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ABSTRACT

Being able to accurately predict the impending failures of
truck components is often associated with significant amount
of cost savings, customer satisfaction and flexibility in main-
tenance service plans. However, because of the diversity in
the way trucks typically are configured and their usage un-
der different conditions, the creation of accurate prediction
models is not an easy task. This paper describes an effort in
creating such a prediction model for the NOx sensor, i.e., a
component measuring the emitted level of nitrogen oxide in
the exhaust of the engine. This component was chosen be-
cause it is vital for the truck to function properly, while at the
same time being very fragile and costly to repair. As input to
the model, technical specifications of trucks and their opera-
tional data are used. The process of collecting the data and
making it ready for training the model via a slightly modified
Random Forest learning algorithm is described along with
various challenges encountered during this process. The op-
erational data consists of features represented as histograms,
posing an additional challenge for the data analysis task. In
the study, a modified version of the random forest algorithm
is employed, which exploits the fact that the individual bins
in the histograms are related, in contrast to the standard ap-
proach that would consider the bins as independent features.
Experiments are conducted using the updated random forest
algorithm, and they clearly show that the modified version
is indeed beneficial when compared to the standard random
forest algorithm. The performance of the resulting prediction
model for the NOx sensor is promising and may be adopted
for the benefit of operators of heavy trucks.

1. INTRODUCTION

In heavy duty trucks, it is important to ensure the availabil-
ity of the truck and especially avoid any unexpected break-
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down during operation. Such an unexpected breakdown not
only can inflict heavy loss in terms of business income but
also could result in life-threatening accidents. Therefore it is
very important to accurately estimate the well-being of im-
portant components of trucks so that any impending faults
could be discovered and dealt with early on. The informa-
tion about the current health of the components of trucks
may also be useful in organizing flexible maintenance plans
rather than relying on fixed maintenance schedules, speci-
fying when trucks should visit workshops independently of
their condition (Lindgren, Warnquist, & Eineborg, 2013). This
is also in accordance with a current trend in the truck indus-
try which is shifting from selling products to selling transport
service solutions for customers that demand up-time guaran-
tees. In fleets of trucks, transportation tasks can be assigned
to trucks according to their overall health condition, e.g., im-
portant transportation tasks are assigned to healthier trucks.
The field of prognostics and health management (PHM) deals
with such issues of predicting the impending failures, estima-
tions of remaining useful life and assessment of the overall
health of vehicles.

In PHM, for prognostics, there are mainly two frequently em-
ployed approaches; the model-based approach (Daigle &
Goebel, 2011) (Bolander, Qiu, Eklund, Hindle, & Rosen-
feld, 2009) and the data-driven approach (Si, Wang, Hu, &
Zhou, 2011). The model-based approach concerns designing
physical models to monitor degradation rates and then pre-
dict the remaining useful life of the components. However,
this approach typically requires both extensive prior knowl-
edge and effort, in particular since a separate model needs
to be constructed for each specific component. The data-
driven approach, on the other hand, is based on building mod-
els through statistical analysis and machine learning using
data collected over time. It typically requires less involve-
ment of domain experts and can therefore often be less ex-
pensive. Hybrid approaches, i.e., mixing both model-based
and data-driven approaches, are also common (Liao & Köttig,
2016). This paper focuses on using a data-driven approach to
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build a predictive model for the NOx sensor in heavy trucks.
As heavy trucks are getting increasingly complex, building
physical models are also getting increasingly challenging and
therefore data-driven approach are gaining in popularity and
attention. However, as will be seen, the increased complex-
ity of the trucks is also a challenge for the data-driven ap-
proaches.

One particular challenge that will be considered in this pa-
per is that currently large volumes of operational data are not
transmitted immediately, but stored on-board and transmit-
ted first during maintenance or workshop visit. Moreover,
to save storage space, multiple measurements are aggregated
into histograms, rather than keeping all individual measure-
ments. It is therefore of utmost importance that the analysis
methods can effectively handle such histogram data. Previous
work on how to exploit such accumulated operational data
from trucks in histogram format are quite rare. The authors
are only aware of two such studies, (Frisk, Krysander, & Lars-
son, 2014) and (Prytz, Nowaczyk, Rgnvaldsson, & Byttner,
2015), which recently presented studies with very similar ob-
jectives of predicting failures of the components in the heavy
duty trucks, but focusing on different components; Frisk et al
investigated battery failure in trucks, while Prytz et al investi-
gated compressor failure. Erik et al worked on data similar to
the one used in this study, but they did not elaborate on how
their data was collected. Prytz et al, on the other hand, have
provided an elaborate explanation of how their dataset was
prepared, but the number of considered vehicles in their study
was very limited. Furthermore, multiple instances of the same
vehicle were treated as independent observations, hence in-
validating the standard assumption of data being drawn in-
dependently from an identical distribution (iid). However,
some related work on predicting vehicle component break-
down could be found. For example Eyal et. al (Eyal et al.,
2014) has published their work on survival analysis of auto-
mobile components. However, most of the paper is focused
on explaining their proposed method and very few details on
the data used. Earlier work by Lawless et. al (Lawless, Hu, &
Cao, 1995) could also be mentioned where they have studied
on failure distributions from automobile warranty data.

The component of interest for this particular paper is the NOx
sensor, but the overall procedure is generic and reproducible
for any other component of choice. The NOx sensor was se-
lected because it is one of the most important components
and very expensive to repair. NOx contents present in the
exhust gas are atmospheric pollutants and so forced by legis-
lation to cleanse below acceptable level before releasing into
atmosphere. NOx sensor is an integral part of this cleansing
system and must be in working condition at all time during
truck’s operation. Moreover, this is one of the most frequently
failing components of heavy trucks. By using a predictive
model for this component, one could save money by cor-
rectly predicting the failure early on, but one could of course

also lose money when incorrectly replacing or inspecting the
component at a workshop. The overall objective of using a
predictive model is usually to optimize the total cost and/or
up-time, for example by aligning workshop visits with the de-
livery schedule of haulage operators, parametrize the cost of
down-time, etc. Whenever new operational data is extracted
from a truck, such a predictive model can provide an estimate
of how likely it is that the NOx sensor will fail in the near
future and based on this information, one can decide whether
there is a need to schedule a workshop visit or not. In this
paper, we will also elaborate on various challenges encoun-
tered while preparing input data for training the NOx predic-
tion model. The data that has been used for training has at-
tributes represented as histograms and two dimensional ma-
trices along with many numeric and categorical types laden
with many missing values. We therefore have modified the
standard random forest algorithm to exploit the fact that bins
in a histogram are related rather than treating them as inde-
pendent features.

In the next section, we provide more background about the
NOx sensor. In Section 3, we describe and discuss the prepa-
ration of the input data. Details of the modified random forest
algorithm are given in Section 4, while the results and analy-
sis of the learned model are presented in Section 5 and 6. Fi-
nally, in Section 7 we summarize the main findings and point
out directions for future research.

2. THE NOX SENSOR

Fuel combustion in internal combustion engines result in ex-
haust gas that contains particulate matter, oxides of Nitrogen
(NOx) etc. which are atmospheric pollutants and can harm
human health. Nitrogen oxides are responsible for photo-
chemical smog that can harm respiratory functions and af-
fect visibility. They form nitric acid in the atmosphere and
eventually cause acid rain. NOx gases are also responsible
for the global warming. Oxides of Nitrogen come in various
forms such as nitric oxide (NO), nitrogen dioxide (NO2)
and nitrous oxide (N2O)1. With the increasing number of
heavy trucks produced every year, the legal limits of accept-
able NOx emission by heavy trucks are getting increasingly
stringent. In EU and EEA member states, European emis-
sion standards define acceptable limits of exhaust emissions.
Emission standards have evolved over time from the first Euro
I (1992) to the latest Euro VI (2013) and for heavy duty diesel
trucks, standards are measured in engine energy output, g/kWh.
For instance, the acceptable level of NOx emission in Euro
IV (2005) emission standard was 3.5 g/kWh, which has now
been made stricter to 0.40 g/kWh by the most recent Euro
VI (2013) standard2. Cleansing the exhaust gas to keep the
NOx content on an acceptable level has been one of the ma-

1http://www.eea.europa.eu/data-and-maps/indicators/eea-32-nitrogen-
oxides-nox-emissions-1

2http://ec.europa.eu/environment/air/transport/road.htm
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jor challenges in automotive industry. So it is very important
for heavy truck manufacturers to install state-of-art emission
control systems in their vehicles and keep track of the emis-
sion at all times when the vehicle is in operation.

In heavy duty diesel trucks, one way of minimizing the NOx
content in exhaust is by recirculating the engine exhaust back
to the combustion chamber, which results in a lower temper-
ature. Since nitrogen and oxygen need a higher temperature
to form NOx, less NOx is hence generated. After-treatment
purification methods could also be used. A NOx purification
system uses a NOx Storage Reduction (NSR) and/or Selec-
tive Catalytic Reduction (SCR) system (Devarakonda, Parker,
& Johnson, 2012) (Sawada & Imamura, 2012). Sensors to
measure NOx concentration are positioned before (upstream)
and after (downstream) NOx purification in the exhaust path.
The NSR catalyst can absorb NOx in the exhaust gas when
the air-fuel ratio of the exhaust gas is lower than a predeter-
mined threshold and release the stored NOx as nitrogen when
the air-fuel ratio of the exhaust gas is higher than the pre-
defined threshold. Once the NSR catalyst cannot store any-
more NOx, i.e., when it has reached a saturation state, then
reducing agents are supplied to release the stored NOx. This
process of releasing the stored NOx can begin when the NOx
sensor downstream detects leakage of NOx. SCR systems
are more popular than other exhaust NOx treatment process
in heavy duty trucks as it is very effective at cleansing exhaust
NOx. In a SCR system, Diesel Exhaustive Fuel (DEF, often
urea solution) is used as a reducing agent in which NOx is
subjected to and result in nitrogen, water and small amounts
of carbon dioxide. The SCR system needs to replenish DEF
on a periodic basis. Most of all, a correct measure of NOx
concentration of the final exhaust gas has to be done to as-
sess the performance of the purification system. These NOx
readings are also used as feedback control. Hence, the NOx
sensor is an important component in the exhaust purification
system. Truck manufacturers are these days forced by legis-
lation to design their vehicles such that the truck suffers from
power limitations if NOx emissions levels are not met and
within a certain period of time the trucks are forced to a stand-
still, to prevent it from being used with a defective emission
control system. So it is extremely important to have a healthy
and properly working emission control system for a vehicle
to operate properly.

NOx sensors are an integral part of the emission control sys-
tem. Usually one sensor is positioned in the tailpipe where
they are exposed to harsh conditions, with very high temper-
ature of exhaust emissions, varying from 500 to 1000 degrees
Celsius. The NOx sensors are usually made of materials that
can withstand such harsh working environments, such as ce-
ramic type metal oxide, yttria-stabilized zirconia (YSZ) being
the most common one. The benefit of using YSZ is that it can
conduct oxygen ions in high temperature. Besides this func-
tional advantage, YSZ is physically strong and stable at high

temperatures (Schubert, Wollenhaupt, Kita, Hagen, & Moos,
2016). YSZ along with electrodes of noble metals such as
platinum or gold is used to build a NOx sensor and the con-
centration of NOx is communicated via an electrical signal.
Good NOx sensors usually have a high sensitivity, especially
given a very low ppm (100 to 2000) of NOx to be measured
at fluctuating high temperature. Moreover, the response time
should be very short, since its readings are used for feedback
control. This makes the NOx sensor very difficult to build,
which also makes it one of the expensive components in the
vehicle but at the same time also very prone to breakdowns.
High exhaust temperature can de-laminate the electrodes over
time and soot particles can degrade the material. Sometimes
a tiny drop of water (e.g., dew) on very hot ceramic can crack
the sensor rendering it useless. Because of these serious is-
sues, it is one of the prioritized components in heavy trucks
that need to be studied for its failure patterns to allow for ac-
curate prediction of any impending failures.

3. DATA PREPARATION

The data that will be considered for analysis is collected from
trucks manufactured by Scania. Because of their modular de-
sign, there is great differentiation in their configurations, i.e.,
two trucks only rarely have the same configuration. This in
turn implies that data collected from different trucks may vary
substantially, not only in terms of feature values, but with re-
spect to what feature values are available. Moreover, more
sensors are added to the trucks over time and the software
in Electronic Control Units (ECU) gets upgraded, leading to
completely new features or that the generation of values for
old features changes. As a consequence, missing data are
abundant.

Information about the operation of individual trucks and their
operating environment is stored in the ECUs on-board the
trucks, which usually are readings from various sensors. This
information is normally extracted when trucks visit autho-
rized workshops. Each extraction is called a snapshot and
each truck will typically have multiple snapshots taken over
time. It should be noted that the intervals between any two
consecutive snapshots are not regular and the number of snap-
shots per truck will vary as well. Some trucks might not even
have any snapshot at all. Various features are used in a snap-
shot to describe operation of the truck. All the snapshots are
uploaded and stored in a central database at Scania. Two
other databases that can be useful when constructing predic-
tion models are the warranty claims database and the work-
shop orders database.

The warranty claims database stores all the information about
the claims made by owners of trucks for its broken parts.
Usually warranty claims cover any breakdown during the first
year after the delivery of a truck, while warranty claims for
some components could be extended well beyond a year. Sim-
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Figure 1. Selecting trucks for analysis

ilarly, the workshop orders database contains information of
the components ordered by workshops when repairing the
trucks. One can typically assume that a component has been
ordered to replace a component that has failed. These two
databases are important for identifying trucks that have had a
faulty component of interest and at which date the fault oc-
curred. In many fault prediction scenarios, the components of
interest could be continuously monitored over time, but this is
not the case here as the trucks normally visit workshops only
a couple of times during a year. From these databases, the
operational data (snapshots) for all the trucks that have had a
faulty NOx sensor during 2008 and 2013 have been extracted.
Similarly, we also select all the snapshots for trucks without
any reported problems with the NOx sensor for the same pe-
riod. The process of selecting data for the trucks is shown in
Figure 1.

Most variables in the snapshots are cumulative in nature, e.g.,
if a variable in a snapshot is ambient temperature, it is rep-
resented as histogram of 10 bins where each bin would have
a count for how long the truck operated under that particu-
lar temperature range defined by the bin boundaries. So, the
count in the bin of ambient temperature variable is always in-
creasing for snapshots taken afterwards. This means that dif-
ferent snapshots for the same truck often is highly correlated.
However, for our purposes, we will only select one snapshot
per truck. Rather than choosing a random snapshot, we want
the snapshot to be the most informative, which in case of
NOx sensor failure means the last snapshot taken before the
breakdown occurred. For some trucks, the NOx sensor were
broken multiple times, but for these we will only consider
the first breakdown. The data does not state exactly when a
breakdown occurred, but instead we consider the repair date
registered in the warranty claims database or the truck arrival
date in workshop order history information database as the
approximate breakdown date. After an approximate break-

Figure 2. Selecting the best snapshot for a truck

down date has been determined, we thus need to find the lat-
est snapshot prior to this. In order to avoid that a snapshot
is taken from after the breakdown, which e.g., may happen
since snapshots are frequently extracted by mechanics while
performing some tests in workshop. Moreover, it is also pos-
sible that the records of faults are not filed on the same day
or when the truck arrives to the workshop some days after
breakdown. So, we try to keep a safe margin of seven days
such that the snapshot selected should be taken at least one
week before the estimated breakdown day. Furthermore, the
snapshot to be selected should be taken at least after truck has
operated more than thirty days after delivery, in order to ex-
clude trucks with very short operating history. For the trucks
with a non-failed NOx sensor, we select the snapshot sec-
ond from the last and again the selected snapshot should have
been extracted at least a month after the truck was delivered.
The overall procedure of selecting snapshots for trucks (with
a faulty or non-faulty NOx sensor) is shown in Figure 2.

To increase homogeneity of the trucks under consideration,
only trucks built for a particular purpose of usage were se-
lected, namely Scanias R series of trucks that are built for
long distance haulage travels.

A total of 16 980 trucks were obtained from the above sources,
out of which 951 had a faulty NOx sensor. Furthermore,
the trucks were selected in such a way that none of the at-
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tributes selected in the snapshot had missing values in them.
Since the values were not missing at random, they needed
to be treated specially and we intend to work on that in fu-
ture. These trucks were considered ultimately for experimen-
tal dataset from around 72 000 trucks in the beginning. As
mentioned before, there were many variants of same feature
used in various trucks. For example,Coolant Temperature
histogram variable has at least two variants, some trucks use
the first variant while others use the second variant. Other fea-
tures also similarly have multiple variants. In order to keep
the setup simple, we decided to select the variant that is used
by most trucks. In doing so, the number of trucks at the end
are largely limited to 16 980 only. So, we expect these final
set of trucks to be of similar nature in their configuration and
ECUs installed. Although random forest algorithm that shall
be used for training the predictive model can handle missing
values internally, we decided to refrain our analysis from how
missing values were handled by the algorithm which can be
something to be explored further in detail in future.

Attributes in snapshots were selected by consulting with ex-
perts from Scania. This was important as the number of tech-
nical specifications and operational variables were too many
to consider all of them. Only very few technical specifications
that would distinguish trucks were chosen while for opera-
tional variables only those that might have influence on NOx
breakdown and exhaust system were selected.

Categorical attributes
Engine Type (16 unique values)
Engine Stroke Volume (3 unique values)
Power (9 unique values)
Generalized chassis number (4 unique values)

Numerical attributes
Age, Technical total Weight

Histogram Variables
Ambient Temperature: 10 bins
Atmospheric Pressure: 10 bins
Boost Air Pressure: 10 bins
Coolant Temperature: 10 bins
Fuel Consumption Speed Volume: 20 bins
Fuel Temperature: 10 bins
Inlet Air Temperature: 10 bins
Vehicle Speed: 10 bins

When histogram is normalized in such a way that the bins
sum to one, it can be viewed as a probability distributions.
The shape of this probability distribution depends on how the
width of the bins are set. Nevertheless, we assume histograms
to be normally distributed across bins and use formula for
normal distribution to calculate mean and standard deviation
to summarize its distribution. So, for each truck, for a given
histogram variable, mean and standard deviations were cal-

culated using frequency of the bins and midpoint of the bins
(using bin breakpoints). In some of the histograms, the first
and last bins have open boundaries (< or >), so we decided
to assume the width of those bins to be equal to second and
second last bin respectively. So, for the above listed eight his-
togram variables, 16 new additional numeric attributes were
generated.

For a histogram variableH withm bins, mean (µH
i ) and stan-

dard deviation (σH
i ) for ith observation are calculated as fol-

lows,

µH
i =

m∑
j=1

xHj .f
H
j , s.t.

m∑
j=1

fHj = 1 (1)

σH
i =

√√√√ m∑
j=1

(xHj − µH
i )2.fHj (2)

where fHj is the normalized frequency in jth bin and xHj is
the midpoint of jth bin obtained from the bin breakpoints for
histogramH . For histogram variables in the data set we have,
we already know about the structure of histogram variable
such as how many bins there are and what the bin boundaries
are. For example, for the histogram variable ambient temper-
ature, we can calculate bin midpoints using bin boundaries
and its bin midpoints turns out to be

(−35,−25,−15,−5, 5, 15, 25, 35, 45, 55).

In addition to this, an algorithmic approach to treating his-
togram variables is described in the next section.

Matrix Variable
Engine Load Matrix: 11 × 12 = 132 cells (Engine Load Per-
centage × Engine RPM)

For each matrix variable, marginal frequencies were calcu-
lated along the two axes. The matrix variable was simply
split into two constituting histogram variables and mean and
standard deviations for them were calculated. So, four new
numeric variables were generated from each matrix variable.
The algorithmic approach of handling matrix variables is de-
scribed in the next section.

4. RANDOM FORESTS FOR HISTOGRAM DATA

The random forest algorithm (Breiman, 2001) is one of the
most widely applied learning algorithms, often reaching state-
of-the-art performance. In previous attempts of predicting
component failure in vehicles by Frisk et. al (Frisk et al.,
2014), they have used a variant of random forest to build their
predictive model and similarly Prytz et. al (Prytz et al., 2015)
had demonstrated that the random forest algorithm outper-
forms all the other considered learning algorithms. Specially
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Figure 3. Sliding window for histogram with 10 bins

in survival analysis setup, tree based methods seem to be get-
ting popular, for instance random survival forest by Ishwaran
et. al (Ishwaran, Kogalur, Blackstone, & Lauer, 2008) and
use of mutually exclusive forest by Eyal et. al (Eyal et al.,
2014) to list the few. Interested readers can also look into
work by Zhou et. al (Zhou & McArdle, 2015) for further
details on rationale and applications of tree based survival
methods. Because of this, we decided to use the random
forest algorithm for developing the NOx sensor failure pre-
diction model, but with a slight modification enabling it to
learn from histogram and matrix variables. Below, we will
briefly explain how the algorithm behaves when a histogram
variable has been selected for evaluating splitting of a node
while growing a tree. A more detailed description of learn-
ing (single) decision trees from histogram data can be found
in our previous work (Gurung, Lindgren, & Boström, 2015),
(Gurung, Lindgren, & Boström, 2016).

For a histogram variable, the bins are sequentially arranged
according to the bin boundaries. If for example the histogram
variable is ambient temperature, the lower (higher) ordered
bins would correspond to operation in cold (warm) weather.
If the bins of a histogram are represented as separate numeric
attributes, this can result in many correlated attributes. Apart
from increasing dimensionality, which may have a negative
impact on predictive performance, the standard random for-
est algorithm would underestimate the variable importance
score for those variables. Furthermore, if there are any de-
pendencies among the bins of a histogram, they might not be
fully exploited when evaluating the bins individually. So in-
stead, the modified version of the algorithm handle the bins of
a histogram variable jointly, evaluating the regions of the his-
togram by considering groups of adjacent bins. For example,
if the group of bins 1, 2 and 3 for ambient temperature gives
good separation into trucks with faulty and healthy NOx sen-
sors; then the operation in cold weather can be considered to
be a useful factor for predicting failure. In order to select the
size of region (how many adjacent bins to consider), we use
a sliding window approach, where the size of the window is
determined by a parameter that can be tuned. Figure 3 illus-
trates the use of the sliding window method for a histogram
with 10 bins with a window size set to 3.

For example, consider the histogram variable ambient tem-
perature, which has 10 bins whose midpoints are

(−35,−25,−15,−5, 5, 15, 25, 35, 45, 55)

corresponding to bins (1, 2, 3, 4, 5, 6, 7, 8, 9, 10). So, if we
choose to let the sliding window size to vary from 2 to 4, we
get the following groups of bins for evaluating split of a node,
obtained by sliding the window of each given size along the
ordered histogram bins:

{(1, 2), (2, 3), (3, 4), (4, 5), (5, 6), (6, 7), (7, 8), (8, 9),
(9, 10), (1, 2, 3), (2, 3, 4), (3, 4, 5), (4, 5, 6), (5, 6, 7), (6, 7, 8),
(7, 8, 9), (8, 9, 10), (1, 2, 3, 4), (2, 3, 4, 5), (3, 4, 5, 6),
(4, 5, 6, 7), (5, 6, 7, 8), (6, 7, 8, 9), (7, 8, 9, 10)}

When the ambient temperature histogram needs to be evalu-
ated for splitting a tree node, the algorithm randomly selects
d
√
m combne number of bin sets to investigate (similar to the

original random forest algorithm which in a standard default
setting considers the square root of the number of available
variables for each node split). Here, in the example above
m combn = 24. So, the algorithm would in this particular
case randomly pick d

√
24e = 5 bin sets.

Let us assume that the set {3, 4} is among the selected bin
sets for evaluating the node split. In this particular case, all
the observations (trucks) are represented as a point in a two-
dimensional space of bins 3 and 4. Each point has a class
label assigned to it as either faulty or healthy. Now the al-
gorithm tries to find the linear hyperplane that can split the
observations (trucks) into faulty and healthy trucks in best
possible way as shown in the Figure 4. In order to find the
best splitting hyperplane, a small number of special unique
points are carefully selected first. Each splitting hyperplane
in the given space is obtained by assuming it to pass through
these points. The algorithm selects these special points such
that they lie closest to the centroid of points from the opposite
class. The number of special points to be used for creating
splitting hyperplane is obtained using a tuning parameter sp
as following:

number of split points = size(chosen bin set) + sp

Here sp is a natural number. As shown in the Figure 4, the
special points (marked as asterisks) are chosen as the nearest
points to centroids (two big dots) of points from the opposite
class and later these points are used to generate a splitting
hyperplane. Let us assume that sp is set to 10, so that the
algorithm would select 12 special points to be used for gener-
ating the splitting hyperplane in the case where bin set {3, 4}
is selected. Out of the 12 selected special points, 2 (dimen-
sions of the space) of them are chosen at a time to get the
equation of the linear hyperplane that passes through these 2
points.

For this particular case, when the bin set {3, 4} is selected,
let the two points (x1, y1) and (x2, y2) be selected from the
12 special points. Let the equation of splitting hyperplane be
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Figure 4. Selecting split points and best split plane

C1.X + C2.Y = 1 (3)

Now, we use two selected points to solve for coefficients of
this hyperplane such that

[
x1 y1
x2 y2

]
×
[
C1

C2

]
=

[
1
1

]
[
C1

C2

]
=

[
x1 y1
x2 y2

]−1

×
[

1
1

]
The hyperplane using these two points is possible only if the
inverse of the matrix exists. Once the linear hyperplane has
been generated, the algorithm tries to evaluate how well it
separates the remaining points into two child nodes. The
more homogeneous (or pure) the resulting child nodes are,
the better the split is. The performance of the hyperplane is
measured as information gain obtained after the split.

All the possible combinations of 2 points selected out of 12
special points,

(
12
2

)
, i.e., 66 splitting hyperplanes are eval-

uated and the best (most informative) one is selected. The
best hyperplane from the bin set (3, 4) is now compared with
the best hyperplanes of 5 (i.e.

√
m combn) other randomly

selected bin sets for ambient temperature histogram. Ulti-
mately, the best splitting hyperplane and the bin set is deter-

Figure 5. Node split evaluation process

mined and will represent the ambient temperature histogram
to be compared with best splits from other histogram vari-
ables and numeric and categorical variables for the final split
decision. The procedure is depicted in Figure 5 where the
splitting process in intermediate node 2 is further elaborated
for clarity.

The procedure for handling matrix variables is similar to the
procedure for handling histogram variables, the only differ-
ence being the way in which groups of adjacent bins (cells)
are assembled. Since a matrix variable has two dimensions,
a sliding window should be able to move in both dimensions.
For simplicity, a window of size 2 × 2 is selected, so that 4
adjacent cells of a matrix form a window which can sweep
throughout the matrix cells as shown in the Figure 6. The
matrix variable in the figure has 132 cells, X variable with
12 bins and Y variable with 11 bins. For the given matrix
variable, 110 blocks of such 4 adjacent cells (size 2× 2) can
be generated. So if this matrix variable is to be evaluated for
splitting a node, d

√
110e = 11 such blocks are randomly se-

lected. For each of these blocks, the best splitting hyperplane
is determined.

5. EXPERIMENT

Before training the adapted random forest algorithm on real
data, it was first tested on synthetic data to verify that it works
as it is expected. Two synthetic data sets were generated.
All the experiments and the implementation of the modified
random forest algorithm was done using the R language3.

3https://www.r-project.org/
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Figure 6. Sliding window for matrix variable

5.1. Dataset I: Linear pattern

The first synthetic dataset has two histogram variables with
four and five bins, respectively, where the bins of each his-
togram sums to 1. Bin values are uniform randomly gen-
erated to lie between 0 and 100 first and then normalized
to sum to 1. A class label for an observation is based on
a linear pattern H1

1 + H1
2 < 0.8 in the first histogram and

H2
1+H

2
2+H

2
3 < 0.8 in the second histogram, whereHi

j rep-
resents the jth bin of the ith histogram variable. An indica-
tor variable is used for each histogram to determine if an ob-
servation satisfies the condition in the linear pattern for both
histograms. Indicator variables for an observation for each
histogram variable are set to TRUE if the condition is satis-
fied. The class label of the observation is set to 1 if indicator
variable for both histograms are TRUE otherwise 0. Noise
s introduced around the boundary region (linear pattern) to
blur the class boundary. Twenty five percent of the points for
first histogram and twenty five percent of points for second
histogram are selected and for randomly selected ten percent
of those points, the indicator variables are flipped. After in-
troducing the noise, the class label for each observation is re-
evaluated i.e. class label for an observation is reassigned as
1 only if indicator variables for both histogram variables are
still TRUE. However, indicator variables are there only for
determining the class label and introducing noise, they are
removed from the final experimental data. So the final data-
set has only two histogram variables for 1912 observations
among which 440 have class label 1.

5.2. Dataset II: NonLinear pattern

Second synthetic data-set has one histogram variable with
four bins. Similar to first synthetic dataset, bin values are

uniform randomly generated between 0 and 100 and later nor-
malized to sum to 1. The class label for an observation is set
to 1 if the histogram satisfies a condition (H1−0.3)2+(H2−
0.3)2 < 0.32 which is non linear in nature. Here, Hj refers to
jth bin of histogram H . Observations that satisfy the pattern,
or observation for which point (H1, H2) in 2D space of first
and second bin lies inside the circle with center (0.3, 0.3) and
radius 0.3 has class label 1 else 0. Noise is injected along the
boundary region using similar technique as in first dataset.
The final dataset has 1912 examples out of which 624 have
class label as 1.

5.3. Experimental setup and results

A random forest model for the synthetic data was built. In the
first setting, all the histogram variables in the dataset were
treated as histograms (using sets of adjacent bins to make
splitting decision). In the second setting, all the histogram
bins were treated as standard numeric variables (using the
standard random forest algorithm). The parameter that was
varied was the number of special points to use (sp) for gen-
erating splitting hyperplanes. The values for sp were set to
1, 2 and 3 respectively. The larger the value for sp, larger
would be the number of split planes to examine and better the
chances of finding an informative split. However, the training
time increases accordingly. For histogram approach of ran-
dom forest model, sliding window size was set to vary from
2 to 3. The window size can be varied between any number
from 2 to the size of histogram, but for simplicity only the
smallest sizes from 2 to 3 were considered. Five-fold cross-
validation was performed and the results were then averaged
over these five folds. In total 300 decision trees were built in
each forest. Again, a larger number of trees could have been
chosen but the computational cost increases accordingly so
only 300 trees were chosen. The node splitting process would
stop when the number of examples in the node was less than 5
or the node had all the observations with same class label. In
Table 1 and 2, the results for the experiments with synthetic
data are presented. The area under ROC curve (AUC) and ac-
curacy were used to evaluate the random forest models. The
average number of leaf nodes in the trees of the forests built
under different settings are also shown.

In addition to the above presented approach of finding the best
splitting hyperplane for a histogram variable, commonly em-
ployed linear classifiers such as logistic regression, the per-
ceptron algorithm and the Support Vector Machine (SVM)
with a linear kernel were also examined to generate the best
splitting hyperplane during tree construction. For logistic re-
gression, the publicly available GLM R package was used,
while for SVM, the e1071 R package was used. Logistic re-
gression and linear SVM were trained with default settings
as provided in their respective R packages. While searching
for the best splitting hyperplane, several such linear models
need to be trained for each histogram variable in every node
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Table 1. Results of classification on synthetic data I.

Random Forest Models AUC Accuracy Leaf Nodes
Hist. RF (sp=1) 0.9852 94.19 62
Hist. RF (sp=2) 0.9862 94.19 53
Hist. RF (sp=3) 0.9868 94.24 47.8
Hist. RF (Logistic reg.) 0.9222 92.62 27.6
Hist. RF (Perceptron) 0.9758 94.08 36.4
Hist. RF (Linear SVM) 0.8239 91.15 3
Standard RF 0.9633 93.25 83.4

Table 2. Results of classification on synthetic data II.

Random Forest Models AUC Accuracy Leaf Nodes
Hist. RF (sp=1) 0.9580 87.02 115.2
Hist. RF (sp=2) 0.9590 86.92 100.4
Hist. RF (sp=3) 0.9597 87.12 92
Hist. RF (Logistic reg.) 0.7968 78.13 21.4
Hist. RF (Perceptron) 0.9283 84.25 23.2
Hist. RF (Linear SVM) 0.7159 76.09 3
Standard RF 0.9552 86.55 110.2

of many trees in the forest model. Tuning the parameters for
every single model would be cumbersome, so the default set-
ting was used here for convenience. The results obtained with
the various implementations are also shown in Table 1 and 2.
Implementations are compared in terms of AUC, Accuracy
and average size of leaf nodes in each model. A model with
small number of leaf nodes in average would indicate that the
trees in the random forest are less bushy which further indi-
cates that the splits in the tree nodes are few but compact. For
instance, if two models are equivalent in performance (e.g.,
AUC) but differs in average tree size, we can assume that the
model with smaller size carries compact information in each
split.

The results of the experiments on synthetic data has shown
that the histogram-based random forest approach performed
better than the standard random forest algorithm. The result
also shows that the histogram-based approach tend to perform
better when the number of special points to be used for form-
ing splitting hyperplane is increased, which also results in re-
duced average size (nodes) of the trees in the forest as indi-
cated by decreasing average number of leaf nodes. The gain
is more accentuated for the task regarding a relatively easy
linear pattern compared to when a non-linear pattern has to
be identified. When comparing the original histogram-based
approach to alternatives that find splitting planes using logis-
tic regression, the perceptron or a linear SVM, only the use
of the perceptron algorithm gives comparable results, in par-
ticular in the first experiment that concerns linear patterns in
the data set. However, the perceptron algorithm needs to up-
date the weights of best plane sequentially and a very large
number of repetitions is needed for convergence, or if there
is no clear separation, the algorithm has to execute the maxi-
mum number of allowed repetitions, something which is very

costly for large datasets. When using an SVM, the tree cannot
typically be grown past two splits on average, hence leading
to low variance. Even logistic regression did not do very well.

6. NOX SENSOR FAULT PREDICTION

6.1. Comparision of random forest models

The heavy truck dataset that was described in section 3 in-
cluded two types of trucks; one with faulty NOx sensors and
others with functional NOx sensors, and the considered task
here was to classify trucks for which the status of the NOx
sensor was not known into one of these groups. Table 3
presents the result of the random forest models built under
four different set ups. Histogram RF A is a random forest
model built using the dataset where histogram bins were ex-
pressed as percentages, such that bins sum up to 100. In the
Histogram RF B model, the bins instead were represented by
real values, which were normalized individually such that the
values fall into the range between 0 and 1. An implementa-
tion of the standard random forest classification algorithm by
Ishwaran et al (Ishwaran et al., 2008) was used to build Stan-
dard RF A and Standard RF B using data set that was used
for building Histogram RF B. In addition, 20 attributes rep-
resenting the mean and standard deviation of the histogram
variables were included in Standard RF B. This was done to
see if there would be any improvement in model performance
by adding these additional derived variables. For all models,
the number of trees was set to 500. Nodes with homogeneous
set of observations or those with less than 5 observation were
converted to a leaf node. For the histogram approach, the
window size was varied between 2 to 4. However, for the
matrix variable the size was fixed to 4 cells in a block. The
parameter sp that concerns the number of special points used
to form splitting hyperplanes was set to a minimum value 1,
to keep the setup simple and computationally efficient. In Ta-
ble 3, the results for all four models are presented. Since the
data was highly skewed in terms of class distribution, accu-
racy would not give a clear picture of models performance, so
it was dropped from the result table. For example, if 94% of
observations in a dataset are of negative class, a useless model
that always predicts a test observation as negative would still
have accuracy of 94 percent which gives an impression of a
good model although it is clearly not. On the other hand,
in AUC measure, observations are ranked according to some
measure assigned by the model (probability in this case). If
all the positive observations are ranked higher than negative
observations, the model has AUC score of 1. Any random
guessing model would have AUC score of 0.5. Since, skew-
ness of class distribution has no influence in AUC score, it
is a preferred measure for model evaluation when dataset has
highly skewed class distribution. The result from the classifi-
cation experiment reveals that the histogram-based approach
of building random forests delivered better results in term
of the AUC measure. However, the average number of leaf
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Table 3. Results of classification on NOx sensor data.

Random Forest Models AUC Leaf Nodes
Histogram RF A 0.8360 503.6
Histogram RF B 0.8479 522.8
Standard RF A 0.8108 422.3
Standard RF B 0.7955 411.9
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Figure 7. AUC vs Trees in random forest models

nodes for the histogram approach is higher. However, as was
evident from the synthetic data experiment, the size can be re-
duced by increasing the parameter sp . Surprisingly, Standard
RF B was the worst model among the four, probably because
of including the 20 new features (means and standard devi-
ations) introduced more noise than guidance. Although 500
trees were used in the random forest models, from the plot of
AUC versus number of trees as shown in Figure 7, the AUC
performance starts to stabilize after 200 trees. Again from the
plot, it can be clearly seen that the histogram-based random
forests outperform the two variants of the standard approach.

6.2. Variable importance

A variable importance rank for the best performing histogram-
based random forest model Histogram RF B is shown in Fig-
ure 8, where the importance score has been normalized to
sum to 100. The variable Engine Loadmatrix is ranked as the
most important variable. It can be seen that all of the his-
togram variables are ranked relatively high in the list, which
can be explained as various combinations of their bins were
found to give the most informative split.

As previously explained, groups of adjacent bins of histogram
(or cells of matrix) variables were used for evaluating splits
for the histogram-based approaches. The variable importance
rank in Figure 8 simply list whole histogram (including its

Engine Stroke Vol
Power
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Chassis Group

Engine Type
Atm. Pressure

Age
Coolant Temp.

Fuel Temp.
Ambient Temp.
Boostair Press
Vehicle Speed
Inletair Temp.

Fuel Consumption
Engine Loadmatrix

0 5 10 20

Figure 8. Variable importance rank

bins). However, we can further look into each histogram or
matrix variable and see which set of bins were more useful
than others during the node splitting phase while growing
trees in the random forest model. Set of bins that were consid-
ered simultaneously while splitting a node are said to be more
important if the split gives a better separation or it results in
more homogeneous group of observations in child nodes. De-
scription of bin boundaries also give a notion of a region in a
histogram. For instance, bins 1,2 and 3 of ambient tempera-
ture histogram, ambient temp would represent case when a
truck was driving in cold and similarly bins 9 and 10 would
represent operation in very hot region in histogram. Similarly,
the matrix variable Engine Loadmatrix has two dimensions,
so the region in the matrix towards the bottom left corner rep-
resents the case when truck was driving with light weight and
with low RPM. Similarly, regions towards the top right cor-
ner represent cases when truck was driving with heavy weight
and at high RPM.

Since Engine Loadmatrix turned out to be the most important
variable as listed in the variable importance rank, we further
looked into importance of its bins (cells) and plotted the im-
portance score using a heat map. In our histogram approach,
for a matrix variable, a square block of 4 adjacent cells ( 2×2)
was used which is equivalent to sliding window size of 4 for
one dimensional histogram variables. These 4 cells of a block
were simultaneously used while evaluating the node split. In
total 110 of such blocks could be generated by sliding the
block of size 2 × 2 around the given matrix variable of size
11 × 12. However, not all 110 of such blocks were used for
evaluating a split, rather only

√
110 of them were randomly

used. If a block is used for splitting a node, it gets an impor-
tance score as an information gain obtained because of the
split. Importance score for the matrix variable as a whole is
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Figure 9. Important regions in Engine load matrix variable

an aggregation of these importance score by these blocks. In
order to plot a heat map of importance score for matrix vari-
able, we assumed that each cell of the 2 × 2 block gets the
same importance score as does the block. If a cell appears in
more than one block, the importance score for this cell will
be the one that has the highest score. A heat map based on the
importance score for each cell was then plotted and shown in
Figure 9. The distinct yellow region towards the left of the
heat map reveals that driving at low RPM might have some
relation with NOx sensor breakdown as this region seems to
be considered more important by the random forest model
while training from operational data.

6.3. Model for predicting failure

Classification of trucks into those with faulty vs. healthy NOx
sensor is not very useful unless it can be used to make failure
prediction for the future, for example to be able to say that
the NOx sensor will probably fail in next three months from
now. This can be done if the classification task is set up to
meet this goal. In order to achieve this, the existing dataset
for heavy duty trucks was slightly changed. A new variable
remaining useful life (RUL) was generated which is the dif-
ference in the number of days between the selected snapshot
extraction date and the NOx breakdown date. Now, trucks
with a breakdown of the NOx sensor before 90 days in fu-
ture, i.e., RUL less than or equal to 90, were considered as
positive cases while trucks whose NOx sensor survived be-
yond that point were considered as negative (healthy) cases.
Note that trucks whose NOx sensor broke after 90 days were
hence considered healthy. Trucks in the existing dataset with
no observed breakdown of the NOx sensor and whose RUL
values were less than 90 days were simply removed because it
cannot be determined for them if they have survived past the
90 days margin. In this way, a new dataset with 8633 trucks

Table 4. Results of NOx sensor failure prediction.

Random Forest Models Trees Used AUC Leaf Nodes
Histogram RF 500 0.791 314.6
Standard RF A 1000 0.749 255.4
Standard RF B 1000 0.726 247.4

was obtained, out of which 540 were positive (non-healthy)
cases.

Three different random forest models were built with similar
set up as explained in earlier experiments. The histogram ap-
proach with bins normalized to sum up to 100 was left out as
it was outperformed by histogram approach where bins were
real values. 1000 trees were used in the standard random for-
est models instead of only 500 as in previous case. This was
done simply to see if performance would enhance further by
increasing the number of trees. However, since the training
time increases heavily with number of trees as large as 1000
trees in case of histogram approach, number of trees were
limited to just 500.

Results are presented in Table 4 and as evident, again the his-
togram approach has outperformed the standard approaches.
However, the AUC dropped well below what was observed in
the previous experiment. This could probably be the result of
how we set up the dataset. In this dataset, the trucks for which
a broken NOx sensor was observed after the 90 days margin
were labeled as healthy cases. There might be some common
pattern among all the faulty trucks regardless of the 90 days
margin that the model seems to capture and hence even for
them it tend to assign higher probability of being faulty. This
has been depicted in the Figure 10 where the probability as-
signed to all the faulty trucks of being faulty has been plotted
against the RUL value (after how many days in the future the
breakdown occurred). The vertical dashed line is the 90 days
margin that separates positive from negative cases. The av-
erage probability of all the faulty trucks labeled as positive is
indicated by the solid red line. Similarly, the average proba-
bility of being faulty for all the faulty trucks that were labeled
as negative because they survived beyond the 90 days margin
is shown with a dashed red line, which is very close to the
average probability for the positive cases. The green dashed
line shows the average probability of being faulty assigned to
healthy trucks. The average assigned probability of NOx sen-
sor being faulty in all these three cases reveal that the model
assigns higher probability in general to the cases where actual
fault has occurred regardless of 90 days margin. It should be
noted that in this experiment, the choice of the future pre-
diction horizon was arbitrarily set to 90 days. The predictive
performance (AUC) is likely affected in a positive direction
by considering more distant time horizons (similar to what is
done in the first experiment), while moving the horizon closer
in time will most likely lead to a further reduction in predic-
tive performance. However, what is a suitable time point is
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Figure 10. NOx sensor failure probability assigned to faulty
trucks

not only determined by the predictive performance, but pri-
marily by the business case, i.e., what time frames can be
acted upon.

Once as a trained model has been obtained, it can provide an
estimate of the probability that a truck is going to fail. But
in order to make a decision, for example regarding whether
or not to send a truck to a workshop, a cutoff point need to
be chosen such that any truck with a probability higher than
that should be selected. It is not trivial to choose such a cut-
off point and it depends heavily on the business case. There
are costs associated with each miss-classification made by the
model. For instance, the expense associated with predicting
a faulty truck as healthy can be very high compared to pre-
dicting a healthy truck as faulty. If we consider faulty trucks
as positive cases, the cases of incorrectly predicting faulty
trucks as healthy are the false negative (FN) cases. Similarly,
incorrect predictions of healthy trucks as faulty are the false
positive (FP) cases as shown in Figure 11. The cost associated
with false negative (FN) and false positive (FP) cases could
be very different depending on the business case. The opti-
mal cutoff point should take these costs into consideration so
that the total expected cost is minimized. For example, if the
cost for false negatives is set very high compared to false pos-
itives, the cutoff should be set to avoid as many false negative
as possible.

Using a simple business case where false negative cost was
set to be five times higher than the false positive cost, we tried
to find the optimal cutoff point for the model we trained ear-
lier for predicting failure before the 90 days prediction hori-
zon. Candidate cutoff points were searched in the whole re-
gion of 0 to 100 percent in 1 percent increments. The cutoff
point with lowest average total cost was selected as shown

Figure 11. Confusion matrix for fault prediction
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Figure 12. Selecting optimal cutoff point for fault prediction

in Figure 12, which shows that a cutoff threshold at around
16 percent minimizes the total cost. So, a truck with an esti-
mated probability of being faulty equal to or higher than 16%
should be called in for a checkup at a workshop.

7. CONCLUDING REMARKS

The primary objective of the paper was to investigate whether
operational and environmental data from truck usage can be
used for predicting component breakdown. This task is par-
ticularly challenging, since the trucks can be configured in
many different ways and they operate under very different
conditions. An additional complexity is that the task is also
dependent on the way in which the driver uses the vehicle.
There are hence many variables that can influence the risk for
breakdown. Selecting the appropriate variables is hard, and,
as a consequence, the task of coming up with an accurate pre-
diction model is quite a challenge. Nevertheless, this paper
provides some insights and findings from undertaking such a
task.

Experimental data was collected from heavy duty trucks pro-
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duced by Scania AB. The information about operation of these
trucks were described by features that were expressed as his-
tograms. Not many learning algorithms can train on his-
togram data. Random forest is one of the best machine learn-
ing algorithms for classification and regression purpose. There-
fore, it was chosen and was slightly modified to allow it to
handle histogram features. It was necessary to make the al-
gorithm learn from histogram as it only seemed natural to
treat histograms as they are. This modified algorithm was
shown to outperform the standard approach. As evident from
the experiment results, it seems that there are some common
patterns among trucks with faulty NOx sensors vs. healthy
trucks, since the observed AUC measure was observed to be
around 0.85 in the best case. This means that faulty and
healthy trucks can be quite accurately ranked with respect to
risk of failure.

In the experiment with a prediction horizon of three months,
even the cases where a failure of NOx sensor was observed af-
ter three months had around same average failure probability
as the ones whose NOx sensor failed before that margin pe-
riod. This clearly indicates that there could be some common
pattern among the faulty trucks that the model was able to dis-
cover, even though the data was manipulated to treat such late
failures as healthy ones. From a different perspective, trucks
with apparently healthy NOx sensors were deemed to have
a high risk of failing by the model. This apparently seems
like a right thing to do since the trucks that eventually had
faulty NOx sensor were assigned a higher failure probability
on average. This also hints towards the fact that the prediction
model should be working well.

The explicit decision of whether to call in a truck to a work-
shop for inspecting the NOx sensor should be done based on
a rational selection of the cutoff point, which is used in con-
junction with the probability scores output by the model. This
selection depends heavily on the business case, such as the
costs associated with incorrect predictions, and the choice of
threshold should be as to minimize the total cost. For the
considered scenario, where the cost of false negatives was set
to be five times higher than the cost of false positives, the
optimal cutoff point for the estimated probability of a break-
down was found to be 16 percent, hence leading to a decision
that trucks with a relatively higher estimated probability for
breakdown should be further investigated.

The overall result looks promising and seems to open up more
opportunities to conduct research in various directions. This
particular study has focused on NOx sensor breakdown, but
the overall approach is generic and can be expected to work
for any component of interest, as long as the functioning of
the component can be determined by available operational
and environmental data. One specific aspect that was not con-
sidered in this study is how to most effectively handling miss-
ing values. Further, only single snapshot for each truck was

used for the analysis, in future, investigation could be carried
out on how to effectively make use of multiple snapshots.
Another direction for future research would be to consider
other underlying models, including random survival forests
(Ishwaran et al., 2008) to predict survival curves showing the
probability of the considered component surviving a certain
amount of time, given the current snapshot. This would al-
low for investigating various horizons even after the model
has been built. Another direction for future research concerns
the confidence in the predictions. The conformal prediction
framework (Devetyarov & Nouretdinov, 2010) (Johansson,
Bostrm, & Lfstrm, 2013) allows the user to determine a level
of confidence in the predictions, which can be directly used
e.g., for the three months prediction horizon experiment. Ex-
tending this to survival analysis, e.g., with confidence inter-
vals around the survival curves, is another possible direction
for future work.

ACKNOWLEDGMENT

This work has been funded by Scania CV AB and the Vinnova
program for Strategic Vehicle Research and Innovation (FFI)-
Transport Efficiency.

REFERENCES

Bolander, N., Qiu, H., Eklund, N., Hindle, E., & Rosenfeld, T.
(2009). Physics-based remaining useful life prediction
for aircraft engine bearing prognosis..

Breiman, L. (2001). Random forests. Machine Learning,
45(1), 5–32.

Daigle, M. J., & Goebel, K. (2011). A model-based prog-
nostics approach applied to pneumatic valves. Interna-
tional Journal of Prognostics and Health Management,
2, 84.

Devarakonda, M., Parker, G., & Johnson, J. (2012,
July 31). Nox control systems and methods for con-
trolling nox emissions. Google Patents. Retrieved from
http://www.google.com/patents/
US8230677 (US Patent 8,230,677)

Devetyarov, D., & Nouretdinov, I. (2010). Prediction with
confidence based on a random forest classifier. In Arti-
ficial intelligence applications and innovations.

Eyal, A., Rokach, L., Kalech, M., Amir, O., Chougule, R.,
Vaidyanathan, R., & Pattada, K. (2014). Survival anal-
ysis of automobile components using mutually exclu-
sive forests. IEEE Transactions on Systems, Man, and
Cybernetics: Systems, 44, 246-253.

Frisk, E., Krysander, M., & Larsson, E. (2014). Data-
driven lead-acid battery prognostics using random sur-
vival forests. In Annual conference of the prognostics
and health management society 2014 (p. 92-101).

Gurung, R., Lindgren, T., & Boström, H. (2015). Learn-
ing decision trees from histogram data. In Proceed-

13



INTERNATIONAL JOURNAL OF PROGNOSTICS AND HEALTH MANAGEMENT

ings of the 11th international conference on data min-
ing (p. 139-145).

Gurung, R., Lindgren, T., & Boström, H. (2016). Learning
decision trees from histogram data using multiple sub-
sets of bins. In Proceedings of the 29th international
florida artificial intelligence research society confer-
ence (flairs) (p. 430-435).

Ishwaran, H., Kogalur, U., Blackstone, E., & Lauer, M.
(2008). Random survival forests. Ann. Appl. Statist.,
2(3), 841–860.

Johansson, U., Bostrm, H., & Lfstrm, T. (2013). Confor-
mal prediction using decision trees. In 2013 ieee 13th
international conference on data mining (p. 330-339).

Lawless, J., Hu, J., & Cao, J. (1995). Methods for the estima-
tion of failure distributions and rates from automobile
warranty data. Lifetime Data Analysis, 1, 227-240.
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