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ABSTRACT 

Railcar condition is an important factor in the complex web 
of relationships between railroads, railcar leasing companies, 
shippers and railcar builders. The most important reasons for 
this are operational safety and economic considerations 
pertaining to equipment maintenance. In this study, an 
approach is presented for the diagnostics of railcar 
component health from vibration data, utilizing mutual 
information (MI) based minimal-redundancy-maximal-
relevance (mRMR) feature selection and multi-class support 
vector machine classification. The proposed monitoring 
solution is a data-driven method which was developed with 
measurements taken at a railroad test laboratory under 
controlled conditions. Vibration data was collected from 
multiple locations on a railcar over several test runs, each 
utilizing wheelsets with different levels of wear. The input of 
controlled wheel wear levels was aimed at varying the system 
outputs to resemble those of cars with different levels of 
mileage in revenue service. The measured data sets were 
processed in the time domain, frequency domain and through 
wavelet transforms, resulting in the extraction of a set of 687 
features from the acceleration signals. A maximum-relevance 
minimum-redundancy feature selection algorithm was used 
to find the optimal combination of features for classification. 
The algorithm performance was tested for the effect of 
feature set size, different kernels and scaling techniques on 
classification accuracy.  The results and methods of this 
assessment are presented in the paper. The paper concludes 
with a proposal for a monitoring strategy aimed at 
specifically detecting faulty components and practicing 
predictive maintenance.  

1. INTRODUCTION 

The present work has the goal to develop a methodology for 
effective monitoring of freight rail bogies. It is motivated by 
a need in the freight rail industry to decrease asset 
maintenance related downtimes and to improve the 
effectiveness of maintenance schedules. The present study 
proposes using structured sensor data to monitor the health of 
the freight rail bogies through machine learning algorithms 
which pre-process the data, find the most relevant, non-
redundant features and then make a classification decision. 
While the approach is a combination of existing techniques, 
it has not been applied to freight rail application before, 
making this a technique with the potential to modernize 
current railroad maintenance practices. This aspect is further 
emphasized by using domain expertise to select design 
parameters and ensuring real application constraints, such as 
power budget consciousness for on-board monitoring, were 
considered. 

In (Shahidi, Maraini, Hopkins, & Seidel, 2014) the viability 
of applying on-board condition monitoring and diagnostics 
methods to freight rail applications was investigated and a 
framework to apply condition monitoring methods to freight 
rail bogies was established. The focus of the present study 
remains on the bogie as this is the component of a freight 
railcar which experiences the most wear and is most 
susceptible to fault modes. Figure 1 shows a standard North 
American three-piece bogie.  

The trade association tasked with rule-making for freight rail 
transportation, the Association of American Railroads 
(AAR), has established a set of performance metrics (AAR, 
2007) which all bogies have to meet before they can be 
deployed in service.  Parham Shahidi et al. This is an open-access article distributed under the 
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Figure 1. Standard North American three-piece bogie 

After bogies go into service, maintenance is performed either 
as fixed-schedule or reactive maintenance. In the first case, 
maintenance downtimes are mostly avoided at the cost of 
unused capacity and premature component replacements. In 
the second case, wayside detectors, which are typically 
installed on the track, monitor passing railcars (Zakharov & 
Zharov, 2005) and generate need-based maintenance alerts. 
The two most common types of wayside detectors for railcar 
bogie performance are Truck Performance Detectors (TPD) 
and Truck Hunting Detectors (THD)1. Both of these detectors 
consist of strain gage based instrumentation which is added 
to the track to measure the lateral and vertical forces that 
railcar wheels exert on the rail. TPDs achieve this through 
instrumentation of two reverse curves with strain gages to 
measure the wheel lateral and vertical forces and wheelset 
angle of attack during curving. THDs use strain gages that are 
placed on tangent track to measure lateral wheelset 
oscillations. As of 2013, approximately 15 TPDs and 172 
THDs were in service across the 140,000 miles of North 
American rail network. Other, even less common types of 
wayside equipment include Acoustics Bearing Detectors 
(ABD) and laser/vision-based systems.  Deployment of these 
systems is in the low double digit numbers across the North 
American rail network and measurement results are often 
inconclusive (Tournay & Lang, 2007). The small number of 
detectors relative to the large size of the US rail network 
makes it clear that wayside detectors do not provide sufficient 
coverage and accuracy to comprehensively monitor freight 
rail bogie performance. The focus of wayside equipment on 
wheels indicates that the wheel rail interface is the most 
relevant research focus for investigations that pertain to 
railcar performance. Therefore the present study limits the 
evaluation of railcar bogie performance also to the effect of 
wheel wear on the performance.   

																																																													
1	In the context of railroading and for this paper, the terms 
bogie and truck can be used interchangeably.	

2. RAILCAR DIAGNOSTICS 

On-board condition monitoring is an area with large potential 
for research. As the name implies, the study combines the 
study of railroad engineering with the modern disciplines of 
diagnostics, prognostics and health management. Few studies 
with the same scope have been previously completed due to 
a number of reasons.  

First, on-board condition monitoring has historically not been 
applied to freight rail applications and is a new technology in 
the realm of freight rail maintenance. Typically, condition 
monitoring in the freight rail industry is achieved through 
wayside equipment and therefore research in this area has 
traditionally focused on efficiency improvements. Barke and 
Chiu (Barke, 2005) published a review of existing freight rail 
bogie condition monitoring technologies but excluded on-
board methodologies and solely focused on wayside 
technologies. Lagnebäck also limited his study of potential 
cost and efficiency improvements through condition 
monitoring (Lagnebäck, 2007) to wayside techniques, which 
resulted in recommendations to expand implementation.  

Second, most condition monitoring studies have been 
attempted in the area of passenger rail transport (Ward, 
Goodall, Dixon, & Charles, 2010; Ward et al., 2011). 
Passenger rail bogies use complete and rigid frames and, 
therefore, do not have the issue of nonlinearities from the 
friction based suspension elements as three-piece bogies do. 
However, passenger bogies still have to deal with other 
nonlinearities, such as those from the wheel-rail interface. 
The difficulty of modeling nonlinearities was shown by Xia 
and True’s study of nonlinear dry friction damping with 
hysteresis and stick-slip action in the friction forces on the 
contact surfaces of friction wedges (Xia & True, 2003).     

Third, condition monitoring of freight rail applications is not 
limited to bogies and bogie suspension components. Other 
areas of interest, where significant work has been completed, 
include the wheel-rail interface (Hubbard, Ward, Goodall, & 
Dixon, 2013), railcar speed inaccuracies due to stick-slip 
action (Mei & Li, 2008), end-of-car devices (Hopkins, Seidel, 
Maraini, & Shahidi, 2015) and on-board weighing (Maraini, 
Shahidi, Hopkins, & Seidel, 2014) applications. It is 
understandable that the emergence of on-board monitoring 
technologies and continuous improvements in accuracy lead 
to a vast scope of interest which includes monitoring 
strategies for components which have traditionally not been 
able to be monitored effectively. 

With the high cost of both preventive and reactive 
maintenance, condition-based maintenance can be 
considered the best solution to the problem at hand. 
Typically, applications follow one of two paths: either that of 
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model-based condition monitoring or that of data driven 
condition monitoring.  

For model-based condition monitoring, a physics-based 
model, derived from first principles, is used to determine 
required system parameters. The system parameters are then 
compared against data to determine if a deviation from a 
healthy system state is taking place.  In (Li & Goodall, 2004) 
this approach was used in a two degrees-of-freedom, half-
vehicle bogie model to determine such parameter deviations. 
For the data driven case, a signal from the system under test 
is used to infer what the current system health is. The signal 
must have a causal relationship to the system component 
subject to monitoring and thus be indicative of the system’s 
performance. First, the signal is pre-processed and frequency 
and time domain based features are extracted. In many cases, 
the number of features can grow large and advanced 
techniques for selecting those features that are most 
descriptive are required. Feature selection algorithms include 
mutual information (Maraini & Nataraj, 2015) for estimating 
the similarity of two signals and minimal-redundancy-
maximal-relevance (Kappaganthu & Nataraj, 2011; Peng, 
Fulmi, & Ding, 2005) for selecting an optimal feature subset.  

The signal features constitute the inputs to machine learning 
algorithms which attempt to classify the health state of the 
system. If a target class is specified with the measurements, 
the problem is classified as a supervised learning problem and 
if no target class exists, the problem is classified as an 
unsupervised learning problem. Popular machine learning 
algorithms include techniques such as neural networks 
(Haykin, 1999) and support vector machines (Bishop, 2006; 
Cortes & Vapnik, 1995) to identify the fault modes from 
measurements.  

In both cases, data is required to either compare against the 
model or to train the machine learning algorithm.  Typically, 
this data is taken from inertial sensors such as accelerometers 
and gyroscopes, mounted on the system under test, but other 
metrics may be used as well. If prognostics is also part of the 
monitoring strategy, advanced filtering techniques such as 
particle filters (Arulampalam, Maskell, Gordon, & Clapp, 
2002) or Kalman filters (Kalman, 1960) can be combined 
with the algorithm to estimate future states from the current 
state accelerometer measurements. 

3. FIELD TEST 

Data collection was conducted at Transportation 
Technologies Center, Inc. (TTCI) in Pueblo, CO. TTCI is a 
transportation research and testing organization which offers 
a wide range of tests for rail applications.  

3.1. Field Test Setup 

The Railroad Test Track (RTT) at TTCI, is a 13.5-mile loop 
with a primary purpose of high speed stability testing for 
excitation of lateral vehicle instability modes. The selection 

of lateral instability as the primary focus of this study was 
based on the fact that the main causes for this instability mode 
are the suspension parameters and wheel wear levels and thus 
directly influence the overall system performance.  

For this study, one of the 50-minute (0.8 degree) curves was 
used to accelerate the train to target speeds ranging from 40 
to 80 mph, broken up into approximately 5 mph increments 
per test run. Figure 2 shows the superelevation (upper plot) 
and curvature (lower plot) of the test track.  Superelevation 
refers to the difference in height between the left and right 
rails (i.e., and indicator of cross-grade).  Curvature refers to 
the degree to which the track deviates from completely 
straight.  

 
Figure 2. Test segment of RTT track 

Once the target speed was reached, data acquisition systems 
began to measure accelerations at multiple locations on the 
car body and suspension. Test runs were aborted once either 
80 mph or prescribed maximum acceleration limits were 
reached. The instrumentation setup included accelerometers 
with various dynamic ranges from ± 5 G to ± 200 G and 
gyroscopic sensors with rates of 250 °/sec. The sensor 
specifications were chosen to accommodate signal dynamic 
ranges that occur in the measurement locations. A HBM 
Somat eDAQ rugged data acquisition system was used to 
read the sensors with a sampling rate of 1000 Hz. The 
decision to use this sampling rate was based on knowledge of 
rigid and flexible modes of railcars experiencing lateral 
instability. Aliasing protection was ensured through analog 
filtering. Furthermore, it was observed that at elevated 
measurement locations on the carbody higher frequency 
content became attenuated.  This is explicable through the 
behavior of the carbody, acting as a mechanical filter, which 
attenuates much of the frequency content above 10 Hz.  

To test the system with controlled wear conditions as the 
inputs to the railcar system, wheels with three different levels 
of wear (new, medium and fully worn) were used. The 
individual wear levels were chosen as defined per AAR rules 
and the wheels were supplied at the test site by TTCI. For 
each round of testing the wheelsets were swapped out for sets 
with a higher degree of wear. Figure 3 shows the three wheel 
profiles, plotted against each other to visualize the effect of 
wear on the wheel profile geometry. The profile geometries 
shown in the figure are cross-sectional views of the wheel.  
The deviation in profiles occurring after 40 mm on the x-axis 
shows the portion of the profile in contact with the rail, which 
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is subject to wear.  The wear causes the wheels to develop a 
hollow profile on the running surface that is in contact with 
the rail, leading to unstable operating conditions. In (Klingel, 
1883) the relationship between the level of wear and 
oscillation magnitude was provided. Every other aspect of the 
railcar and bogies remained unchanged to ensure that the 
wheel profiles were the sole factors influencing the stability 
of the railcar.   

 
Figure 3. Different wheel wear profiles used as inputs 

3.2. Field Test Procedure 

As mentioned before, for each round of testing began an 
individual level of wheel wear was selected and run with a 
starting speed at or below 40 mph. The speed was then 
gradually increased in each run until the prescribed maximum 
acceleration limit per AAR regulations or a test speed of 80 
mph was reached. The procedure was then repeated for the 
next level of wheel wear. Table 1 lists all combinations of 
wheel wear levels and test speeds that were evaluated. The 
green measurements indicate the speeds for the test runs 
which remained within the AAR limits for lateral instability 
and the red test speeds indicate where the limits were 
exceeded. 

Table 1. Test speeds [mph] for each wheel wear level 

No Wear  Medium Wear Fully Worn 
40  30  40  
50  40  50  
60  50  55  
65  60  60  
67  62  62  
70  64  64  
72   67  
75  70  

 

Figure 4 shows the vibration signals for the 64 mph runs for 
each wheel wear level. Overlaid in red is the averaged signal 
of each time series signal. It can be seen that the signals from 

figure 4 are reflective of the tabulated data. The vibration 
signal collected for the medium worn wheel (second subplot) 
has the highest vibration amplitude amongst the three signals. 
This corresponds with the test speeds from table 1, where the 
medium worn wheel set was run up to only 64 mph before 
lateral instability occured as shown between seconds 25 and 
100, began. 

 
Figure 4. Vibration signals for three wear states at 64 mph. 

The red signal in the plots above shows the effect of carbody 
tilt due to track super elevation on the zero position of the 
accelerometer which was calibrated on an even surface. 

4. ANALYSIS  

The analysis of the acceleration data was broken down into 
multiple subtasks which will be explained in this section. The 
first task was the extraction of the feature set from the data 
for each wheel wear state and test run. The feature extraction 
was further divided into extraction of time domain, frequency 
domain and wavelet transform features. Then, the data sets 
with the different wear states but same speeds were merged 
in a random sequence as the test signal. Since the wear levels 
for each sample time are known, this constitutes a supervised 
learning problem and a target class signal equal in length to 
the test signal was created. This was followed by partitioning 
the assembled data sets into training and validation sets. The 
training set was used to reduce the dimensionality of the 
feature matrix through a mutual information scheme which 
ranked the features and thereby allowed to exclude features 
with information gain below a user defined threshold. In 
order to minimize redundancy a minimum-redundancy-
maximum-relevance algorithm was used next to refine the 
feature set. Then the reduced dimensionality training set was 
used to train a multiclass support vector machine. After 
training was complete, the validation set was used to evaluate 
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the classification performance of the multiclass support 
vector machine in a one-versus-all classification scheme. 

4.1. Feature Identification and Extraction 

In the first analysis step, a set of features had to be identified 
for extraction and identification of faulty instability modes. 
In (Shahidi, Maraini, Hopkins, & Seidel, 2015) the feature set 
was identified as a combination of 14 features including the 
standard statistical moments, power content in three 
frequency bands, and two spectral measures. The three 
frequency bands were selected based on a qualitative 
spectrogram analysis in which the bands with the highest 
frequency content magnitude for faulty conditions were 
identified. In alignment with test results and the mathematical 
model of the oscillatory motion by (Klingel, 1883), the most 
important frequency band was chosen as the band between 
2.5 and 3.5 Hz, which is the typical range for the track-
damaging rigid body oscillation modes from the field test..  

The choice of frequency bands for the analysis depends on 
the measurement location of the sensor and thus the 
component subject to performance monitoring. To 
accommodate different test setups, the above feature set was 
expanded to include a full frequency spectrum power band 
analysis between 0 and 500 Hz. The spectrum was divided 
into 5 Hz bands and each band was integrated individually to 
yield the band’s power content. The individual power band 
spectral densities integration resulted in 100 additional 
features which cover the frequency bands for all components 
and can be combined with a feature selection algorithm to 
select the frequency bands with the highest discriminative 
power for classification for each location.  

Table 2. List of Features 

Feature # Feature  Description 
1 Magnitude at Fund. Frequency 
2 Fundamental Frequency 
3 Mean 
4 Variance 
5 Standard Deviation 
6 Peak to Peak 
7 Skewness 
8 Kurtosis 
9 Hyperskewness 

10 Hyperflatness 
11 Crest Factor 
12 5 Hz Power Bands between 

DC and 500 Hz 

…
 111 

112 Features 3 – 11 computed on 
each level of a 64 level Wavelet 
Transform of the original signal 

…
 687 

	

Since each test run typically lasted longer than 60 seconds 
and included non-stationary dynamic behavior of the 
carbody, a windowing approach was selected to compute the 
feature sets. A single five second data window incremented 
in one second intervals was selected as the best compromise 
between providing enough data for the feature computation, 
in particular the frequency resolution of the spectral analysis, 
and accommodating a reasonable monitoring framework. 
The latter is particularly important, considering that freight 
rail is typically not electrified and therefore requires power 
budget conscious on-board monitoring. The complete list of 
all 687 features is presented in table 2. 

4.2. Cross Validation 

After the features were extracted, the wheel wear states were 
assigned class labels 𝑦	 ∈ 	 1, 2, 3 , one for each level of 
wheel wear, and each sample/row of the feature matrix was 
associated with its corresponding class label. Then the 
labelled data sets, measured at the same speed, were 
assembled as a test sequence with random order. Figure 5 
shows the target class. The order sequence of the class labels 
is medium wear, no wear, fully worn, medium wear.  

A cross validation scheme was applied to the data to divide it 
into training and validation datasets. In prediction problems 
it is important to separate training and validation data to avoid 
overfitting and test generalization for independent datasets. 

  
Figure 5. Three-class target class 

The partitioning scheme was selected as a stratified hold out 
cross-validation which retained the proportions of the target 
class labels for the training and validation partitions. 
Additionally, to establish a repeatable accuracy, the scheme 
was reshuffled 10 times to provide additional validation data 
sets. The length of the validation partitions was selected as 
approximately one tenth the length of the original set.   
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4.3. Feature Selection Using Mutual Information 

In cases with very large feature sets, a means to find and 
select only the most relevant features for the classification 
task is required to improve computational efficiency. Mutual 
information theory is a frequently used feature ranking 
algorithm to reduce the number of features. The idea is to 
compute a score which measures how informative each 
feature 𝑥) is about the target class 𝑦. In other words, “How 
much does a feature tell us about the target class?”. The 
information provided by the algorithm can be used then to 
discard the features with the least amount of relevancy. 
Mutual information uses the entropy as the amount of 
information gain provided by each feature. Entropy is defined 
in eq. 1 as 

 𝐻 𝑋 = 𝑝(𝑥) ∙ log
1

𝑝(𝑥)
4

 (1) 

where 𝑝) is the probability of an event taking place with a 
certain outcome. An approximation of  𝑝) for each feature can 
be obtained through the probability distribution of the scaled 
and discretized features. Discretization of the continuous 
accelerometer data is considered good practice to improve 
robustness of the various probability estimates which mutual 
information requires. The joint entropy of two random 
variables X and Y is defined in eq 2. 

 𝐻 𝑋, 𝑌 = 𝑝(𝑥, 𝑦) ∙ log 6
7(4,8)4,8  . (2) 

Together these quantities can be combined to calculate the 
mutual information (Peng et al., 2005) for each feature and 
the target class as shown in eq 3. 

 𝐼 𝑋, 𝑌 = 𝐻 𝑋 + 𝐻 𝑌 − 	𝐻(𝑋, 𝑌) (3) 

Variations of eq. (3), based on axioms for different 
combinations of marginal, joint and conditional entropies, 
exist and can be used interchangeably. 

A drawback of mutual information is that it selects only the 
most relevant features without taking the redundancy of the 
selected features into account. A computationally efficient 
extension of mutual information theory to address this 
shortcoming is Minimal-Redundancy-Maximum-Relevance 
(mRMR) feature selection as proposed by (Peng et al., 2005). 
In mRMR, the relevance of a feature subset is approximated 
through maximizing the mean of individual feature to target 
class mutual information. 

 max𝐷 𝑆, 𝑐 , 𝐷 =
1
𝑆 B 𝐼(𝑥); 𝑐)

4D∈E

 (4) 

Conversely, minimal redundancy is achieved by excluding 
features with high individual feature to feature mutual 
information.  

 min𝑅 𝑆 , 𝑅 =
1
𝑆 B 𝐼(𝑥); 𝑥I)

4D,4J∈E

 (5) 

The two measures in eqs. 4 and 5 are then combined 
through the 𝛷(𝐷, 𝑅) operator and optimized to find the 
optimal feature subset in eq. 6. 

 maxΦ(D , R), Φ = D − R (6) 

Table 3 shows the results of the optimization for a 10 feature 
subset of data collected at 65 mph. 

Table 3.  mRMR feature subset for 65 mph 

Feature  Mutual 
Information 

Band Power 205.0 – 209.9 Hz 0.9386 
Band Power 90.0 – 94.9 Hz 0.7792 

Band Power 210.0 – 214.9 Hz 0.8558 
Fundamental Frequency 0.7799 

Band Power 200.0 – 204.9 0.8338 
Band Power 0.0 – 4.9 Hz 0.5300 

Band Power 215.0 – 219.9 0.8668 
Band Power 55.0 – 59.9 0.7372 

Band Power 380.0 – 384.9 0.7821 
Kurtosis 0.9274 

 

In mRMR feature selection both the number of features and 
order of features are important. As implied by the algorithm, 
both are variables which change the resulting optimal subset. 

It should be noted that since a stratified partitioning scheme 
was used in the algorithm, the results may slightly differ each 
time the algorithm is executed. The reason for this is that for 
stratification, samples are chosen from the population in no 
specific order as long as the overall proportion of the target 
class is maintained. Therefore single values can still vary 
under the same label and the variation this introduces may 
influence the probability distribution of the entropy 
calculation.  

4.4. Multiclass Support Vector Machine Classification 

A Support Vector Machine (SVM) is a maximum margin 
classifier that can be used for classifying both linearly 
separable and non-separable data. This is achieved by finding 
an optimal hyperplane which defines the maximum margin 
between two target classes. When the target classes are 
separable, the equation for the hyperplane is straightforward. 
However, for non-separable data, kernel based methods must 
be utilized to transform the data into a space whereby it 
becomes separable. In the case of classification with only two 
features a straight line can separate the target classes. 
However, when data with more than two features is to be 
separated, the line becomes a plane or hyperplane above 3 
dimensions. The decision boundary is defined by eq. 7 
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 𝑦 𝒖 = 𝒘𝑻𝒖 + 𝑏 (7) 

where y(u) is the decision, w a weight vector orthogonal to 
the decision surface, b a bias and u an unknown input vector. 
The optimal hyperplane can be found by solving the 
constrained optimization problem of the form given by  

 𝑚𝑖𝑛
1
2
𝑤 B (8) 

Limited by the constraint 

 𝑡) 𝒘𝑻𝒙𝒊 + 𝑏 ≥ 1 (9) 

In eq. (9), xi represents known positive or negative training 
samples and 𝑡) ∈ 	 −1,1  is a factor that is either positive or 
negative depending on the sign of xi so that (9) is always true. 
For the constraints, Lagrangian multipliers αi are used to find 
the extremum of eq. (8). The Langragian which combines eq. 
(8) with the constraints from eq. (9) can be expressed as 

 𝐿 =
1
2
𝑤 B − 𝛼)

)

𝑡) 𝒘𝑻𝒙𝒊 + 𝑏 − 1  (10) 

Taking the derivative and setting it to zero gives the 
conditions for the extremum. Those can be plugged back into 
the original decision rule for a two-class classification 
problem of the form 

 𝑦 𝒖 = 𝛼)
)

𝑡)𝒙𝒊𝑻𝒖 + 𝑏 (11) 

The vectors in the dot product in equation (11) can be 
transformed for cases when the classes are not linearly 
separable and in turn make them separable again. This is 
achieved using a kernel function of the form 

 𝜙 𝒙𝑻 𝜙 𝒖 = 𝑘(𝒙, 𝒖) (12) 

For the present study all tests were conducted with a Radial 
Basis Function (RBF) kernel which is defined as  

 𝑘 𝒙, 𝒖 = 𝑒𝑥𝑝 −
𝑥 − 𝑢 B

𝑐
 (13) 

and is applied to the unknown input vector u and known 
training examples x (Schölkopf et al., 1997).    

The support vector machine is fundamentally a two-class 
classifier. To deal with the three-class separation problem of 
the present study with 𝑦	 ∈ 	 1,2,3  in which each class label 
corresponds to one class for each wheel wear state, a 
multiclass support vector machine was used. A common 
approach for this is called the one-versus-all approach which 
constructs K separate SVMs in which the kth model Yk(x) is 
trained using the data from class yk as the positive examples 
and the data from the remaining K-1 classes as the negative 
examples. For the present study, the result of this is a three 
support vector machine classification algorithm which is able 
to classify each individual wheel wear state against the other 
remaining wheel wear levels as a whole.  

5. ANALYSIS RESULTS 

The analysis was completed with the previously outlined 
algorithm and data from the field test. The primary focus of 
this study was to identify the three wheel wear states while 
testing for robustness of the algorithm against railcar speed. 
The secondary focus was to evaluate the influence of feature 
selection on classification accuracy. More precisely, to 
understand how many features are required for acceptable 
classification performance, and how beneficial mRMR is 
versus simple mutual information thresholding. The tertiary 
goal of the test was to evaluate the effects of various feature 
scaling techniques and improvements through more 
advanced kernel functions. For evaluation purposes, the main 
performance metric was classification accuracy, defined as 
the sum of true positives and true negatives divided by the 
total sum of samples.  

Figure 6 shows the progression of the 10 mRMR selected 
features vs speed for each wheel wear level. The colors in 
figure 6 correspond with the colors of the wheel profiles in 
figure 3. The values for each feature are the average over a 
specific run (speed), therefore the horizontal axis label 
indicates the speed for that feature value. As presented in 
table 1, due to the experimental nature of the field data, the 
data sets for each fault were not always recorded at the exact 
same speeds. Hence, the features are also only available at the 
same speeds (as in table 1).  

 
Figure 6. Progression of features versus speed – green 

stands for the no wear, blue for the medium wear and red for 
the full wear wheel profile.   
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Observation of figure 6 reveals an important attribute of the 
mRMR feature set: at higher speeds, approximately above 50 
mph, the features tend to exhibit a discernible class 
separation. Especially for the test case at 65 mph, feature 
values of the new wheel (in green) show a clear separation 
from the medium (blue) and fully (red) worn wheel profiles. 
Since the primary focus of this study is the evaluation of the 
classification accuracy versus test speeds, the assembled data 
sets, corresponding to the target classes shown in figure 5, 
have to consist of data collected at the same speed for each 
level of wheel wear. Due to test constraints, only three test 
speeds (50, 60 and 65 Mph) were available for all wheel wear 
levels and are therefore also the only test speeds suitable for 
the analysis of the classification accuracy. For the first case, 
data from the 50 mph test run for each wheel wear state was 
used to evaluate the classification accuracy. The sequence of 
the wheel wear levels remained the same as presented in 
figure 5 and the feature set was selected as the optimized 10 
feature mRMR set. After the first simulation with a hold-out 
cross validation scheme, 10 more simulations with a 10-fold 
cross validation scheme were run to find the average 
classification performance. The first (hold-out cross 
validation) simulation for the 50 mph test run yielded a 
classification accuracy of 99 % and the following 10-fold 
cross validation simulations also had an average accuracy of 
99%. At 60 mph, the validation results were very similar with 
100% for the hold-out cross validation and 99% for the 10-
fold cross validation. Lastly, the 65 mph run again replicated 
the results from the 50 and 60 mph run with 100% and 99% 
accuracy for the hold-out and 10-fold cross validations 
respectively. Since the results for all speeds were similar, 
figure 7. only shows the confusion matrix for the 65 mph run 
with the optimized 10 mRMR feature set. 

 
Figure 7. Confusion Matrix for 65 mph with top ten mRMR 

features 

The confusion matrix shows a perfect result for the hold out 
cross validation without any misclassifications when the top 
ten mRMR ranked features were used. This was also 
confirmed by the ROC curve shown in figure 8 

 
Figure 8. ROC curve for hold out cross validation at 65 mph 

with top ten mRMR features’ 

The secondary goal of this study was to evaluate the influence 
the number of features that were used and the feature 
selection algorithm has. For this purpose, the algorithm was 
reset first to exclude feature selection and thereby create a 
baseline scenario. This scenario yielded a hold-out validation 
accuracy of 35%, which was also reflected in the 10 fold 
cross validation. Interestingly, with this configuration, most 
samples were classified as fully worn as shown in the 
confusion matrix in figure 9.  

 
Figure 9 Confusion matrix for 50 mph without feature 
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The achieved accuracy of 35% can thus be attributed to the 
distribution of class labels in the data set and means that the 
classifier is not able to separate the individual classes when 
too many features are used. The ROC curve shown in figure 
10 confirms this as the lines are close to the diagonal, which 
means that pure chance without classification would have 
yielded the same results.  

 
Figure 10. ROC curve for 50 mph without feature selection 

To gain a deeper understanding of the classification accuracy 
as a function of the number of features that were used, a 
wrapper approach was used to iterate from the baseline to an 
optimal number of features. When configured as a wrapper, 
algorithms typically use the classifier as a “black box” to 
quantify the performance of the feature selection algorithm 
by using the classification accuracy as the performance 
metric. For this approach, each run of the classification 
module requires an individual set of data with training and 
test data subsets. To meet the secondary goal of the study, the 
input sets for the wrapper were selected as variations of the 
number of input features for each feature selection method. 
For the mutual information feature selection method, a 200 
element array over the entire range of entropy values (0.2 to 
0.938) of Mutual Information algorithm output was selected 
as the thresholds for the wrapper. For the mRMR feature 
selection method, the number of features in the optimal 
subset was varied through a 200 element array of number 
ranging from 1 to 500 features. With this configuration, the 
algorithm was instructed to execute for each input setting 
while measuring also the computational cost. The description 
of the wrapper approach in pseudocode is as follows: 

for i:number of features 
 divide samples into test and training sets 

train svm with MI_features(1:i) 
test svm with MI_features(1:i) 
train svm with mRMR_features(1:i) 

test svm with mRMR_features(1:i) 
calculate accuracies as TP+TN/(Total Samples) 
save accuracies in arrays 

end 
plot the accuracies vs number of features  

Figure 11 shows the results for comparison of mutual 
information versus mRMR feature selection in form of a plot 
of the accuracies as they were calculated by the wrapper.  

 

Figure 11. Comparison of MI and mRMR feature selection 
algorithms for different numbers of selected features. 

It can be observed that for the majority of test cases mutual 
information feature selection typically yielded higher 
classification accuracy than mRMR feature selection, when 
equal numbers of features were selected. Furthermore, the 
baseline classification accuracy of 35% was also observed 
with very high feature numbers (above 200) which confirmed 
the earlier results from tests with complete set of 678 features. 
However, with very low numbers of features this trend 
changed. Figure 12 shows the zoomed section of figure 11 for 
low feature numbers. It can be seen that with up to 
approximately 20 features, mRMR feature selection yields 
higher classification accuracy to varying degrees. In the test 
case with only four features, the classification accuracy 
difference reached a value of 12%.  

For the tertiary goal of this study, the wrapper was used to 
test four different feature normalization techniques. 
Normalization of the feature set is required to ensure that the 
support vector machine does not assign excess weight to one 
feature versus another. The four scaling methods tested in this 
study were no scaling, individual feature scaling (as 
compared to normalizing the feature set as a whole), scaling 
by the speed and combined (speed and individual) feature 
scaling. 
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Figure 12. Zoomed in section of of MI and mRMR feature 

selection for different numbers of selected features. 

The method for scaling was always subtraction of the mean 
and division by the standard deviation, except for scaling by 
speed. In individual feature scaling each feature was 
normalized by its own mean and standard deviation, whereas 
in scaling of the feature set as a whole, each feature was 
divided by the set’s mean and standard deviation. Speed 
scaling was included to explore if the effect of small 
fluctuations (between 1-2 mph) of the train’s test speed had 
affected the sensor measurements to a significant degree. 
Since speed was recorded as an instantaneous metric, each 
feature sample was divided by the instantaneous speed. It 
should be kept in mind that speed scaling was included as an 
exploratory scaling technique to see if a significant influence 
of speed fluctutations can be observed. 

 
Figure 13. Evaluation of different feature scaling techniques 

Lastly, a combined approach was also tested to understand 
the effect of speed and individual feature scaling 

simultaneously. For all four test cases, the mRMR algorithm 
was used as the feature selection algorithm based on the 
results from above. The results of this part of the analysis are 
shown in figure 13.  It can be seen that the various scaling 
techniques only had little effect on the classification 
accuracy. The classification accuracies ranged between 99 
and 100% in most cases with up to 20 features and thus it can 
be concluded that all four techniques yield approximately 
similar results. 

As part of the tertiary goal of this study, a comparison of 
linear and nonlinear kernel techniques for the support vector 
machine was conducted. The result for this analysis are 
presented in figure 14. It can be observed that with a feature 
number that is less than 10, the RBF kernel has a better 
performance than the linear kernel. As the feature number 
increases, the trend reverses and the linear kernel exhibits 
better performance. 

 
Figure 14. Comparison of linear and RBF kernel transforms 

for various numbers of features. 

This result is telling as it shows one of the typically expected 
behaviors of support vector machines. It is well known in the 
literature (Hsu, Chang, & Lin, 2003), that with feature 
numbers n larger than the sample number m, so that 	𝑛 ≥ 𝑚, 
a linear kernel typically performs better. This can be observed 
in this study as well, where even with a feature number of 10 
the RBF kernel classification accuracy begins to deteriorate 
and the linear kernel accuracy remains stable. In the opposite 
case, where 𝑛 ≤ 𝑚, a transformation of the data into a higher 
dimensional space can provide better accuracy. This is also 
reflected in figure 14 where it can be seen that with less than 
10 features the RBF kernel delivered better performance than 
the linear kernel. Another aspect is the computational 
efficiency which was approximately 50% higher for the 
linear kernel than for the RBF kernel. Thus, computational 
power, which is important for power budget conscious 
computation, as mentioned in section 4.1, as well as the 
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number of selected features significantly influence which 
type of kernel should be chosen.  

In the beginning of the analysis section, the robustness of the 
algorithm performance versus the three test speeds was 
discussed. To continue that discussion, the wrapper approach 
for the three test speeds was used again to test for the 
relationship between feature numbers and test speed. The 
results are shown in figure 15 where it can be observed that 
the algorithm’s performance remained robust over the three 
test speeds and that the accuracy remained between 95 and 
100% up until 25 features in the feature subset.  

 
Figure 15 Comparison of classification accuracies for 

different speeds and feature numbers. 

6. DISCUSSION 

The analysis for the detection of wheel wear states from the 
vibration signature of acceleration data taken on the railcar 
was completed. In pursuit of the primary goal of this analysis, 
a success rate of 99% was achieved for the three test cases 
subject to testing over all test speeds. The high classification 
accuracy is mainly due to an extensive focus on generating 
adequate features and applying thorough feature selection 
techniques. Furthermore, the use of a RBF kernel in 
conjunction with a condensed and optimized feature subset 
was proven to deliver favorable results.  

A few interesting points emerged from the analysis which 
require a deeper discussion. For the primary analysis goal, the 
large feature set size of 678 features has significantly 
broadened the breadth of pertinent information captured from 
the structured sensor data. This circumstance in conjunction 
with the feature selection algorithm contributed significantly 
to improved performance and high classification accuracies 
with robustness against speed fluctuations. Particularly the 
fact that the algorithm performance remained robust at lower 
speeds is noteworthy. Even though most of the features were 
sequentially (and thus automatically) generated, a deep 

frequency domain and wavelet transform analysis expanded 
the information from the original vibration signal 
significantly, allowing the full potential of mRMR to be 
utilized. 

For the secondary goal, the investigation of mutual 
information versus minimal-redundancy-maximal-relevance 
feature selection, through a wrapper approach revealed that 
while MI will have better performance with high feature 
numbers, mRMR provides higher performance when few 
features are utilized. This is an important factor. In practical 
applications, keeping the number of features low is 
imperative to enable computational efficiency and algorithm 
simplicity. With mRMR, the classification accuracy 
remained as high as 95% even with as few as 2 features. This 
is a clear indicator of the benefits of using maximum 
relevance and minimum redundancy to find the difference 
between the two and thus optimize the feature subset.  

Lastly, the tertiary goals of the study were met by 
understanding that feature scaling beyond normalization of 
the input features carries little benefit in the analysis. 
However, the choice of the kernel transform ended up being 
dependent on the number of features used for the analysis. 
Since this study was working with a higher number of 
features than number of samples, a linear kernel worked 
better with the full feature set. However, since a low feature 
number is more desirable for efficiency, the benefit of using 
a RBF kernel dominated the results with less features and 
became most evident when fewer than 10 features were used.  

7. CONCLUSION 

On-board condition-based maintenance for freight rail 
applications remains an underdeveloped field for the 
application of machine learning techniques. The industry has 
a growing need for advanced techniques which should be 
addressed in conjunction with domain expertise. Past efforts 
were mainly focused on passenger rail and wayside detection 
technologies. In the present study, a previously developed 
algorithm with above 90% accuracy was further improved to 
reach over 99% accuracy. The main conclusion from this is 
then “What is the next logical step?” and the answer is clearly 
the incorporation of prognostics techniques. It is expected 
that with a causal, multi-body dynamics based system such 
as a typical North-American three piece freight rail bogie, 
favorable results can be achieved if proper prognostics 
techniques are applied.   
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