAIN 1677 - - 1677
VALID 297 297 - 594
TEST 1497 108 312 1917

1. Type I: Loss of signal envelope symmetry

2. Type II: Frequency outlier

5.2.2. Pre-processing

The training set is made of few samples of high dimension,
which is challenging to train a GAN. Theoretically, Wasser-
stein GAN may require an exponential number of training
samples given the dimension in order to converge to the in-
duced distribution of the data.

One possible solution, since we know the sampling frequency
of the data is to express our time series into the frequency
domain. This preprocessing is interesting for two reasons.
First, due to the high frequency nature of our time series, we
can expect that a reconsruction loss in the time domain will
not be able to capture the diversity of the normal distribution.
Secondly, the size of our normal training set is quite restricted;
it is necessary to reduce the input dimension of our problem
to apply deep learning for anomaly detection.

One solution to reduce the dimension is to convert our time
series into the frequency domain. Although, it is a common
practice to normalize the data when training a GAN, the mag-
nitude of the power spectrum contains a lot of information
of the time series, and removing it is likely to discard rele-
vant information for the anomaly detection task. Hence we
need to incorporate the magnitude of the power spectrum into
the GAN. Eventually, our preprocessing consists in a vector
whose last value is the norm of the power spectrum concate-
nated with the normalized power spectrum (also known as
spectral density). Here are the full descriptions of our prepro-
cessing. Thanks to this operation, we convert a time series of
more than 60,000 time steps into a sparse vector of 514 values.
Figure 7 illustrates the pre-processing step inherent with this
method.

• we normalize the power spectrum composed of power
computed for 513 frequencies;

• we concatenate the log of the normalization coefficient as
the 514th dimension of this vector. We use the log of norm
of the power spectrum as it can be orders of magnitude
higher than the normalized values of the power spectrum.
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(a) Normal (Type 0)

(b) Abnormal (Type I)

(c) Abnormal (Type II)

Figure 6. Visualization of non-normalized normal time se-
ries and their related anomalies in the Airbus Helicopters
Accelerometers Challenge Challenge

Table 3. AUPRC on the two continuous anomaly scorer: the
norm in the latent space (|| z ||) and the reconstruction error
|| x− x̂ ||

AUPRC % || z || || x− x̂ ||

VALID 73.22 88.11
TEST 79.08 80.83

The L1 distance on which the GAN is trained could lead
the GAN to learn only the normalization value rather than
correctly reproducing the full range of frequencies.

Figure 7. Description of Methodology

5.2.3. Results of W-GAN in the frequency domain

We evaluate the efficiency of our W-GAN by either testing
whether the projection is sampled on the noise distribution,
or by testing the reconstruction error. The AUPRC scores are
presented in Table 3.

Eventually, we can establish an optimal threshold based on the
F1 score along the reconstruction error to illustrate the best
performance of the system. We observe on both the validation
and test set that the normal time series are rarely considered
abnormal. However, if the first type of anomalies is usually
detected, as we can observe in the confusion matrices in Ta-
bles 5 and 6, it appears that the anomalies in the test set are
more challenging for the W-GAN. However, we noticed that
the anomalies of the test set are also challenging for other type
of reconstruction-based anomaly scorer. Indeed, we compared
the results obtained by the W-GAN with two baselines:

• FPCA in the time domain: we train a FPCA whose num-
ber of components is truncated over 1000 components to
minimize the variance of the error reconstruction. Each
time series is normalized by removing its mean compo-
nent and dividing by its standard deviation (Ferraty &

8



INTERNATIONAL JOURNAL OF PROGNOSTICS AND HEALTH MANAGEMENT

Table 4. AUPRC on the W-GAN, FPCA and VAE on the
reconstruction error

AUPRC % W-GAN FPCA VAE

VALID 88.11 91.66 92.45
TEST 80.83 35.62 35.10

Table 5. Confusion matrix on the Validation set when setting
the threshold using the F1 score

Normal Abnormal

Normal 296 1
Abnormal 199 98

Vieu, 2006).

• VAE in the frequency domain: since the training of GANs
is known to be challenging, we compare its performance
with a variational autoencoder that is easier to train but
is known to generate blurry samples. We used the same
set of hyperparameters as the one proposed in the official
Keras documentation (An & Cho, 2015).

In Table 4, we observe that W-GAN has a lower AUPRC on
the validation set, compared to FPCA or VAE, but maintains
its performances on the test set, unlike the baselines. It hap-
pens that W-GAN captures other information on the induced
distribution than the VAE which helps it on the test set.

To understand why the detection of anomalies on the test set
is challenging, we approximated the Wasserstein distance be-
tween the distribution of the training samples and the distribu-
tions of the validation and test samples (normal and anormal)
using EMD. Indeed, since W-GAN approximates the Wasser-
stein distance, so does EMD. Thus EMD is a good indicator of
the performances of W-GAN. These measures have been per-
formed in the frequency domain. Plots in Figure 8 illustrate the
different EMDs obtained on random subsets of size 100x100.
If it appears that the Wasserstein distance between training
samples and test’s anomalies are higher than the Wasserstein
distance between training samples and normal test samples, it
is still lower than the Wasserstein distance with anomalies on
the validation set. This gap may explain the differences in the
results between the validation and test set.

6. DISCUSSIONS

6.1. How to choose training data?

Assuming that delivered assets are in perfect condition, the
first idea is to select data coming from the first flights of each
asset of the fleet. Depending on the type of systems that
you want to monitor, it may be worth taking into account a

(a) EMD between random subsets of size 100x100 between
pairwise distributions, respectively (TRAIN, TRAIN), (TRAIN,
VALID normal), (TRAIN, VALID abnormal), (TRAIN, TEST
normal), (TRAIN, TEST abnormal)

(b) EMD between random subsets of size 100x100 between
pairwise distributions, respectively (TRAIN, TRAIN), (TRAIN,
VALID normal), (TRAIN, TEST normal), (TRAIN, TEST ab-
normal)

Figure 8. EMD between random subsets of size 100x100
between pairwise distributions. Since the Wasserstein distance
between the distribution of normal training samples and the
distribution of anomalies of the validation set is really high,
we discard those distances in the second plot.

9
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Table 6. Confusion matrix on the Test set when setting the
threshold using the F1 score

Normal Abnormal

Normal 1460 37
Abnormal (Type I) 44 64
Abnormal (Type II) 307 5

short running-in period where the behavior of the system may
be a bit different from what should be considered as normal.
Whether you should take into account a run-in period and how
long it should be set shall be decided by system experts.

The second parameter is the duration of the training period.
There is no definitive method to choose the duration of the
training period but we can propose guidelines. The first crite-
rion is to make sure that the training dataset covers as much
as possible all operating and environmental conditions. This
is easier if all assets of the fleet are used. Clustering the fleet
by an operator may be a good idea if they operate in different
operational and environmental conditions but it reduces the
number of assets per training dataset and thus should be col-
lected on a longer period to compensate. The second criterion
is the size of the training dataset. Deep Learning models need
a lot of data to train correctly as they have a lot of degrees of
freedom. The last criterion concerns what part of the mission
should we concentrate on. A first idea would be to take all
the data available. With enough data and a sufficiently com-
plex neural network, it could be possible in principle to learn
normal behavior. In practice, it is more efficient to reduce the
data to conditions where experts think the system behaves in
a similar way. For instance, there is less variability when the
aircraft is flying steadily than when it turns, accelerates, makes
complex maneuvers.

6.2. Going from anomaly score at sequence level to anomaly
score at cycle/mission level

In the techniques we are presenting, we have to choose a
length for the time series sequence we want to generate with
the GAN. Usually, it is smaller than the total mission or cycle
length and after analyzing a complete flight, we have a list of
anomaly score, one score per time sequence.

Aggregation of these anomaly scores at mission level is rather
classic. The first way is to consider this list as a vector v and
you can apply any norm of vector:

• ‖v‖∞: maximum value of score, which would lead to a
very sensitive anomaly scorer at cycle level

• ‖v‖2: Mean Square Norm that would tend to hide local
bursts of anomaly

• ...

The second way is to consider this list as a time series itself

and you can apply scan statistics. In this case, after applying
a threshold to transform into time series of 0 (if the sequence
is normal) or 1 (if the sequence is abnormal), scan statistics
will filter out anomalies that are not sustained in time inside a
mission or cycle.

6.3. How to set a norm and a threshold?

Usually, in anomaly detection techniques, a threshold is in-
cluded in the algorithm that accounts for the percentage of
an anomaly in the training dataset. For OCSVM, it would be
parameter ν. For LOF and IsolationForest, it is sometimes
called contamination, like in scikit-learn.

In our method, we use a reconstruction error between the
initial data and the reconstructed one by a W-GAN. There is
no built-in threshold in the method and it can only be set by
choosing, for instance, a quantile of the distribution of the
reconstruction error on the training dataset. In case there is
only normal data in the training dataset, the notion of quantile
can be extrapolated using extreme value theory. In practice,
only expert feedback can help to adjust the threshold. This
feedback should be asked using priority based on the anomaly
score.

A question that also needs to be studied is the level of quality
that is needed for a GAN to perform anomaly detection. In
the case of image processing, L2-norm is used and is coherent
with how human vision works. In the case of time series, there
is no equivalent and it is not that simple to choose the right
norm to compare two time-series.

6.4. When using anomaly detection in PHM process?

As can be seen in this paper, unsupervised learning is more
difficult than supervised learning. One key problem is that one
does not know what problem to expect. The time series chal-
lenge showed that choosing a representation that was efficient
to detect certain types of problems could make one completely
blind to other types of problems.

As these methods are designed to discover unknown anomalies,
it is impossible to link such anomalies to a maintenance action.
It makes no sense to derive an advice from these anomalies.
These methods are more dedicated for internal use, creating
alerts that can be analyzed by engineers that can understand
where these anomalies come from. This feedback from the
experts can be used either to update the detection threshold
in case it is too sensitive and also to assess the criticality and
corrective action that could be put in place to solve the problem
before it impacts the operations.

It is only when the problem is understood, the maintenance
solution is chosen and the threshold is correctly set that the
anomaly score can eventually be used as a proper health indi-
cator.
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7. CONCLUSION

In this paper, anomaly detection for time series data is pre-
sented. Among the different existing methods, we focused on
a method based on Generative Adversarial Networks. Among
the numerous variants of GAN, we chose the Wasserstein
GAN that have the good property of avoiding mode collapse.
On top of a W-GAN, we build an encoder that transforms
the initial data into the latent space and combine it with the
generator to build an auto-encoder. Results are shown on two
use cases. The first one is MNIST image dataset in which
we want to detect single digits as anomalies, considering the
rest as normal, which we thought more coherent with reality
than detecting all digits as abnormal except one. Except for
1 and 7 which are very similar, the method performs better
than similar studies in the literature. The second use case is
a time series use case that what used in 2019 for an Airbus
time series challenge. Results are still to be improved but the
method shows a good capacity to detect anomalies that were
never seen during the training phase. As shown in this paper,
significant pre-processing is required and finding a method
that would make it unnecessary is yet to be found.

Different questions rise when using unsupervised learning for
PHM. The difficulty of choosing a proper threshold is key but
as described in the paper, these unsupervised methods can be
used to rank the priority of analyzing flights among a large
number of flights. Expert knowledge is of utmost importance
and with a given expert workload, these methods can identify
the most interesting flights to analyze. From this analysis,
threshold setting, interpretation of anomalies, assessment of
the criticality and definition of the proper maintenance action
are outputs that can be leverage to transform the unsupervised
task into a supervised one that can lead to the definition of a
proper health indicator.

In a area where data is massively collected, this way of work-
ing may become the new paradigm. Nevertheless, we ac-
knowledge there is still a lot of improvement and work to be
done.
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