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ABSTRACT 
It has been established that corrosion is one of the most 
important factors causing deterioration and decreased 
performance and reliability in critical aerospace and 
industrial systems. Corrosion monitoring, detection, and 
quantification are recognized as key enabling technologies to 
reduce the impact of corrosion on the integrity of aircraft and 
industrial assets. Accurate and reliable detection of corrosion 
initiation and propagation, with specified false alarm rates, 
requires novel tools and methods, including verifiable 
simulation and modeling methods. This paper reports an 
experimental investigation of the detection and quantification 
of pitting corrosion on aluminum alloy panels using 3D 
surface metrology methods and image processing techniques. 
Panel surfaces were evaluated by laser microscopy and 
stylus-based profilometry to characterize global and local 
surface features. Promising imaging and texture features 
were extracted and compared between coated and uncoated 
aluminum panels at different exposure times under 
accelerated corrosion conditions. Image processing, 
information processing, and data mining techniques were 
utilized to evaluate the presence and extent of pitting 
corrosion. A new modeling framework for corrosion stages is 

introduced that emphasizes the representation of pitting 
corrosion and ultimately the crack formation process. 
Detection and prediction of the evolution of corrosion stages 
relies on data, a particle filtering method, and the corrosion 
propagation model. Results from these experimental studies 
demonstrate the efficacy of this proposed methodology.  

1. INTRODUCTION 

Corrosion is known to cause the loss of billions of dollars 
every year in structural integrity deterioration, leading to 
decreased performance and reliability of military and civil 
engineering assets. In aerospace industries for example, 
aluminum alloys used in aircraft fuselage lap-joints are 
subjected to crevice corrosion damage, especially localized 
corrosion pillowing, which may cause unanticipated and 
catastrophic system failures (Wallace & Hoeppner, 1985) 
(Wei, Liao, & Gao, 1998).  Corrosion states take various 
forms starting with microstructure corrosion and ending with 
stress induced cracking (Hoeppner, Chandrasekaran, & 
Taylor, 1999) (Kawai & Kasai, 1985) (Lindley, Mcintyre, & 
Trant, 1982). Generally, corrosion starts in the form of 
pitting, due to the presence of a surface contaminant or 
material heterogeneity. Facilitation of this process occurs by 
the interaction of the corrosive environment and cyclic 
loading, resulting in fatigue crack initiation across pitted 
areas that further grows and leads to accelerated structural 
failure (Pidaparti, 2007). In order to effectively conduct 
structural corrosion health assessment, it is crucial to 
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understand how corrosion initiates from the microstructure to 
the component level through corrosion modeling, and how 
structural corrosion behaviors change as a result of varied 
environmental stresses by incorporating these factors into the 
modeling process. In addition, facilitated by understanding 
and modeling of corrosion growth and associated processes, 
continuous monitoring, detection, localization, and 
quantification of corrosion, and further, prediction of 
corrosion damage growth in complex structures over large, 
partially accessible areas are of growing interest in the 
aerospace industries. The aforementioned technical 
challenges of corrosion assessment and rising cost of existing 
corrosion-related maintenance call for both the exploration of 
new and innovative structural corrosion health assessment 
techniques that integrate robust corrosion testing and 
monitoring, data mining, corrosion detection, and prediction 
of corrosion damage growth, with intelligent reasoning 
paradigms that capture historical data, expert opinion, and 
adaptation strategies to associate current evidence with past 
cases obtained fleet-wide for similar system components.  
 
Pitting corrosion represents the initial phase of corrosion, and 
is one of the most prevalent forms of localized corrosion, a 
dangerous phenomenon because of its rapid damage growth 
rate, and the difficulty associated with detecting and 
predicting its evolution. The pitting attack is highly localized 
and is usually in the form of holes that can penetrate inwards 
extremely rapidly and ultimately damage the structure by 
either perforating the material or developing into cracking 
due to stress corrosion (Rao & Rao, 2004). Thus it is essential 
to insure the integrity and operational safety of the critical 
asset by condition-based monitoring, early detection, 
interpretation and prediction of pitting attack. Many research 
efforts have been reported in the past addressing this serious 
issue (Frankel, 1998) (Huang & Frankel, 2006) (Szklarska-
Smialowska, 1999) (Pereira, Silva, Acciari, Codaro, & Hein, 
2012). Traditionally, conventional ultrasonic and eddy 
current techniques have been used to precisely measure the 
reduction in thickness in aircraft structures. However, 
scanning may become impractical when inspection area is 
inaccessible. To address this a number of research techniques 
have been developed, including guided wave tomography to 
screen large areas of complex structure for corrosion 
detection, localization (Clark, 2009) and defect depth 
mapping (Belanger, Cawley, & Simonetti, 2010). However, 
due to the nature of guided ultrasonic waves, this technique 
is vulnerable to environmental changes, especially 
temperature variation and surface wetness (Li, et al., 2012). 
The precision of corrosion defect depth reconstruction is 
restricted by sensor network layout and structure complexity, 
which limits the scope of field applications. Thus, well-
recognized global corrosion measurements, such as material 
weight loss and wall thickness reduction, cannot offer an 
appropriate and trustworthy way to interpret pitting corrosion 
due to its highly localized nature.  
 

Advanced corrosion health assessment systems require 
comprehensive quantitative information, which can be 
categorized into a variety of feature groups, such as corrosion 
morphology, texture, and location. Implementation of 
advanced health assessment systems will require the 
exploration of new testing methods and data fusion methods 
from multiple testing techniques. Forsyth and Komorowski 
(Forsyth & Komorwoski, 2000) discussed data fusion 
techniques to combine the information from multiple NDE 
techniques into an integrated form for structural modeling. 
Several other studies have looked into different sensing 
technologies for corrosion health monitoring, including the 
use of a micro-linear polarization resistance (µLPR) sensor 
(Brown, Darr, Morse, & Laskowski, 2012) (Brown, et al., 
2014) and fiber optic sensors (McAdam, Newman, 
McKenzie, Davis, & Hinton, 2005). The existing research 
focused on a combination of surface metrology and image 
processing is very limited. In parallel to the current corrosion 
sensing technology, there have been a number of corrosion 
modeling studies attempting to numerically capture the 
processes of pitting corrosion initiation, pitting evolvement, 
pitting to cracking transition, and crack growth to fracture at 
the molecular level. Currently there is not a widely accepted 
quantitative model to take into consideration of the effect of 
stress factors (e.g. salinity, temperature, pressure), although 
the effects of the above-mentioned stress factors have been 
widely discussed.  

 
The remainder of this paper is organized by the following: 
Section 2 outlines the PHM architecture followed in this 
study; Section 3 identifies the corrosion modeling-based / 
application specific features and feature extraction routines 
used in the development of the prognostic/diagnostic models; 
Section 4 outlines the experimental materials and methods 
followed in this study; Section 5 presents the modeling 
results; and finally Section 6 summarizes the findings of the 
study, lessons learned, and future work. 

2. PHM ARCHITECTURE  

Fault detection and prediction entails a series of functions. 
Starting with the monitoring apparatus, data/image collection 
and processing, corrosion modeling, detection, prediction, 
and, finally, assessment of the potential impact of corrosion 
on the operational integrity of an asset. The architecture is set 
as a decision support system providing advisories to the 
operator/maintainer as to the health status of critical aircraft 
component(s) subjected to corrosion and in need of corrective 
action. The sensing/modeling and diagnostic/prognostic 
functions are coupled with a novel reasoning paradigm called 
Dynamic Case Based Reasoning (DCBR) that houses a case 
library composed of past documented cases detailing the 
impact of cracking on the integrity of platform 
components/systems. The DCBR is supported by cognitive 
routines for learning and adaptation so that new evidence is 
compared with stored cases and those occurring for the first 
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time are “learned” by the reasoner. Finally, a corrosion 
severity index is defined to assist in assessing the impact of 
corrosion on the asset’s structure integrity.  

 

Figure 1 shows a conceptual schematic of the major modules 
of the corrosion processing and detection/prediction PHM 
architecture. The architecture combines a model-based and 
data-driven methodology taking advantage of experimental 
data, corrosion progression models, and an estimation 
method called particle filtering in order to detect the early 
initiation of corrosion. It is accompanied by performance 
metrics for detection confidence, false alarm rate, and 
prediction accuracy/precision (López De La Cruz, Lindelauf, 
Koene, & Gutiérrez, 2007). In this architecture, the most 
important components supporting the implementation of the 
algorithm are feature extraction, fault diagnosis, and failure 
prognosis.  

2.1. Feature Selection, Extraction, and Identification 

Features form the foundation for the fault/corrosion detection 
and interpretation scheme. Feature selection, extraction and 
identification processes are optimized to extract only the 
information that is maximally correlated with the actual 
corrosion state. Features used in the development of fault 
diagnostic and prognostic models are discussed in more detail 
in Section 3. 

2.2. Fault diagnosis 

The Fault Detection and Identification (FDI) procedure may 
be interpreted as the fusion and utilization of the information 

present in a feature vector (observations) with the objective 
of determining the operational condition (state) of a system 
and the causes for deviations from particularly desired 
behavioral patterns (McAdam, Newman, McKenzie, Davis, 
& Hinton, 2005). 
 
A fault diagnosis procedure involves the tasks of fault 
detection and identification (assessment of the severity of the 
fault). In this sense, the proposed particle-filter-based 
diagnostic framework aims to accomplish these tasks, under 
general assumptions of non-Gaussian noise structures and 
nonlinearities in process dynamic models, using a reduced 
particle population to represent the state probability density 
function (PDF) (Straub, 2004). The particle filter-based 
module builds on the nonlinear dynamic state model, 

 
𝑥" 𝑡 + 1 = 𝑓( 𝑥" 𝑡 , 𝑛 𝑡 ,
𝑥+ 𝑡 + 1 = 𝑓, 𝑥" 𝑡 , 𝑥+ 𝑡 , 𝑤 𝑡 ,					

𝑓/ 𝑡 = ℎ, 𝑥" 𝑡 , 𝑥+ 𝑡 , 𝑣 𝑡 ,
  (1) 

where 	𝑓( , 𝑓,  and ℎ,  are non-linear mappings, 𝑥" 𝑡  is a 
collection of Boolean states associated with the presence of a 
particular operating condition in the system (normal 
operation, fault type #1, #2, etc.), 𝑥+ 𝑡  is a set of continuous-
valued states that describe the evolution of the system given 
those operating conditions, 𝑓/ 𝑡 	is a feature measurement, 
𝑤 𝑡  and 𝑣 𝑡  are non-Gaussian distributions that 
characterize the process and feature noise signals 
respectively. At any given instant in time, this framework 
provides an estimate of the probability masses associated 

 
 

Figure 1. DCBR Architecture for integrated crack diagnosis, prognosis and maintenance. 
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with each fault mode, as well as a PDF estimate for 
meaningful physical variables in the system. The FDI module 
generates proper fault alarms and as well as the statistical 
confidence of the detection routine. Performance metrics are 
translated into acceptable margins for the type I (false 
positives) errors and type II errors (false negatives) in the 
detection routine. The algorithm itself will indicate when the 
type II error has decreased to the desired level. 

2.3. Failure Prognosis 

Prognosis is activated when a fault is detected. For the same 
fault mode, the propagation of the fault follows the same 
physical law. The prognostic framework takes advantage of 
a nonlinear process model, a Bayesian estimation method 
using particle filtering and real-time measurements. 
Prognosis is achieved by performing two sequential steps, 
prediction and filtering. Prediction uses the knowledge of the 
previous state estimate and the process model to generate the 
a priori state PDF for the next time instant: 

𝑝 𝑥3:, 𝑦6:,76 = ∫ 𝑝 𝑥, 𝑥,76 𝑝 𝑥3:,76 𝑦6:,76 𝑑𝑥3:,76. (2) 

Unfortunately, this expression does not have an analytical 
solution in most cases. Instead, Sequential Monte Carlo 
(SMC) algorithms or particle filters are used to numerically 
solve this equation in real-time through the use of efficient 
sampling strategies. Particle filtering approximates the state 
PDF using samples or “particles” having associated discrete 
probability masses (“weights”) as,  

 𝑝 𝑥3:, 𝑦6:, ≈ 𝑤, 𝑥3:,< ⋅ 𝛿 𝑥3:, − 𝑥3:,< 𝑑𝑥3:,76, (3) 

where	𝑥3:,<  is the state trajectory and 𝑦6:,  are measurements 
up to time t. The implementation of this algorithm, the 
Sequential Importance Re-sampling (SIR) particle filter, 
updates the weights using the likelihood of 𝑦, as,  

 𝑤, = 𝑤,76 ⋅ 𝑝 𝑦, 𝑥, . (4) 

Long-term predictions are used to estimate the probability of 
failure in a system given a hazard zone that is defined via a 
PDF with lower and upper bounds for the domain of the 
random variable, denoted as 𝐻A( and 𝐻B/, respectively. The 
probability of failure at any future time instant is estimated 
by combining both the weights 𝑤,CD

< 	of predicted trajectories 
and specifications for the hazard zone through the application 
of the Law of Total Probabilities. The resulting Remaining 
Useful Life (RUL) PDF, where 𝑡EFG refers to RUL, provides 
the basis for the generation of confidence intervals and 
expectations for prognosis, 

		𝑝,HIJ = 𝑝 𝐹𝑎𝑖𝑙𝑢𝑟𝑒 𝑋 = 𝑥,HIJ
< , 𝐻A(, 𝐻B/ ⋅ 𝑤EFG

<S
<T6 . (5) 

2.4. Case Based Reasoning (CBR) 

CBR constitutes the main system level reasoning paradigm 
of the architecture and incorporates essential elements of a 
learning strategy. CBR was founded on the belief that human 
memory is episodic in nature. This episodic memory, which 
comprises human knowledge, is accumulated from past 
experience. Each memory episode is contributed by a single 
past situation or event. Faced with a new problem, a human 
often relates the problem to one or more memory episodes 
and composes a solution from these episodes. CBR is a 
computer program to simulate this human recognition 
process and has been applied to a variety of process operation 
support systems. The CBR application domain usually 
involves problem solving, i.e. identify similar cases for better 
understanding, assessing, and/or comparing with the current 
situation.  

3. FEATURES AND MODELING 

There are several characterization features to physically 
quantify the pitting corrosion attack, e.g. corroded area 
percentage, average pit depth measurement, maximum pit 
depth measurement, pitting density (pits/mm2), and 
remaining wall thickness due to pitting. In addition, image-
processing techniques can be used to extract morphological 
and texture features to facilitate pitting corrosion 
interpretation.  

3.1. Gray Level Co-occurrence Matrix (GLCM) 

2D imaging texture features, such as contrast, correlation, 
energy and homogeneity, summarized in Table 1, are 
calculated using the normalized GLCM denoted as	𝑝 𝑖, 𝑗 , 
where 𝑖 and 𝑗 correspond to rows and columns of the GLCM 
accordingly. The (𝑖 , 𝑗) indices correspond to how often a 
pixel with value 𝑖 occurs horizontally adjacent to a pixel with 
value 𝑗  in image I. The contrast returns a measure of the 
intensity contrast between a pixel and its neighbor over the 
whole image.  For a constant image, the contrast is 0. The 
correlation returns a measure ranging between -1 and 1 that 
represents how correlated a pixel is to its neighbor over the 
entire image. The energy is calculated as the sum of the 
squared elements in the GLCM. For a constant image, the 
energy is 1. Finally, the homogeneity is a measure of the 
closeness of the distribution of elements in the GLCM to its 
diagonal.  

3.2. Morphological Features 

Morphological features can be extracted from 2D pitting 
images to characterize the shape of the pitting attacked 
surface area. Features such as roundness, solidity, 
eccentricity, major axis length and minor axis length are 
calculated as shown in Table 2. For roundness, A represents 
the area of the region and p is the perimeter of the region. 
Solididy is defined as the ratio of the area of the region to the 
area of the convex hull region, represented by 𝐶𝑜𝑛𝑣𝑒𝑥𝐴𝑟𝑒𝑎. 
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For an ellipse defined by 		 𝑥 𝑎 Y + 𝑦 𝑏 Y = 1 , the 
eccentricity, major axis length, 		𝐿\]^_` , and minor axis 
length, 𝐿\<S_` is computed as shown in Table 2. 

3.3. Surface Roughness Features 

Surface roughness is a measure of the texture of a surface. It 
is quantified by the vertical deviations 𝑍(𝑥, 𝑦) of a real 
surface from its ideal form. If these deviations are large, the 
surface is rough; if they are small the surface is smooth. 
Roughness is typically considered to be the high frequency, 
short wavelength component of a measured surface. The 3D 
surface roughness features are listed in Table 3.  

3.4. Additional Geometric Features 

Other pit characterization features include the corroded area 
geometric features, 2D pit profile features, and 3D pit profile 
features. 

3.5. Feature Selection Performance Metrics 

After a sufficient number of features are extracted, feature 
selection can be conducted to determine the smallest subset 
of features that satisfies given performance criteria. 
Performance metrics such as correlation coefficient and 
Fisher discriminant ratio (FDR) can be applied to assess the 
feature quality. Optimization and principle component 
analysis (PCA) tools can be used for this purpose. Then a list 
of “best” features can be selected based on the feature 
performance. Here we use correlation coefficient and FDR to 
gauge the image features, as expressed in Table 4, where, 𝑋 
and 𝑌 are two random variables with expected values 𝜇f and 
𝜇g and standard deviations 𝜎f and 𝜎g.  

3.6. Corrosion Modeling  

A simplified model for corrosion growth presented by 
(Straub, 2004) predicts the corrosion depth from the 
combined contribution of uniform corrosion (surface loss) 
and localized corrosion (e.g. pitting & crevice).	However, no 
practicable framework currently exists for detailed spatial 
information (in 1-, 2-, or 3-D). Thus the focus turns to the 
maximum depth 𝑑i]j 𝑡  over a region (e.g. deepest pit in a 
whole pipe or panel), whose statistics can be treated with 
Gumbel or Weibull extreme value distributions. Data from 
atmospheric uniform corrosion support use of a power 
growth over time: 

 𝑑 𝑡 = 𝑎𝑡(, (6) 

where a and b are coefficients dependent on temperature, 
relative humidity (RH), time of wetness (ToW), and salinity 
can vary significantly over small distances to different 
microenvironments. The same growth model applies to 
localized corrosion, however because anodes (pits) are 
smaller than the surrounding cathodic areas, pitting damage 
can grow considerably faster than uniform damage. 

 
From Kondo's experiments (Sharland, 1987), pit volume 
tends to increase linearly, which implies that 𝑑𝑝 𝑑𝑡 ∝ 𝑡6/m, 
or 𝑏 = 1/3. Furthermore, the depth-to-radius ratio tends to 
stay constant around 0.7. Assuming a semi-ellipsoidal pit 
geometry, the cross-sectional surface area can be expressed 
as, 

 𝐴io]pB`o" 𝑡 = 𝜋(1.43 ∙ 𝑑(𝑡))Y + 𝑛𝑜𝑖𝑠𝑒, (7) 

where the uncertainty around the mean grows with the time-
varying Gumbel distribution,  

 𝑝 𝑑, 𝑡 = 6
u(,)

𝑒7[
wxy z
{ z Co

x[wxy(z){(z) ]
] , (8) 

such that	𝜇 𝑡 = 𝑎𝑡( and 𝛽 𝑡 = 𝛽3𝑡(  

Table 1. GLCM features 
Name Equation 
Contrast 𝑖 − 𝑗 Y𝑝(𝑖, 𝑗)<,^   
Correlation 𝑖 − µ< 𝑗 − µ^ 𝑝 𝑖, 𝑗 𝜎<𝜎<,^   
Energy 𝑝 𝑖, 𝑗 Y

<,^   
Homogeniety 𝑝 𝑖, 𝑗 1 + 𝑖 − 𝑗<,^   

Table 2. Morphological features 
Name Equation 
Roundness 4𝜋𝐴 𝑝Y 
Solidity 𝐴/𝐶𝑜𝑛𝑣𝑒𝑥𝐴𝑟𝑒𝑎 
Eccentricity 1 − 𝑏 𝑎 Y  
𝐿\]^_` max 2𝑎, 2𝑏  
𝐿\<S_` min 2𝑎, 2𝑏  

Table 3. Surface roughness features 
Name Sym Equation 
Max Height 𝑆�  𝑆� + 𝑆� 
Max Peak Height 𝑆� max(𝑍(𝑥, 𝑦)) 
Max Valley Depth 𝑆� min(𝑍(𝑥, 𝑦)) 
Mean Height 𝑆] 1

𝐴
|𝑍(𝑥, 𝑦)|𝑑𝑥𝑑𝑦 

RMS Height 𝑆� 1
𝐴

𝑍 𝑥, 𝑦 Y𝑑𝑥𝑑𝑦 

Skewness 𝑆pD 1
𝑆�m
1
𝐴

𝑍 𝑥, 𝑦 m𝑑𝑥𝑑𝑦 

Kurtosis 𝑆DB 1
𝑆��
1
𝐴

|𝑍 𝑥, 𝑦 |�𝑑𝑥𝑑𝑦 

Table 4. Feature-based Performance Metrics 
Name Sym Equation 
Correlation Coef. 𝑟f,g �[(j�7��)(��7��)]

����
  

Fisher Discriminant 
Ratio 

FDR (��7��)�

���C���
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3.6.1. Paris’ Law 

The classic Paris fatigue crack growth rate for metals is a 
power law 

 "G
"�
= 𝐶∆𝐾i  (9) 

where 𝐿 = crack size (length or depth), 𝑁 = number of cycles 
(like a usage-based time variable), ∆𝐾 = 𝐾i]j − 𝐾i<S  is 
stress intensity factor range, and 𝐶 , 𝑚  are empirical 
parameters associated to a material. Stress intensity 
factor K measures how "concentrated" stresses are around the 
crack tip. K is proportional to stress load amplitude, 𝐿 (or 
its reciprocal), and a dimensionless correction for 
geometry 𝑌(𝐿)  (e.g., boundaries). For example, a typical 
situation is a center crack with remote stress applied 
uniformly, 

 ∆𝐾 = ∆𝑆 𝜋𝐿 ∙ 𝑌(𝐿) (10) 

where ∆𝑆 = 𝑆i]j − 𝑆i<S over one cycle. ∆𝐾 may also have 
a correction for crack closure effect (retarding growth).What 
Paris says is that for a midrange of ∆𝐾  values, valid only 
during the crack propagation phase, between crack initiation 
and fracture, a crack will grow at the rate predicted by the 
straight line.  The higher the applied maximum stress, the 
faster the path to failure, and a bigger crack size can beget an 
even faster rate (or can slow down if stress is wedged from 
the inside so that the crack tip gets farther away from the 
stress as it grows). Regardless of how fast or slow, a positive 
rate indicates the specimen will eventually fail, especially 
since its physical dimensions are finite. For metals, m tends 
to be between 2 and 4 (e.g. 3.4 steel, 2.85 aluminum alloy), 
though the range is wider.  

3.7. Real-time Electrochemical Measurements 

Linear polarization resistance (LPR) measurements are used 
as an electrochemical measurement of mass loss,	𝑚����, in 
real-time. The relationship between 𝑚����  and polarization 
resistance for the micro-LPR (µLPR) sensors used in this 
paper are described in detail by (Brown, et al., 2014). The 
real-time pit volume can be computed by dividing the 
measured 𝑚����  with the density of the metallic alloy, 
represented by	𝜌. Assuming a semi-ellipsoidal pit geometry 
where the radius of the cross sectional area is	0.7𝑑, then 𝑑(𝑡) 
can be computed as,   

 𝑑 𝑡 = 0.787 ⋅ i¤¥¦¦ ,
§�¨�z©

6/m
,  (11) 

where 𝑁/<,  is the total number of pits over the exposed 
surface area.  The density of AA7075-T6 is 2.81	g/cmm.  

4. EXPERIMENTAL MATERIALS AND METHODS 

4.1. Sample Preparation 

Lap joint samples, shown in Figure 2, were made using two 
6” by 3” panels made from AA7075-T6 with a thickness of 
1/8”. These panels were secured together with six 
polycarbonate fasteners. Before assembly of the lap joint 
each panel was cleaned with a 35 min immersion into a 
constantly stirred solution of 50 g/L Turco 4215 NC-LT at 
65ºC. After completing this alkaline cleaning, the panels 
were rinsed with deionized water and immersed into a 70% 
solution of nitric acid solution for 5 min at 25ºC. The samples 
were then rinsed again in the deionized water and air-dried. 
Weights were recorded to the nearest fifth significant figure 
and the samples were stored in a desiccator. Once the panels 
were prepared and massed, two µLPR sensors were installed 
between the panels. At this point the six polycarbonate 
fastners were torqued down evenly to 2 N·m. After 
assembling the lap joints, the samples were evenly coated 
with 2 mils of epoxy-based paint and 2 mils of polyurethane 
on all exposed surfaces. These coatings were allowed to fully 
seal over a 24-hour period at 35ºC before testing. 

4.2. Accelerated Corrosion Testing of Lap Joints 

Corrosion tests were performed in a cyclic corrosion chamber 
running the ASTM G85 Annex 5 test. This test consisted of 
two one-hour steps. The first step involved exposing the 
samples to a salt fog for a period of one-hour at 25ºC. The 
electrolyte solution composing the fog was 0.05% sodium 
chloride and 0.35% ammonium sulfate in deionized water. 
This step was followed by a dry-off step, where the fog was 
purged from the chamber while the internal environment was 
heated to 35ºC. Each panel was positioned at a 60° angle with 
the flex tape facing downward, as not to allow a direct 
pathway for condensate to travel into the lap joints. Electrical 
connections for the µLPR sensors were made to a data 
acquisition recorder positioned outside the chamber by 
passing extension cables through a bulkhead. Temperature, 
relative humidity, and µLPR data were acquired at 1 min 
intervals.  

 
Figure 2. AA7075-T6 lap joint assembly. 
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4.3. Sample cleaning 

After testing, samples were removed from the environmental 
chamber and disassembled. Following disassembly, the 
polyurethane and epoxy coatings on the aluminum panels 
were removed by placing them in a solution of methyl ethyl 
ketone. After immersion for 30 min the panels were removed 
and rinsed with deionized water. These panels were again 
alkaline cleaned with a 35 min immersion into a constantly 
stirred solution of 50 g/L Turco 4215 NC-LT at 65°C. This 
was followed by a deionized water rinse and immersion into 
a 90°C solution of 4.25% phosphoric acid containing 20 g/L 
chromium trioxide for 10 min. Following the phosphoric acid 
treatment, panels were rinsed with deionized water and 
placed into a 70% nitric acid solution for 5 min at 25°C. 
Panels were then rinsed with deionized water, dipped in 
ethanol, and dried with a heat gun. This cleaning process was 
repeated until mass values for the panels stabilized.  

4.4. Confocal Laser Scanning Microscopy 

Two-dimensional panel images were acquired successively 
and pre-processed for corrosion image feature extraction.  For 
each panel, 2D microscopic images of size 37 x 37 mm were 
taken using LEXT OLS4000, in Error! Reference source 
not found., with a magnification setting of 108x, and then 
stitched together to obtain the entire panel image. Error! 
Reference source not found. depicts the stitched panel 
microscopic images of Panel 1, 2 and 3 and their 
corresponding binary images after image pre-processing.  

5. RESULTS 

5.1. Image Preprocessing 

Preliminary global inspection through the profilometer 3D 
map scan indicated that the corroded panels were flat without 
noticeable low-frequency surface irregularities, and thus the 
surface features can be mostly captured by roughness. 
Therefore, waviness was omitted for this application.  Thus, 
smoothness and spike removal filters were generally applied 
at the raw profile measurement from the profilometer and the 
microscope. Figure 6 (a) and (b) provide the 2D microscopic 
images of the local pitted panel areas of the same size and 
magnification in Panel 1 and 2, and Figure 6 (c) and (d) 
illustrate typical pit cross-sectional profiles from Panel 1 and 
2 respectively, with (d) corresponding to the colored line 
marked in (b). Figure 7 shows a 3D topology image of an area 
of connected pitting in Panel 2. Table 5 lists the 2D pit profile 
measurement of the colored lines in both Figure 6 (b) and 
Figure 7, of which the pit height represents the maximum pit 
depth.  
 
Except for the 2D pit profile features such as pit width and 
pit depth, geometric features such as pitting surface area and 
pit volume can also provide solid measures for local pitting 
severity, of which pit volume is of importance, due to the 

irregular growth pattern of pitting corrosion. In Figure 7 and 
Figure 8, a surface height threshold was manually chosen 

 
Figure 3. Panels shown in the corrosion chamber prior to 
the experiment. 

 

 
Figure 4. LEXT OLS4000 3D Laser Measuring Microscope. 

 
Figure 5. Whole panel image pre-processing. Left column: 
intermediary images with rivet holes and marked numbers 
whitened of (a) Panel 1 with 133-hr corrosion exposure, (c) 
Panel 2 with 209-hr corrosion exposure, (e) Panel 3 with 286-
hr corrosion exposure. Right column: binary images after 
pre-processing of (b) Panel 1, (d) Panel 2, (f) Panel 3. 
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respectively, in order to calculate the corroded surface area 
and the underneath pitting volume. The pitting affected 
surface area was in total of 258,380.787 µm², or 3.94% of the 
entire examined surface area. 
 
Morphological analysis of the pits in Panel 1 and Panel 2 
indicated that, the nucleated pits, as those general non-visible 
ones in Panel 1, usually took regular morphological forms, 

such as hemispherical, near-hemispherical and near-conical 
shapes as indicated in Figure 6 (a) and (c). As the corrosion 
exposure time increased, a few nucleated pits evolved into 
irregular shapes with the pit dimension increased, as 
indicated in Figure 6 (b) and (d). 
 
From a side-by-side comparison in Figure 6 (a) and (b), it is 
noted that, in Panel 2, even though some nucleated pits 
evolved into bigger and irregular pits, the majority of the pit 
population were still in a regular shape with similar 
dimensions as the nucleated pits in Panel 1. Second, as noted 
from Table 5, a prevalent phenomenon among the large 
visible pits in Panel 2 and 3 was that, a pit’s width was usually 
significantly larger than its depth, which suggests that the 
metal dissolution rate was higher at the pit wall than at the pit 
bottom. In summary, from localized pitting characterization 
analysis of all three panels, it is concluded that on Panel 1, a 
number of nucleated pits formed, but generally few visible 
pits existed; from Panel 1 to 2, as the corrosion exposure time 
increased from 133 hours to 209 hours, a few visible pits 
emerged with irregular shapes, with a much larger width than 
depth; from Panel 2 to Panel 3, as exposure time further 
increased to 286 hours, a greater number of large visible pits 
formed, located mostly around panel edges, rivet hole edges, 

Table 5. Corresponding 2D pit profile measurement of the 
colored lines in Figure 6 (b) and Figure 7, Panel 2. 

Measurement Figure 6 (b) Figure 7 
Width (µm) 369.432 848.483 
Height(µm) 3.164 19.895 
Length(µm) 369.445 848.717 

 
Table 6. Corresponding pitting characterization 
measurements of the area in Figure 7. 

Cross-sectional Area(µm2) 
(of the red line in Figure 8) 

103,366.090 

Surface Area (µm2) 192,043.495 
Volume (µm3) 1,101,417.185 

 

 
Figure 6. 2D characterization of pitted panel areas (642 × 
644 µm2) on the uncoated side of (a) Panel 1, and (b) Panel 
2; pit cross-sectional profile measurement (in µm) of (c) a 
general pit in Panel 1 (with the highlighted cross-sectional 
area of 240.43µm2), and (d) the colored line in (b), Panel 2. 

 
Figure 7. 3D characterization of a pitted panel area (2561 × 
1278 µm2) on the uncoated side of Panel 2, with the 
corresponding cross-sectional profile measurement as listed 
in Table 5. 
 

     
Figure 8. Surface height thresholding procedure to obtain 
the 3D pitting characterization for a pitted panel area (1278 
× 1281 µm2) on the uncoated side of Panel 2. 
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and surface irregularities. Note that, due to the nature of the 
accelerated corrosion testing, three panels, instead of one, 
were exposed to three different corrosion immersion times, 
respectively. Thus, an individual pit characterization growth 
cannot be observed in this study. Instead, 3D microscopic 
characterization studies of a number of random pits was 
conducted for each panel.  

5.2. Feature Extraction, Selection and Data Mining 

Features extracted from segments of the corrosion images can 
be used to classify the state of corrosion in the corresponding 
image segment. Figure 9 shows an example set of corrosion 
images used for feature extraction. The top row is a set of 8 
low corrosion images and the bottom row is a set of 8 high 
corrosion images. Contrast, correlation, energy, and 
homogeneity features of the example corrosion images in 
Figure 9 were calculated and illustrated in Figure 10. The 
corresponding feature performance was evaluated using FDR 
as listed in Table 7. This indicates that correlation, energy, 
and homogeneity are suitable image features for corrosion 
detection and corrosion state classification, whereas contrast 
performs poorly.  
 
Figure 11 shows the corroded area percentage of the panels 
that had corrosion exposure times of 133, 209 and 286 hours. 
The resulting corroded area percentage feature was highly 
correlated with the measured panel mass loss as shown in 
Figure 11. The correlation coefficient 𝑟j�  of the corroded 
area percentage and the corresponding measured panel mass 
loss is 0.9727.  

5.3. Diagnostic and Prognostic Results 

The diagnostic and prognostic technologies suggested above 
were applied, in simulation, to the test panel corrosion 
surfaces. The simulation, conducted in Simulink, utilizes the 
pitting model in Eq. 6 and the cracking progression model 
(Paris’ Law) in Eq. 9. Figure 12 shows the results of the 
particle filtering diagnostic routine on the pit depth calculated 
from µLPR data. The top graph shows the calculated pit 
depth (green) and the particle filter based estimate of the pit 
depth (black). The bottom graph shows the detection 

 
Figure 9. Example corrosion images. Top row: low corrosion. Bottom row: high corrosion. 
 

Table 7. FDR values of image features. 
Features Contrast Correlation Energy Homogeneity 

FDR 0.9604 2.2084 95.1962 27.3738 
 

 
Figure 10. Contrast, Correlation, Energy and Homogeneity 
features of low and high corrosion images from Figure 9 
(image number ascends correspond to the sequence from 
left to right in each row of Figure 9). 

 
Figure 11. Top: Corroded area percentage over time. 
Bottom: Measured mass loss (mg) over time.  
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confidence at each time step.  The blue histogram is the 
baseline distribution and the red one is the current 
distribution. The black line is the threshold which set the 
Type I error as 5%. From the figures, it is shown that 
from time 18 hours, when enough data is collected for 
generating baseline distribution, to time 36 hours, Type 
II error is reduced from 78% to 2%, which means the 
confidence of abnormal is increased from 22% to 98%. 
So at time 36 hours, abnormal is declared. 
 
After the diagnostic routine detects corrosion to a 
specified confidence level the prognosis routine is run, 
as shown in Figure 13. The dashed blue line is the 
measured data of the fault level up to the time of 
detection. Once corrosion is detected the particles are 
allowed to progress using the non-linear state model. 
The failure threshold is user specified and is given as a 
PDF. The particles progression and the failure threshold 
PDF is used to calculate the time to failure PDF. The 
empirical model from Eq. (6) can be employed where 
𝑏 = 1.54. The following figure is the result of model 
tuning and prediction. Time is divided into three 
sections, which are separated by two dashed lines at 
time 36h and 270h, respectively. Initially, the model 
parameters are tuned on the basis of available data, as 
described above. The blue line and green line are upper 
bound and lower bound of pit depth, respectively. The 
red dots are the measured pit depth. After the model is 
tuned, the prediction routine is initiated using only the 
model. Threshold is shown as the red line, which 
is	10µm. In this case, the predicted remaining useful life 
is shown in Figure 14 as a PDF. The prognostic results 

 
Figure 12. Pit depth from µLPR data using the particle filtering methodology. 
 

 
Figure 13. Pit depth prediction scheme. 
 

 
Figure 14. The remaining useful life prediction at 270 hours. 
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are matching well-anticipated corrosion predictions in real 
on-board aircraft applications. The Air Force project reported 
in this paper has not proceeded to its final stage of on-aircraft 
testing, data collection, testing and evaluation of diagnostic 
and prognostic algorithms. Simulation studies and results 
show the efficacy of the integrated approach to testing, data 
mining, corrosion initiation and prediction of global and 
localized corrosion processes.  

6. CONCLUSIONS 

This paper introduces a novel and comprehensive framework 
for corrosion health assessment, integrating robust corrosion 
testing and monitoring, data mining, corrosion detection, and 
prediction of corrosion damage growth, with intelligent 
reasoning paradigms. It is well documented that aircraft 
corrosion is a major concern that accounts for billions of 
dollars each year in efforts to detect, quantify, and prevent 
damage due to corrosion. Although significant advances have 
been reported over the recent past, there is still an urgent need 
for new technologies for sensing, data processing, and 
diagnostic/prognostic algorithm development aimed to 
provide crucial information to the aircraft community of 
impending structural failures and a means to mitigate them. 
The paper addresses the introduction of new methods and 
tools essential for testing and data processing of corroding 
panels; such tools become inputs to corrosion diagnostic and 
prognostic routines. A multitude of challenges remain to be 
addressed, major among them being the need for accurate and 
reliable sensing modalities, high fidelity corrosion models 
and integration architectures for better corrosion detection, 
prediction and prevention with an ultimate objective to 
reduce costs and improve the performance of aerospace 
assets. 

ACKNOWLEDGEMENT 

This work was performed with sponsorship from the United 
States Air Force under Broad Agency Announcement – 
Rapid Innovation Fund contract # FA8650-12-C-0001. 

REFERENCES 
Belanger, P., Cawley, P., & Simonetti, F. (2010). Guided 

Wave Diffraction Tomography within the Born 
Approximation. IEEE Trans UFFC, 57, pp. 1405-
1418. 

Brown, D. W., Connolly, R. J., Laskowski, B., Garvan, M., 
Li, H., Agarwala, V. S., & Vachtsevanos, G. (2014). 
A Novel Linear Polarization Resistance Corrosion 
Sensing Methodology for Aircraft Structure. Annual 
Conference of the Prognostics and Health 
Management Society, 5(33). 

Brown, D., Darr, D., Morse, J., & Laskowski, B. (2012). 
Real-Time Corrosion Monitoring of Aircraft 
Structures with Prognostic Applications. In Annual 
Conference of the Prognostics and Health 
Management Society, 3. 

Clark, T. (2009). Guided Wave Health Monitoring of 
Complex Structures. London, United Kingdom: 
Imperial College London. 

Forsyth, D. S., & Komorwoski, J. P. (2000). The Role of Data 
Fusion in NDE for Aging Aircraft. SPIE Aging 
Aircraft, Airports and Aerospace Haradware IV, 
3994, 6. 

Frankel, G. S. (1998). Pitting Corrosion of Metals: A Review 
of the Critical Factors. Journal of the 
Electrochemical Society, 145(6), pp. 2186-2198. 

G102, A. S. (2004). Standard Practice for Calculation of 
Corrosion Rates and Related Information from 
Electrochemical Measurements. West 
Conshohocken, PA: ASTM International. 

G59, A. S. (2009). Standard test method for conducting 
potentiodynamic. West Conshohocken, PA: ASTM 
International. 

Hoeppner, D. W., Chandrasekaran, V., & Taylor, A. (1999). 
Review of Pitting Corrosion Fatigue Models. 
International Committee on Aeronautical Fatigue. 
Bellevue, WA, USA. 

Huang, T. -S., & Frankel, G. S. (2006). Influence of Grain 
Structure on Anisotropic Localized Corrosion 
Kinetics of AA7xxx-T6 Alloys. Corrosion 
Engineering, Science and Technology, 41(3), pp. 
192-199. 

Kawai, S., & Kasai, K. (1985). Considerations of Allowable 
Stress of Corrosion Fatigue (Focused on the 
Influence of Pitting). Fatigue Fracture of 
Engineering Materials \& Structures, 8(2), 115-127. 

Li, H., Michaels, J. E., Lee, S. J., Michaels, T. E., Thompson, 
D. O., & Chimenti, D. E. (2012). Quantification of 
Surface Wetting in Plate-like Structures via Guided 
Waves. In AIP Conference Proceedings- American 
Institute of Physics, 1430(1), 217. 

Lindley, T. C., Mcintyre, P., & Trant, P. J. (1982). Fatigue-
Crack Initiation at Corrosion Pits. Metals 
Technology, 9(1), 135-142. 

López De La Cruz, J., Lindelauf, R., Koene, L., & Gutiérrez, 
M. A. (2007, February). Stochastic approach to the 
spatial analysis of pitting corrosion and pit 
interaction. Electrochemistry Communications, 
9(2), 325-330. 

McAdam, G., Newman, P. J., McKenzie, I., Davis, C., & 
Hinton, B. R. (2005). Fiber Optic Sensors for 
Detection of Corrosion within Aircraft. Structural 
Health Monitoring, 4, 47-56. 

Orchard, M., & Vachtsevanos, G. (2009, June). A Particle 
Filtering Approach for On-Line Fault Diagnosis and 
Failure Prognosis,” Transactions of the Institute of 
Measurement and Control. Transactions of the 
Institute of Measurement and Control, 31(3-4), 221-
246. 

Orchard, M., Vachtsevanos, G., & Goebel, K. (2011). 
Machine Learning and Knowledge Discovery for 
Engineering Systems Health Management. In J. Han 



INTERNATIONAL JOURNAL OF PROGNOSTICS AND HEALTH MANAGEMENT 

12 

(Ed.), A Combined Model-Based and Data-Driven 
Prognostic Approach for Aircraft System Life 
Management (pp. 363-394). Boca Raton, FL., USA: 
Chapman and Hall/CRC. 

Pereira, M. C., Silva, J. W., Acciari, H. A., Codaro, E. N., & 
Hein, L. R. (2012). Morphology Characterization 
and Kinetics Evaluation of Pitting Corrosion of 
Commercially Pure Aluminum by Digital Image 
Analysis. Materials Sciences & Applications, 3(5), 
pp. 287-293. 

Pidaparti, R. M. (2007). Strucural Corrosion Health 
Asessment Using Computational Intelligentce 
Methods. Structural Health Monitoring, 6(3), pp. 
245-259. 

Rao, K. S., & Rao, K. P. (2004). Pitting Corrosion of Heat-
Treatable Aluminum Alloys and Welds: A Review. 
Transactions of the Indian Institute of Metals, 57(6), 
pp. 593-610. 

Sharland, S. M. (1987). A Review of the Theoretical 
Modeling of Crevice and Pitting Corrosion. 
Pergamon Journals Ltd, 27(3), 289-323. 

Straub, D. (2004, June). Generic Approaches to Risk Based 
Inspection Planning for Steel Structures. Zürich: 
Institute of Structural Engineering, Swiss Federal 
Institute of Technology. 

Szklarska-Smialowska, Z. (1999). Pitting Corrosion of 
Aluminum. Cossorion Science, 41(9), pp. 1743-
1767. 

Wallace, W., & Hoeppner, D. W. (1985). AGARD Corrosion 
Handbook Volume I Aircraft Corrosion: Causese 
and Case Histories. AGARD-AG-278, 1. 

Wei, R. P., Liao, C. M., & Gao, M. (1998). A transmission 
electron microscopy study of 7075-T6 and 2024-T3 
aluminum alloys. Metallurgical and Materials 
Transactions A, 29A, pp. 1153-1163. 

 


