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ABSTRACT 

A method is described in this paper for crack propagation 

prediction using only the initial crack length of the target 

specimen. The proposed method consists of two parts: (1) 

crack length estimation using support vector regression (SVR) 

and (2) crack length prediction using a new trans-fitting 

method. Features based on the filtered wave signals were 

defined and a model was constructed using the SVR method 

to estimate the crack length. The hyper-parameters of the 

SVR model were selected based on a grid search algorithm. 

Prediction of the crack length was based on the previous 

crack length, which was estimated based on the wave signals. 

In this step, a newly proposed trans-fitting method was 

applied. The proposed trans-fitting method updated the 

selected candidate function to translocate the trend of crack 

propagation based on the training dataset. By translocating 

the trends to the estimated crack length of the target specimen, 

the crack propagation could be predicted. The proposed 

method was validated by comparison with given specimens. 

The results show that the proposed method can estimate and 

predict the crack length accurately.  

1. INTRODUCTION 

Recently, safety and reliability of structures has received 

significant research attention, with the goal of preventing 

catastrophe and unexpected failure. To achieve this goal, 

maintenance strategies have changed from conventional 

corrective or preventive maintenance to condition-based 

maintenance (CBM) (Lee, 2014). CBM is a maintenance 

strategy that continuously monitors the condition of a target 

system through real-time monitoring. In addition, real-time 

monitoring for structural defects is called structural health 

monitoring (SHM) (Tinga & Loendersloot, 2014). Because 

its benefits include real-time damage detection and 

forecasting of remaining service life, much research has 

examined SHM’s applications in various fields, such as civil 

engineering (Brownjohn, 2006), aerospace, and mechanical 

engineering (Adams, White, Rumsey, & Farrar, 2011; 

Staszewski, Mahzan, & Traynor, 2009). 

Ultrasonic guided wave signals have been used as damage 

assessment tools for SHM, primarily due to their low energy 

loss in long-distance propagation (Janapati, Kopaftopoulos, 

Li, Lee & Chang, 2016; Qiu, Liu, Qing, & Yuan, 2013). 

Ultrasonic guided wave signals make damage assessment 

effective because they can quantify the change of the signal 

caused by a crack, delamination, or corrosion. In particular, 

the lamb wave signal, an ultrasonic guided wave signal in the 

form of elastic perturbation, showed good performance in 

structural integrity evaluation and fatigue life prediction of a 

thin plate or shell structure (Liu, Frangopol, & Kwon, 2010; 
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Kessler, Spearing, & Soutis, 2002). A considerable amount 

of literature related to prognosis studies of cracks for cyclic 

loads based on lamb wave has been published. Coelho (2007) 

used a one class SVM classifier with a lamb wave signal to 

identify fatigue damage specimens exposed to cyclic loading. 

Peng et al. (2015) constructed a real-time composite fatigue 

life prognosis framework using a Bayesian-inference-based 

updating model based on the mechanical stiffness of the 

specimen. Neerukatti et al. (2016) performed a prognosis for 

crack growth using particle filters (PF) with lamb wave-based 

damage localization. However, most previous research has 

the disadvantage of requiring a significant amount of 

information about the target specimen to make an accurate 

crack propagation model, which is a critical problem in terms 

of both time and cost when applied in industrial sites. In this 

paper, therefore, a method is proposed to make a crack 

propagation model that is accurate, but that uses only a small 

amount of information from the target specimen. Verification 

for the proposed method used the dataset from the 2019 PHM 

Conference Data Challenge.  

In the 2019 PHM Conference Data Challenge, fatigue crack 

lengths were estimated and predicted for aluminum lap joint 

specimens under dynamic tensile loading conditions. The 

goal of the challenge was to (1) estimate crack lengths for 

target cycles of different specimens using a quantification 

model, and (2) predict crack length for subsequent target 

cycles based on estimation results. Training and validation 

datasets were given, along with the wave signals and crack 

lengths for each cycle. With limited information about the 

experiment (e.g., details of material and structural geometry), 

the data-driven approach was considered first, since the 

change in the wave signal contains the most essential 

information about the crack length. Therefore, in the 

proposed method, support vector regression (SVR) was used 

first to construct a quantitative model of the crack length and 

the change in the wave signal for the training dataset. Then, 

a regression model was used to estimate the crack length for 

the validation specimens. Finally, crack length prediction for 

the validation data in the absence of wave signals was 

performed using the proposed trans-fitting method. 

The rest of the paper is organized as follows. Section 2 

introduces the problem and the scoring process. Section 3 

describes the process proposed to estimate and predict crack 

length. Section 4 shows the validation results of the proposed 

method. Conclusions and suggestions for future work are 

presented in Section 5. 

2. PROBLEM DESCRIPTION 

This section briefly introduces the problem outlined for the 

2019 PHM Conference Data Challenge. Information about 

the problem includes: (1) problem definition, (2) a 

description of the given dataset, and (3) the scoring process. 

2.1. Problem definition 

For this data challenge, the crack length of an aluminum 

specimen was to be estimated and predicted using signals 

from piezoelectric (PZT) sensors. The system under 

investigation in this competition is shown Figure 1. PZT 

sensors are mounted at both the actuator and receiver to 

measure the wave signals. The distance between the actuator 

and the receiver is 161mm. When a crack initiates across the 

wave propagation path, the received signal is changed. This 

phenomenon can be analyzed to estimate the crack length. 

Based on the relationship between the fatigue crack and the 

wave signal, the main objectives of this challenges were to (1) 

estimate the crack length of the validation set in a given cycle, 

and (2) predict the crack length in a given cycle without 

signal information.  

 

Figure 1. Schematic illustration of the crack-sensing 

mechanism 

2.2. Description of the datasets 

For the competition, datasets of eight specimens (named T1 

through T8) were given; divided into two groups. The first 

was a training dataset, consisting of data from six specimens 

(T1-T6). The second was the validation dataset consisting of 

data from two specimens (T7-T8). Each specimen was 

subjected to tensile dynamic loading, which was performed 

with a hydraulic material testing machine working at 5 Hz 

under room temperature. While constant amplitude loading 

was applied in the training datasets and one of the specimens 

in the validation dataset (T7), variable loading was applied to 

the other specimen in the validation dataset (T8). Each 

dataset consisted of cycles and crack lengths measured by an 

optical microscope. Additionally, training datasets included 

wave signals acquired from all provided cycles; however, 

validation datasets provided wave signals only for the initial 

cycles. 

Table 1. Summary of training dataset 

Specimen 
Number of cycle 

data 

Number of wave 

signal dataset 
Loading condition 

T1 7 7 Constant amplitude 

T2 3 3 Constant amplitude 

T3 10 10 Constant amplitude 

T4 8 8 Constant amplitude 

T5 4 4 Constant amplitude 

T6 6 6 Constant amplitude 
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Table 2. Summary of validation dataset 

Specimen 
Number of cycle 

data  

Number of wave 

signal dataset 
Loading condition 

T7 8 4 Constant amplitude 

T8 10 5 Variable amplitude 

2.3. Scoring process 

Three penalty functions were applied to score the proposed 

estimation and prediction of the crack length; (1) a time 

penalty function, (2) an asymmetric penalty function, and (3) 

a monotonicity penalty function. The constant parameters of 

the penalty functions suggested here used the same values as 

the values used in the 2019 PHM Conference Data Challenge. 

The first penalty function was set up to place more weight on 

the error at a later crack length than on the error at the initial 

crack length; this penalty was defined as  

 𝑇(𝑖) = 2 + 10𝑥𝑖 (1) 

where 𝑥𝑖 is the true crack length. This penalty means that it 

is more important to predict the crack as it gets closer to the 

failure time of the structure. Underestimation and 

overestimation of the crack length were penalized differently 

by the second penalty function. This is because 

underestimation of the crack length is riskier than 

overestimation of the crack length in the real applications. 

The asymmetric penalty function was defined as  

𝐴(𝑖) =

{
 
 

 
 exp {

|�̃�𝑖 − 𝑥𝑖|

0.5
} − 1;    (�̃�𝑖 − 𝑥𝑖) ≥ 0

exp {
|�̃�𝑖 − 𝑥𝑖|

0.2
} − 1;     (�̃�𝑖 − 𝑥𝑖) < 0

 (2) 

where  𝑥𝑖 is the true crack length and  �̃�𝑖 is the estimated 

or predicted crack length. The third penalty function was 

devised to penalize the trend of breaking monotonicity along 

the cycle, which cannot occur physically. The monotonicity 

penalty function was defined as follows 

𝑀(𝑖) = {
1 + 10(|�̃�𝑖 − �̃�𝑖−1|);   (�̃�𝑖 − �̃�𝑖−1) < 0

1;                 (�̃�𝑖 − �̃�𝑖−1) ≥ 0
 (3) 

where �̃�𝑖 is the 𝑖th estimated or predicted crack length and 

�̃�𝑖−1 is the 𝑖 − 1th estimated or predicted crack length. The 

overall penalty score was calculated by multiplying the three 

penalty functions. 

 𝑆(𝑖) = 𝑇(𝑖) × 𝐴(𝑖) × 𝑀(𝑖) (4) 

Using the overall penalty score, the performance of the 

proposed method was evaluated for its ability to accurately 

estimate and predict crack lengths. A lower score means that 

the result of the proposed method is more accurate. 

3. PROPOSED METHOD 

Our proposed method for crack length estimation and 

prediction is described in this section. The method for crack 

length estimation is explained in the first subsection; the 

method for predicting the crack length using the proposed 

trans-fitting method is shown in the second subsection. 

3.1. Crack length estimation based on wave signals 

The proposed method for crack length estimation is based on 

a regression model. To construct the regression model, the 

features from the wave signals were first defined (Ahmad, 

Khan, Islam, & Kim, 2019). Since wave signals are measured 

with noise, the noise signals were filtered to effectively 

extract the features. Then, the regression model was built to 

estimate the crack length via the support vector regression 

(SVR) method. A detailed description of the proposed 

method follows. 

3.1.1. Preprocessing 

The wave signals for the fatigue test were measured under a 

noisy environment. When signals are measured in a noisy 

environment, de-noising is necessary to effectively extract 

crack-related features. Further, the frequency components of 

the received signals mainly exist in a certain band in the 

frequency domain, since the center frequency of the actuator 

signals is 200 kHz. Therefore, a band-pass filter was applied 

to filter the noise and extract the useful signals from the raw 

signals (Bozchalooi & Liang, 2008). Figure 2 shows the 

frequency components of the received signals from the T2 

specimen under 50000 cycles and 72000 cycles. As shown in 

Figure 2, the frequency components of the received signals 

are located in the frequency band between 100 kHz and 500 

kHz. Therefore, a fifth-order Butterworth band-pass filter 

(Oppenheim, 1999) was designed with a bandwidth of 100-

500 kHz. Figure 3 shows the raw signals and the filtered 

signals from the receivers of specimen T2 under 50000 cycles 

and 72000 cycles. The designed band-pass filter can filter the 

noisy signals to extract useful signals, as can be seen in the 

figure. 
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Figure 2. Received signals from specimen T2 in the 

frequency domain: (a) 50000 cycles, (b) 72000 cycles 

 

Figure 3. Raw signals and filtered signals from specimen 

T2: (a) 50000 cycles, (b) 72000 cycles 

 

3.1.2. Feature extraction 

Next, the meaningful features for crack length estimation 

using the filtered signals were defined. Since the actuator 

signal passes through the crack of the specimen, the crack 

distorts the received signal (Yang, Ng, & Kotousov, 2018). 

Also, a severe crack has a greater effect on the distortion of 

the received signal. Therefore, the distortion of the received 

signal was quantified as a feature extraction step for the 

proposed crack length estimation. A sinusoidal wave with the 

first four cycles of the filtered signal was used because the 

actuator signal consists of the four cycles with a center 

frequency of 200 kHz (i.e., 400 samples with a sampling 

frequency of 20 MHz). Then, four features were defined from 

the filtered signal, specifically: (1) root mean square (RMS), 

(2) standard deviation, (3) metric of orthogonality, and (4) 

magnitude of the component at 300 kHz. A detailed 

description of the features follows. 

(1) Root mean square (RMS) 

The first feature is the root mean square (RMS) of the filtered 

signal. This feature is based on the phenomena of the 

reduction in the power of the filtered signal that arises due to 

the existence of the crack in the specimen. Therefore, the first 

feature decreases as the crack length increases. The first 

feature is expressed as 

 𝐹𝑒𝑎𝑡𝑢𝑟𝑒1 =
1

𝑁
∑(𝑥[𝑛])2
𝑁

𝑛=1

 (5) 

where 𝑛 is discrete time, 𝑁 is the number of samples for 

the signal, and 𝑥[𝑛] is the filtered signal. 

(2) Standard deviation 

The second feature is the standard deviation of the filtered 

signal. The standard deviation of the signal physically 

indicates the power dispersion of the signal. This feature is 

based on the same relationship between the filtered signal and 

the existence of the crack. The second feature is also expected 

to decrease as the crack length increases. The second feature 

is defined as 

 𝐹𝑒𝑎𝑡𝑢𝑟𝑒2 = √
1

𝑁
∑(𝑥[𝑛] − 𝑥[𝑛]̅̅ ̅̅ ̅̅ )

2
𝑁

𝑛=1

 (6) 

where 𝑥[𝑛]̅̅ ̅̅ ̅̅  is mean of the signal 𝑥[𝑛]. 

(3) Metric of orthogonality 

The third feature is the metric of the orthogonality of the 

signal. This feature quantifies the difference of the signals 

observed between undamaged and damaged specimens. As 

the crack size increases, the signal becomes increasingly 

different from the signal of the undamaged specimen; this is 

because a severe crack results in a large distortion of the 

signal. The metric of the orthogonality is formulated as 

(b)

100 kHz 500 kHz

(a)

100 kHz 500 kHz

(b)

(a)
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𝐹𝑒𝑎𝑡𝑢𝑟𝑒3 =
∑ (𝑥[𝑛]𝑥0[𝑛])
𝑁
𝑛=1

∑ (𝑥[𝑛])2𝑁
𝑛=1 ∑ (𝑥0[𝑛])

2𝑁
𝑛=1

 (7) 

where 𝑥0[𝑛] is the signal from the undamaged specimen. 

(4) Magnitude of the component at 300 kHz 

The features defined in the prior subsections are in the time 

domain. The change of signal that is due to the crack in the 

frequency domain can also be quantified. The frequency 

component at 300 kHz monotonically increases as the size of 

the crack grows. The frequency component at 300 kHz 

physically means a sideband component arises due to the 

crack. Therefore, the fourth feature was defined as the 

magnitude of the sideband components at 300 kHz. The 

fourth feature is expressed as 

 𝐹𝑒𝑎𝑡𝑢𝑟𝑒4 = 𝑋[𝑘300]  (8) 

where 𝑋  is the magnitude of the signals from Fourier 

transform in the frequency domain and 𝑘300 is the discrete 

frequency of 300 kHz. 

To summarize, four features were defined for crack length 

estimation. However, while each specimen had about the 

same actuating signal, there was variation in the received 

signals. To reduce such variations, the value of each feature 

was normalized using the feature from an undamaged 

specimen. A summary of the features chosen for crack length 

estimation is given in Table 3. 

Table 3. Summary of the features used for the crack 

estimation 

Features Physical meaning 

Root mean square Power of the signals 

Standard deviation 
Power dispersion of the 

signals 

Metric of orthogonality 
Difference from the 

undamaged signals 

Magnitude of component 

at 300 kHz 

Power in the frequency 

domain 

3.1.3. Regression 

Finally, a regression model was constructed using the defined 

features to estimate the crack length. SVR is a regression 

method that uses the same principle as the support vector 

machine (SVM) method. For the training dataset consisting 

of feature vectors from the signals and the measured crack 

lengths, the SVR method formulates the regression model as 

 �̂� = 𝜔𝑇𝜙(𝑧) + 𝜔0 (9) 

where �̂� is an estimated crack length, 𝑧 is a feature vector, 

𝜙(∙) is a non-linear mapping function, 𝜔 is a weight vector, 

and 𝜔0 is a bias term. To find the optimal weight vector and 

bias term, the objective function should be minimized as 

follows: 

 minimize 𝐶∑(𝜉𝑛
𝑢 + 𝜉𝑛

𝑙 )

𝑁

𝑛=1

+
1

2
‖𝜔‖2 (10) 

 subject to {

𝑎𝑛 ≤ 𝜔𝑇𝜙(𝑧) + 𝜔0 + 𝜖 + 𝜉𝑛
𝑢

𝑎𝑛 ≥ 𝜔
𝑇𝜙(𝑧) + 𝜔0 − 𝜖 − 𝜉𝑛

𝑙

𝜉𝑛
𝑢 , 𝜉𝑛

𝑙 ≥ 0

 (11) 

where 𝑁 is the number of samples in the training dataset, 𝐶 

is a penalty parameter, 𝜖 is a tolerance parameter, 𝜉𝑛
𝑢 and 

𝜉𝑛
𝑙  are slack variables. This formulation can be converted to 

a dual problem using a kernel function (Bishop, 2006) 

The performance of the SVR method depends on the hyper-

parameters, such as the type of the kernel, kernel parameter, 

regularization parameter, and so on (Benkedjouh, Medjaher, 

Zerhouni, & Rechak, 2013). To select the best hyper-

parameters, grid-search algorithms were exploited (Salcedo-

Sanz, Ortiz-Garcı, Pérez-Bellido, Portilla-Figueras, & Prieto, 

2011). Figure 4 shows the comparison between the true crack 

lengths of the training specimens (specimens T2, T3, and T4) 

and the crack lengths estimated from the SVR model. In 

terms of the hyper-parameters, the radial basis function (RBF) 

kernel of the kernel parameter was selected as 1.0, and the 

regularization parameter was selected as 100.0 through use of 

the grid-search method. As shown in Figure 4, it was found 

that the proposed SVR model could properly estimate the 

crack lengths. The root mean square error from the regression 

model is 1.65. 

 

Figure 4. True and estimated crack lengths for the training 

specimens 

3.2. Crack length prediction using the proposed trans-

fitting method 

The proposed method for crack length prediction is based on 

a novel trans-fitting method. The basic idea of trans-fitting is 

to extract the crack propagation trend from the training 
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dataset and adapt the trend to predict the crack lengths of the 

validation set. In the absence of a wave signal, the task of 

predicting the crack length for a target cycle is an 

extrapolation process. Traditionally, crack length prediction 

has been done using physics-based models, such as Paris’ law 

(Paris & Erdogan, 1963), the Forman equation (Forman, 

Kearney, & Engle, 1967), or the Walker equation (Walker, 

1970). However, it is difficult to predict crack length using 

those physics-based models without given information, such 

as the shape of the initial crack, specimen geometry, and 

material properties. This is because the physics-based models 

using insufficient information can result in an inaccurate 

crack length. For this reason, a new method is proposed in 

this work, called trans-fitting. The trans-fitting method is 

carried out in four steps, as illustrated in Figure 5. A detailed 

description of the proposed method follows. 

 

Figure 5. Flowchart of the proposed trans-fitting method 

3.2.1 Selecting candidate functions 

The first step in the proposed method is to select candidate 

functions to fit the crack propagation trends observed in the 

training datasets. Among the various candidate functions, 

functions were selected based on two statistical indicators for 

evaluation of their goodness-of-fit. The first indicator is the 

sum of square error (SSE). The SSE is defined as 

 𝑆𝑆𝐸 =∑(�̂�(𝑁𝑖, 𝜃) − 𝑎𝑖)2
𝐿

𝑖=1

 (12) 

where 𝜃 represents the parameters of the candidate function, 

𝐿 is the number of samples, 𝑁𝑖 is the 𝑖th number of cycles, 

𝑎𝑖  is the 𝑖 th measured crack length, and �̂�  is the crack 

length calculated from the fitting curve of the selected 

candidate function. This indicator quantifies the difference 

between the trend determined from the training dataset and 

from the fitting curve to the selected candidate function. The 

second indicator is the degree of freedom for error (DFE). 

The DFE can be expressed as 

 𝐷𝐹𝐸 = 𝐿 − 𝑃 (13) 

where L is the number of samples and 𝑃 is the number of 

parameters in the candidate function. This indicator is used to 

check the risk of overfitting. For example, a small DFE value 

means that there is a risk of overfitting with the results of the 

candidate function (Walker, 1940). Thus, with a small DFE, 

it cannot be guaranteed that the fitting curve of the selected 

candidate function translocates the crack propagation trend 

properly. Table 4 shows the results of these two statistical 

indicators for the candidate functions of the training dataset 

for specimens T3 and T4. For the candidate functions, various 

kinds of candidate functions were considered, such as first-

order polynomial (Poly1), second-order polynomial (Poly2), 

exponential function (Exp1), sum of two exponential 

functions (Exp2), Gaussian function (Gaussian1), sum of two 

Gaussian functions, power function (Power1), power 

function with bias term (Power2), and sum of exponential and 

Gaussian function (Exp1+Gaussian1). 

Table 4. Goodness-of-fit results for specimens T3 and T4 

 T3 T4 

Candidates SSE DFE SSE DFE 

Poly1 0.1311 5 5.0581 5 

Poly2 0.1183 4 1.0960 4 

Exp1 0.2298 5 1.2827 5 

Exp2 0.0639 3 1.0510 3 

Gaussian1 0.1497 4 155.42 4 

Gaussian2 0.0033 1 0.1976 1 

Power1 0.2011 5 1.5735 5 

Power2 0.1223 4 1.8047 4 

Exp1+Gaussian1 0.1106 2 0.9878 2 

The results of the SSE show that the sum of two Gaussian 

models (Gaussian2) has the lowest value for both training 

datasets. However, the Gaussian 2 model was excluded from 

the candidate functions since the DFE for the Gaussian 2 

model is 1; this means that the fitting curve is highly over-

fitted and can thus fail to translocate crack propagation trends 

to the validation set. As a result, the sum of two exponential 

functions (Exp2) and the sum of the Gaussian model and 

exponential function (Exp1+Gaussian1) were selected; these 

are formulated as 

�̂�(𝑁𝑖 , 𝜃) = 𝜃1 exp (−(𝑁
𝑖 − 𝜃2)

2
) + 𝜃3 exp(𝜃4𝑁

𝑖) + 𝜃5 (14) 

�̂�(𝑁𝑖 , 𝛼) = 𝛼1 exp(𝛼2𝑁
𝑖) + 𝛼3 exp(𝛼4𝑁

𝑖) (15) 
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where 𝜃𝑖 is the parameter of the sum of the Gaussian model 

and exponential function, 𝛼𝑖 is the parameter of the sum of 

two exponential functions, 𝑁𝑖 is the number of cycles, and 

�̂� is an estimated crack length. 

3.2.2 Curve fitting using training data 

The second step is fitting the training dataset to the candidate 

functions; this is performed concurrently with the previous 

step. This process was used to estimate the parameters of the 

candidate functions using nonlinear least-square optimization. 

The objective function consists of the error between the crack 

length calculated from the fitting curve to the selected 

candidate function and from the training dataset, with a 

regularized term for preventing overfitting, as shown in Eq. 

(16) 

 𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒 ∑(�̂�(𝑁𝑖 , 𝜃) − 𝑎𝑖)2 + 𝜆∑𝜃𝑘
2

𝑛

𝑘=1

𝑙

𝑖=1

 (16) 

where 𝜃 and 𝜃𝑘  are parameters of the selected candidate 

function, 𝑁 is the number of cycles, 𝑎 is a measured crack 

length, and 𝜆  is a regularized parameter. Also, the trust-

region algorithm (Conn, Gould, & Toint, 2000) is used for 

the nonlinear, least-square optimization algorithm. 

3.2.3 Curve translocating 

This step is translocating the crack propagation trend to 

match the estimated crack length determined from the SVR 

model. Translocating is performed by updating the 

parameters of the fitting curves based on the initial crack 

length of the target specimen. First, the parameters of the 

fitting curve – meaning the training crack propagation – were 

trend set as prior distributions. Second, the error model 

calculated using the initial crack length of the target and the 

value calculated by the fitting curve became the likelihood. 

Finally, the maximum a posterior (MAP) process was 

performed by maximizing the probability of the posterior 

distribution. As a result, the calculated posterior parameters 

determine the trans-fitting curve, which gives the crack 

propagation trend of the target specimen. The formulation of 

the MAP process is equivalent to minimizing Eq. (17), as  

𝐸MAP(𝜃) =
1

2𝜎2
∑{𝑎SVR𝑖 − 𝑎fit(𝑁𝑖; 𝜃)}

2
𝑙

𝑖=1

+
𝛼

2
∑𝜃𝑘

2

𝑛

𝑘=1

 (17) 

where 𝜃 and 𝜃𝑘 are the parameter of the fitting curve, 𝑁𝑖 
is the number of cycles, 𝑎fit is the crack estimation derived 

from the fitting curve, 𝑎SVR is the crack estimation from the 

SVR model, 𝛼 is the prior standard deviation, and 𝜎 is the 

likelihood standard deviation. When the regularized 

parameter, λ, is equal to 𝜎2𝛼, the MAP process is equivalent 

to the nonlinear least square with a regularized term (Tipping, 

2003). The translocated fitting curve is now called a trans-

fitting curve. 

As multiple training datasets were available, trans-fitting 

curves could be obtained for each training dataset. To get a 

more representative trend of the crack propagation, all of the 

trans-fitting curves were averaged. By taking the average, the 

variance from each training dataset is reduced, and the crack 

propagation trend becomes more representative. For example, 

in the case of using two training datasets (e.g., specimens T3 

and T4), as shown in Figure 6, a fitted curve representing 

each crack propagation trend can be drawn, as shown by the 

blue solid line. These curves were translocated into the initial 

crack length position through the curve translocating process. 

Finally, using the average of the two trans-fitting curves, the 

average trans-fitting curve was calculated; this is shown as a 

solid red line.  

 
Figure 6. Curve translocating and trans-fitting curves 

3.2.4 Sequential updating 

Using the process outlined in the previous step, the newly 

predicted crack length was obtained for the target cycle. The 

newly predicted value from the average trans-fitting curve 

contains better predictive information than the results that 

were determined from a single trans-fitting curve. Therefore, 

to improve the results of the crack length prediction, the curve 

translocating process was repeated using the newly predicted 

crack length. Figure 7 shows the concept of sequential 

updating. For example, using the newly predicted crack 

length (as shown by the red-cross point in the figure), the 

curve translocating process was recalculated from the 

previous step containing the additional point. Through this 

process, a newly updated trans-fitting curve was obtained, as 

depicted by the orange line in the figure.  
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Figure 7. Sequential updating 

4. RESULTS 

This section describes how the proposed method was 

demonstrated using the two validation datasets. Within the 

hypothesis of the proposed method, crack propagation was 

predicted using only the initial crack length of a target 

specimen. The first validation dataset was performed in the 

same load condition to estimate the initial crack length of the 

target based on the wave signal and then to predict the crack 

propagation trend without the lamb wave signal. The second 

validation dataset was conducted to check the robustness of 

the load condition. Under the condition in which the training 

dataset was the same as in the first validation and the target 

specimen was exposed to variable loading, the initial crack 

length was estimated and then the crack propagation trend 

was predicted. 

4.1. Validation 1: Specimen T7 under constant loading 

The first step was to estimate the crack lengths based on the 

wave signals. A regression model was constructed using the 

SVR method. The proposed method for the crack estimation 

required signals from an undamaged specimen. By 

comparing the filtered wave signals under 36001, 40167 and 

44054 cycles, it was decided that the crack was initiated 

between cycles 40167 and 44054. For that reason, the signal 

under the 40167 cycle was chosen as the undamaged 

specimen signal. With this information, the crack length 

could be estimated using the proposed method. The result of 

the estimated crack length is shown in Table 5. 

Table 5. Estimated crack lengths for specimen T7 

Cycles 36001 40167 44054 47022 

Estimated 

crack (mm) 
0 0 1.92 3.08 

Ground truth 

(mm) 
0 0 2.07 3.14 

Penalty Score 

𝑆(𝑖) 
0 0 25.36 11.69 

Based on the crack length value estimated by the SVR 

method, the prediction process was then performed using the 

proposed trans-fitting method. The crack propagation trend 

was extracted from the training dataset (for specimens T3 and 

T4); these specimens have more data points than the target 

prediction points. First, based on the statistical indicators, the 

sum of two exponential functions model (Exp2) was selected 

for specimen T3 and the sum of Gaussian model and 

exponential function (Exp1+Gaussian1) was selected for 

specimen T4. The results of the goodness-of-fit for the two 

candidate functions are given in Table 6. Second, along with 

the results of the goodness-of-fit test, training datasets were 

fitted to each of the selected candidate functions. 

Table 6. Goodness-of-fit results for specimen T7 

 T3 T4 

Candidates SSE DFE SSE DFE 

Exp2 (E2) 0.0639 3 1.051 3 

Exp1+Gaussian1 

(GE) 
0.1106 2 0.9878 2 

 

 

Figure 8. Results of the curve translocating process for 

specimen T7: (a) trans-fitting curves, (b) average trans-

fitting curve 

Third, the parameters of the fitting curve were updated. 

Figure 8 shows the results of the trans-fitting curves. As 

shown in Figure 8(a), E2 was fitted to the training dataset 
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from specimen T3 and GE was fitted to the training dataset 

from specimen T4. Then, the average trans-fitting curve was 

calculated using the average of the two trans-fitting curves, 

as shown in Figure 8(b). Finally, sequential updating was 

performed based on the crack length for the target cycle. 

Based on the first average trans-fitting curve, the results of 

sequential updating for the predicted crack length are shown 

in Figure 9. 

 

 

 

Figure 9. Sequentially updated curves for specimen T7: (a) 

average trans-fitting curve for the second iteration, (b) 

average trans-fitting for third iteration, (c) average trans-

fitting for the fourth iteration 

From Figure 8(b) to Figure 9(c), there are four average trans-

fitting curves. Each average trans-fitting curve can predict the 

crack lengths for the target cycles after the cycle used in the 

sequential updating process, as shown in Table 7. Based on 

the assumption that using all of the predicted crack lengths 

results in a smaller uncertainty than the predicted value from 

a single average trans-fitting curve, the average value for all 

of the predicted crack lengths was adopted as the last 

prediction value. 

Table 7. Predicted crack lengths for specimen T7 

Cycle 49026 51030 53019 55031 

1st average trans-fitting 

curve 
3.59 4.55 5.95 8.03 

2nd average trans-fitting 
curve 

 4.42 5.44 6.73 

3rd average trans-fitting 

curve 
  5.62 7.05 

4th average trans-fitting 
curve 

   7.05 

Final average value 3.59 4.48 5.67 7.21 

Ground truth (mm) 3.56 4.48 5.05 7.22 

Penalty Score 𝑆(𝑖) 2.33 43.90 128.92 3.80 

4.2. Validation 2: Specimen T8 under variable loading 

As in the validation for specimen T7, first, the crack lengths 

were estimated based on the wave signals. The proposed 

method for crack length estimation needs to select the wave 

signals from an undamaged specimen. By comparing the 

filtered wave signals under 40000, 50000, and 70000 cycles, 

it was decided that the crack was initiated between 50000 and 

70000 cycles. For that reason, the signal under the 50000 

cycle was chosen as the undamaged specimen signal. Then, 

the crack length was estimated using the proposed method. 

The results of the estimated crack lengths for specimen T8 

are shown in Table 8. 

Table 8. Estimated crack lengths for specimen T8 

Cycles 40000 50000 70000 74883 76931 

Estimated 

crack (mm) 
0 0 1.37 1.94 2.51 

Ground truth 

(mm) 
0 0 0 1.94 2.5 

Penalty Score 

𝑆(𝑖) 
0 0 28.97 0 2.00 

The prediction process for specimen T8 is the same as the 

prediction process for specimen T7, after considering the 

effect of variable loading through an additional preprocessing 

step. Figure 10 shows the constant and variable loading 

conditions. To consider the effect of variable loading, the 

equivalent effect of constant loading was calculated. 
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Figure 10. Summary of loading condition: (a) constant 

loading condition, (b) variable loading condition 

To transform the variable loading condition into the 

equivalent effect of a constant loading condition, the average 

stress range of the lower- and upper-stress range was 

calculated. Then, the equivalent constant stress range was 

calculated using Eq. (18). Here, ∆𝜎lower is the lower-stress 

range and ∆𝜎upper is the upper-stress range. As a result, it 

was found that approximately 95% of the loading was applied, 

as compared to the constant loading condition, as shown in 

Eq. (19).  

 ∆𝜎variable =
∆𝜎lower + ∆𝜎upper

2
 (18) 

 ∆𝜎variable ≅ 0.95 × ∆𝜎constant (19) 

Next, to examine the effect of the stress range on crack 

growth, Paris’ law (Paris & Erdogan, 1963) was analyzed. 

Paris’ law is defined as 

 
𝑑𝑎

𝑑𝑁
= 𝐶(∆𝐾)𝑚 = 𝐶(𝑌∆𝜎√𝜋𝑎)𝑚 (20) 

 
𝑑𝑎

𝑑𝑁
∝ (∆𝜎)𝑚 (21) 

where 𝐶  and 𝑚  are empirical parameters and ∆𝐾  is a 

stress intensity factor. From Paris’ law, the effect of the stress 

range is reflected in the power of the empirical parameter, as 

shown in Eq. (21). Therefore, the effect of the variable 

loading on the training dataset can be applied by adjusting the 

cycle increment in the form of Eq. (22), under the same crack 

length increment. 

 𝑑𝑁 ′ = (0.95)−𝑚𝑑𝑁 (22) 

To calculate the empirical parameters of Paris’ law, Markov 

Chain Monte Carlo (MCMC) simulation was used (Gilks, 

Richardson, & Spiegelhalter, 1995; Haario, Laine, Mira, & 

Saksman, 2006) with the training datasets. The results of the 

MCMC are summarized in Table 9. 

Table 9. Summary of MCMC results 

MCMC Algorithm 
Delayed Rejection Adaptive 

Metropolis 

Number of samples 100,000 

m 2.0597 

C 1.3826e-6 

Using one of the empirical parameters, m, Eq. (22) was 

calculated as Eq. (23). However, this relationship is only 

valid in Region 2, as shown in Figure 11. Considering the 

nonlinear effect on Region 3 in the fatigue crack growth rate 

plot, the training dataset was modified using Eq. (24). 

 𝑑𝑁 ′ = 1.11 × 𝑑𝑁 (23) 

 𝑁∗(𝑘) = 𝑁(𝑘) × (𝑁(𝑘)/𝑁0)
1.11 (24) 

where 𝑁0 is a cycle of crack initiation. 

 

Figure 11. Fatigue crack growth rate 

As a result, the cycles of specimens T3 and T4 were modified. 

The modified training datasets reflecting the effect of 

variable loading are shown in Figure 12. 

The subsequent process is the same as the trans-fitting 

procedure used for specimen T7. First, the sum of two 

exponential functions (Exp2) was selected for specimen T4 

and the sum of the Gaussian model and exponential function 

(Exp1+Gaussian1) was selected based on the statistical 

indicators of the goodness-of-fit. The results of the goodness-

of-fit tests for the two candidate functions are given in Table 
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10. Second, along with the results of the goodness-of-fit test, 

training datasets were fitted to each of the selected candidate 

functions. 

 

Figure 12. Modified training datasets 

Table 10. Goodness-of-fit results for specimen T8 

 T3 T4 

Candidates SSE DFE SSE DFE 

Exp2 (E2) 0.3402 3 0.1796 3 

Exp1+Gaussian1 

(GE) 
0.1276 2 0.2887 2 

 

 

Figure 13. Results of curve translocating for specimen T8: 

(a) trans-fitting curve, (b) average trans-fitting curve 

Third, the parameters of the fitting curve were updated. 

Figure 13 shows the results of the curve translocating process 

for specimen T8. The results of the fitting curves and trans-

fitting curves are plotted in Figure 13(a). The average trans-

fitting curve in Figure 13(b) were calculated through the 

average of the two trans-fitting curves. Finally, sequential 

updating was performed based on the crack length for the 

target cycle. Based on the first average trans-fitting curve, the 

results of sequential updating for the predicted crack length 

are shown in Figure 14. 

From Figure 13(b) to Figure 14(d), there are five average 

trans-fitting curves. Each average trans-fitting curve can 

predict the crack lengths for the target cycles after the cycle 

used in the sequential updating process, as shown in Table 11. 

As was done in the case of specimen T7, the average value 

for all calculated values was adopted as the last prediction 

value. 

Table 11. Predicted crack lengths for specimen T8 

Cycle 89237 92315 96475 98492 100774 

1st average trans-
fitting curve 

3.70 4.12 4.76 5.10 5.52 

2nd average trans-

fitting curve 
 4.06 4.65 4.96 5.34 

3rd average trans-
fitting curve 

  4.69 5.02 5.42 

4th average trans-

fitting curve 
   5.00 5.39 

5th average trans-
fitting curve 

    5.38 

Final average 

value 
3.70 4.09 4.70 5.02 5.41 

Ground truth 
(mm) 

3.71 3.88 4.61 4.96 5.52 

Penalty Score 

𝑆(𝑖) 
2.00 21.30 9.49 6.58 41.94 

 

  



INTERNATIONAL JOURNAL OF PROGNOSTICS AND HEALTH MANAGEMENT 

12 

 

 

 

 

Figure 14. Sequential updated curves for specimen T8: (a) 

average trans-fitting curve for the second iteration, (b) 

average trans-fitting curve for the third iteration, (c) average 

trans-fitting curve for the fourth iteration, (d) average trans-

fitting curve for the fifth iteration 

5. CONCLUSION AND FUTURE WORK  

In this study, a new method was proposed that consists of 

trans-fitting combined with SVR to estimate and predict a 

crack propagation trend using only the initial crack length of 

a target specimen. In the proposed method, the crack lengths 

were first estimated using an SVR model. To construct the 

regression model, the features were defined using filtered 

wave signals. Then, the crack lengths were predicted using 

the trans-fitting method, which adapted the crack propagation 

trend from the training datasets and applied it to the target 

datasets. The performance of the proposed method was 

demonstrated by using it on the given validation datasets. 

Through the validation process, crack propagation trends and 

wave signals of the training dataset were used to estimate the 

initial crack length of the target specimen and to accurately 

predict the crack propagation trend. Also, in the case of 

specimen exposed to variable loading, the proposed method 

was shown to be effective. The excellent performance of the 

proposed method resulted in it being ranked in first place in 

the 2019 PHM Conference Data Challenge. 

Future extension of this research will include a sensitivity 

analysis to quantitatively analyze the impact of 

contamination on the training dataset. The proposed method 

in this paper was based on a data-driven approach; it has an 

inherent limitation of dependence on the training dataset. In 

future work, sensitivity analysis will be used to explore the 

effective contamination bounds of the training dataset. 

Additionally, as a case study in future research, validation of 

different materials and other types of failure modes will be 

performed to confirm the robustness of the proposed method. 
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