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ABSTRACT 

Integrated, real-time and open approaches relating to the 

development of industrial analytics capabilities are needed 

to support smart manufacturing. However, adopting 

industrial analytics can be challenging due to its 

multidisciplinary and cross-departmental (e.g. Operation 

and Information Technology) nature. These challenges stem 

from the significant effort needed to coordinate and manage 

teams and technologies in a connected enterprise. To 

address these challenges, this research presents a formal 

industrial analytics methodology that may be used to inform 

the development of industrial analytics capabilities. The 

methodology classifies operational teams that comprise the 

industrial analytics ecosystem, and presents a technology 

agnostic reference architecture to facilitate the industrial 

analytics lifecycle. Finally, the proposed methodology is 

demonstrated in a case study, where an industrial analytics 

platform is used to identify an operational issue in a large-

scale Air Handling Unit (AHU). 

1. INTRODUCTION 

Smart manufacturing refers to a data-driven paradigm that 

uses real-time pervasive sensor networks, simulation, 

analytics and robotics, to deliver manufacturing intelligence 

to every area of the factory (Davis, Edgar, Porter, Bernaden, 

& Sarli, 2012; Lee, Lapira, Bagheri, & Kao, 2013; Lee, 

2014; Wright, 2014). Facilities that transition to smart 

manufacturing operations will be able to address many 

contemporary operating challenges, such as increasing 

global competition and rising energy costs, while shortening 

production cycles and enhancing just-in-time product 

customization capabilities (Manufacturing et al., 2011; 

Sharma & Sharma, 2014). Other potential performance 

benefits include (1) reduction in capital intensity of 30%, (2) 

reduction in product cycle times of up to 40%, and  (3) 

overarching efficiencies across energy, emissions, 

throughput, yield, waste, and productivity. Extrapolating 

these efficiencies across entire regions may also derive 

benefits for the greater economy. Such benefits were 

highlighted in research produced by the Fraunhofer 

Institute, which estimated the transformation of factories to 

Industry 4.0 could be worth up to 267 billion Euros to the 

German economy by 2025 (Heng, 2014). Given the 

potential benefits that may be derived from smart 

manufacturing, several government, academic and industry 

initiatives have emerged in recent years to support its 

development. Prominent initiatives currently include the 

Smart Leadership Coalition (SMLC) (Manufacturing et al., 

2011), Technology Initiative SmartFactory (Zuehlke, 2010), 

Industry 4.0 (Lee, Kao, & Yang, 2014), and The Industrial 

Internet Consortium (IIC), to name a few. 

Modern manufacturing facilities currently employ sensing, 

control and automation in day-to-day operations (Chand & 

Davis, 2010; Davis et al., 2012; Lee et al., 2014). These 

control and automation technologies deliver operational 

efficiencies, process innovations, and environmental 

benefits (Fosso Wamba, Akter, Edwards, Chopin, & 

Gnanzou, 2015; Hazen, Boone, Ezell, & Jones-Farmer, 

2014). However, as facilities transition to smart 

manufacturing, the number of sensors deployed in the 

factory, as well as the resolution at which they are logging 

measurements, will inevitably increase (Davis et al., 2012; 

Lee, Bagheri, & Kao, 2015; Wright, 2014). These improved 

sensing capabilities present opportunities to derive new and 

useful insights from operational data, while also presenting 

challenges in terms of large-scale data management, 

processing and analysis (Fosso Wamba et al., 2015; Kumar, 

Dhruv, Rawat, & Rathore, 2014; Lee et al., 2013; 

McKinsey, 2011; Philip Chen & Zhang, 2014; Vera-

baquero, Colomo-palacios, & Molloy, 2014).  

Industrial analytics is an important aspect of smart 

manufacturing, which focuses on the application of data-

driven methods and technologies to inform decision-

making. Some of these data-driven approaches originate 

from mainstream information technology, before being 

adapted for industrial use cases. Big Data and Internet of 

Things (IoT) are good examples of mainstream technologies 

that have become synonymous with smart manufacturing 

and industrial analytics. While these (and similar) 

technologies are central to the development of industrial 

analytics capabilities, there is an equal, if not greater, 

dependence on the systematic convergence of teams and 

_____________________ 

Peter O’Donovan et al. This is an open-access article distributed under the 
terms of the Creative Commons Attribution 3.0 United States License, 

which permits unrestricted use, distribution, and reproduction in any 

medium, provided the original author and source are credited. 



INTERNATIONAL JOURNAL OF PROGNOSTICS AND HEALTH MANAGEMENT 

2 

personnel governing Operation Technology, Information 

Technology, Data Analytics and Embedded Analytics. 

However, these multi-disciplinary convergences can be 

difficult given potential differences in each teams 

background knowledge, experience and perspective of 

operating technologies, standards and analytics.  

This research presents and applies a formal and systematic 

methodology to support the development of industrial 

analytics capabilities. Some aspects of this methodology 

evolved from previously published research focusing on 

applications of big data in manufacturing (P. O’Donovan, 

Leahy, Bruton, & O’Sullivan, 2015), and factory-to-cloud 

data integration (P. O’Donovan, Leahy, Bruton, & 

O’Sullivan, 2015). The following points highlight 

contributions from this research, and describe relevant 

connections with previous research; 

 Factory-to-cloud architectures presented in previous 

research were conceptual. This research extends some 

of these concepts, and introduces others, to produce a 

methodology for developing end-to-end industrial 

analytics capabilities, while also demonstrating and 

validating the approach using a real-world case study.  

 The people and processes needed to implement factory-

to-cloud integration, and apply these technologies to 

problem solving in the factory, were not addressed by 

previous research. This research places a strong 

emphasis on identifying operational teams (e.g. 

Operational and Information Technology), usage 

scenarios, technical components and systematic 

processes for end-to-end industrial analytics.  

 Low-level details regarding data processing were not 

addressed in previous research. This research presents a 

formal taxonomy for cleaning and transforming time-

series industrial data, and a multi-stage data processing 

workflow pattern for implementation. 

 Building and operationalizing analytics models was not 

addressed in previous research. However, these are 

fundamental aspects of the industrial analytics lifecycle 

presented in this research, which identifies the teams, 

processes, and technologies needed to realize industrial 

analytics in the factory.  

 Finally, ancillary observations from the case study 

presented in this research (e.g. differing data transfer 

rates) may prove useful to other researchers 

implementing industrial analytics. Such observations 

are sometimes omitted due to publication bias, where 

seemingly insignificant observations are not reported. 

Previous research could not report such practical 

observations due to their conceptual focus. 

The remainder of this article is structured as follows – 

Section 2 reviews technologies governing data management 

across industrial, enterprise and emerging paradigms, 

Section 3 presents a formal methodology for developing 

industrial analytics capabilities, Section 4 describes the 

application of the methodology to the development of an 

industrial analytics platform in a large-scale manufacturing 

facility, and Section 5 delivers conclusions from this 

research.  

2. RELATED WORK 

Many disciplines and technologies are involved in the 

development of industrial analytics capabilities for smart 

manufacturing. Developing these capabilities may be 

viewed as the convergence of traditional Operation and 

Information Technology, with contemporary data-driven 

disciplines, such as Big Data Analytics, Machine Learning, 

Internet of Things (IoT), and Cyber Physical Systems 

(CPS). The following section reviews prominent technology 

protocols and architectures related to data transmission, 

management and processing across Operation Technology, 

Information Technology and Emerging Technology.   

2.1. Operation Technology 

Operation Technology encompasses control and automation 

technologies in modern manufacturing facilities (Kastner, 

Neugschwandtner, Soucek, & Newman, 2005; Nagorny, 

Colombo, & Schmidtmann, 2012; Samad & Frank, 2007). 

These technologies typically consist of (1) industrial 

information systems to inform end-users of operating 

conditions, (2) Programmable Logic Controllers (PLC) to 

enact process logic, and (3) field sensors to continuously 

monitor conditions. The flow of industrial data between 

these components follows a hierarchical and sequential 

pattern.  Firstly, sensors transmit raw measurements (e.g. 

room temperature) to PLC’s. Secondly, these measurements 

are persisted in-memory at set intervals (e.g. every 15 

minutes). Finally, these in-memory measurements are 

acquired periodically by industrial information systems to 

archive measurements in file-based repositories. This 

hierarchical automation topology may also be designed to 

comply with control and enterprise standards (e.g. ISA-88, 

ISA-95) to promote consistency and interoperability (ISA, 

2016a, 2016b; Scholten, 2007). 

The flow of industrial data in Operation Technology follows 

two distinct paths - (1) real-time data access via PLC’s, and 

(2) historical data access via file-based archives. Real-time 

data access may be achieved using standard industrial 

protocols to interface with PLC’s. The most common 

industrial protocols include Modbus, LonWorks, BACnet, 

OLE Process Control (OPC), and MT Connect (Alves 

Santos, Normey-Rico, Merino Gómez, Acebes Arconada, & 

de Prada Moraga, 2005; Hong & Jianhua, 2006; Vincent 

Wang & Xu, 2013; Xu, 2012). Historical data access may be 

achieved using mainstream database and I/O interfaces to 

interrogate disk-based archives (e.g. CSV, SQL), but the 

underlying data model (e.g. table structure) of each archive 

may be entirely proprietary. Such heterogeneous data 
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models and technologies can increase the complexity of 

industrial integration scenarios, given the effort needed to 

map and integrate their underlying properties.  

2.2. Information Technology 

Information Technology supports business processes using 

enterprise technologies. Specific applications may include 

order processing, supply chain management and inventory 

management, to name a few. These systems may include 

different architectures and delivery models, ranging from 

on-premises software, to managed cloud-based solutions.  

However, contemporary systems tend to embrace Internet-

oriented architectures and protocols to support pervasive 

cross-platform accessibility.  

Service Oriented Architecture (SOA) is a common design 

pattern used in modern enterprise systems to support 

interactions between distributed components (Al-jaroodi & 

Mohamed, 2012; Cardiel, Gil, Somolinos, & Somolinos, 

2012; Gligor & Turc, 2012). SOA provides a technology 

agnostic means of exposing system functionality as 

autonomous services, which may be consumed by 

distributed components. These autonomous services are 

commonly implemented as Web Services, which use 

Internet standards and protocols to invoke actions on remote 

machines. The use of such standards can facilitate 

interoperability across a wide-range of platforms and 

devices, which is of particular importance to modern 

enterprise systems, where prescribing the use of platforms 

and devices may not be possible due to geographically 

distributed users and technology preferences. There are 

currently two main approaches used to develop Web 

Services, namely Representational State Transfer (REST) 

and Simple Object Access Protocol (SOAP). While REST is 

an architectural style that employs Hypertext Transfer 

Protocol (HTTP) to initiate services across distributed 

networks, SOAP is an XML-based message protocol for 

exchanging information and invoking services on 

distributed computers. Both approaches are technology 

neutral, meaning they can be developed using different 

programming languages and technologies (e.g. Java, .NET).  

2.3. Emerging Technology 

In recent years, contemporary technology paradigms closely 

related to smart manufacturing have emerged (e.g. cloud 

manufacturing and cyber manufacturing). These paradigms 

describe connected industrial enterprises, where Operation 

Technology and Information Technology have converged. 

This convergence is necessary to support the formation of 

data-rich production environments with pervasive sensing 

and analytics capabilities. These paradigms commonly 

embrace mainstream technologies (e.g. Cloud Computing, 

Big Data and Internet of Things) to address traditional 

industrial engineering challenges and scenarios (e.g. process 

improvement, equipment maintenance, and energy 

optimization) (O’Donovan et al., 2015).  

Manufacturing technology paradigms that employ cloud 

computing typically use service-orientation (e.g. SOA) to 

share industrial resources and utilities, thereby centralizing 

and consolidating efforts across geographically distributed 

processes and operations (Vincent Wang & Xu, 2013; Wu, 

Greer, Rosen, & Schaefer, 2013; Xu, 2012). These services 

typically reside in the cyber world (i.e. cloud), which 

embodies the data storage and compute power needed to 

process complex models and simulations, while these 

analytical results are relayed to the physical world (i.e. 

factory) to inform decision-making. Those systems that 

facilitate interactions between cyber and physical worlds are 

commonly referred to as Cyber Physical Systems (CPS), 

which is a multidisciplinary field of research that intersects 

Engineering, Big Data, Internet of Things, and Machine 

Learning (Bagheri, Yang, Kao, & Lee, 2015; Dworschak & 

Zaiser, 2014; Lee, Ardakani, Yang, & Bagheri, 2015; Lee, 

Bagheri, et al., 2015; Wright, 2014). The main impediment 

facing the adoption of smart manufacturing technologies 

relates to legacy issues, such as poor interoperability, 

proprietary standards, and inadequate data management. 

Those facilities migrating to smart manufacturing must 

focus on employing open and consistent standards (Brandl, 

2008; Chungoora et al., 2013; Emerson, Kawamura, & 

Matthews, 2007; Giovannini, Aubry, Panetto, Dassisti, & El 

Haouzi, 2012; Reinisch, Granzer, Praus, & Kastner, 2008; 

Scholten, 2007; Weiss & Donmez, 2014). 

Although some existing applications and architectures may 

support elements of industrial analytics, broader 

methodologies are needed to illustrate the roles, components 

and processes in the industrial analytics lifecycle. To 

address these needs, this research presents and applies an 

industrial analytics methodology that describes a closed-

loop industrial analytics lifecycle, beginning with the 

classification of operational teams, and culminating in the 

operationalization of embedded analytics in real-time 

factory operations.  

3. INDUSTRIAL ANALYTICS METHODOLOGY 

This section presents a methodology to support the 

development of industrial analytics capabilities in large-

scale manufacturing facilities. The phases of the 

methodology are illustrated in Figure 1. Firstly, the 

technology and analytics teams are formed, and assigned 

specific roles and responsibilities. Secondly, an information 

system architecture is implemented to enable operational 

data in the factory to automatically flow between each team. 

Finally, operational questions are identified and answered 

using a formal analytics process. The following sections 

describe the methodology’s theoretical concepts using 

technology agnostic, formal and systematic methods. 
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Figure 1. Phases of industrial analytics methodology 

3.1. Phase 1 of 3 - Industrial Analytics Teams 

Smart manufacturing requires the convergence of Operation 

and Information Technology to produce seamless streams of 

operational intelligence in the factory. In terms of industrial 

analytics, the convergence of contemporary analytics teams 

must also be considered. Therefore, four teams are included 

in the proposed industrial analytics lifecycle - (1) Operation 

Technology, (2) Information Technology, (3) Data 

Analytics, and (4) Embedded Analytics. Figure 2 illustrates 

the main relationships that exist between teams, 

responsibilities and standards. Firstly, all teams must 

commit to the adoption of technology standards in their 

respective environments (e.g. automation and control, cloud, 

analytics etc.). Secondly, teams are broadly classified as 

those responsible for data integration, processing and 

management, and those responsible for building and 

operationalizing analytics. Thirdly, collaborative inter-team 

relationships follow a clockwise direction, from Operation 

Technology through to Embedded Analytics. 

 

Figure 2. Industrial analytics quadrant 

The roles and responsibilities of each team in the industrial 

analytics lifecycle methodology are summarized in the 

following sections. 

3.1.1. Operational Technology Team 

Operational Technology teams ensure industrial information 

and automation systems are operating as intended. In the 

industrial analytics lifecycle, they guide the integration and 

management of industrial data from systems and devices in 

the factory. Their most important relationship is with 

Information Technology, with whom they must collaborate 

to construct end-points that connect the factory to the global 

information system architecture that supports the industrial 

analytics lifecycle.  

3.1.2. Information Technology Team 

Information Technology teams fulfill a wide-range of roles 

across the enterprise, including the provisioning of compute 

resources, software development, business intelligence, data 

management and integration. In the industrial analytics 

lifecycle, they are needed to develop the information system 

architecture and tools that facilitate the seamless flow and 

processing of operational data. They must communicate 

with each team to ensure the appropriate compute resources, 

software and tools are available.  

3.1.3. Data Analytics Team 

Data Analytics teams employ data-driven methods and tools 

(e.g. machine learning) to derive insights that can positively 

impact operations. In the industrial analytics lifecycle, they 

are needed to build accurate data-driven models that support 

decision-making processes. Their most important 

relationship is with Embedded Analytics, with whom they 

must collaborate to (a) elicit and comprehend useful 

operational questions, and (b) ensure model outputs are 

contextually accurate. 

3.1.4. Embedded Analytics Team 

Embedded Analytics teams develop applications and tools 

that are deployed in the factory to inform real-time decision-

making. In the industrial analytics lifecycle, they use 

domain expertise to identify and inform high-impact 

analytics questions, as well as operationalizing production-

ready analytics models in factory operations. They have 

important relationships with both Data Analytics and 

Operation Technology. They utilize knowledge of factory 

operations to ensure Data Analytics are investigating 

relevant and useful questions, while they collaborate with 

Operation Technology to ensure real-time data streams are 

accessible to embedded applications.  

The teams and roles in the industrial analytics lifecycle were 

discussed in this section to provide clear boundaries for 

those contributing to the development of industrial analytics 

Phase 1 

Classify teams  

& roles 

Phase 2 

Implement IT 
architecture 

Phase 3 

Apply analytics 
process 
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capabilities. The next section focuses on technical 

responsibilities (e.g. data integration, processing and 

modeling) associated with each team. 

3.2. Phase 2 of 3 - Industrial Analytics Reference 

Architecture  

Figure 3 illustrates a technology-agnostic reference 

architecture depicting an industrial analytics lifecycle. The 

architecture incorporates the technology and analytics teams 

described previously, as well as primary technical 

components, and industrial data streams, which are needed 

to support collaboration, interoperability and computation. 

These details provide the theoretical basis for developing an 

industrial analytics lifecycle, without being overly 

prescriptive or immutable. The architecture should be 

considered an open and technology neutral artifact, which 

can be extended or modified to meet the needs of particular 

facilities. Table 1 summarizes the dimensions of the 

reference architecture. 

Dimension Description 

Data Streams Batch and real-time data streams are shown 

at the top of the reference architecture, with 

each part of the industrial analytics lifecycle 

grouped under one of these streams. The 

left side of the reference architecture 

illustrates how batch data is propagated to 

Data Analytics to build data-driven models, 

while the right side illustrates real-time data 

being consumed in the factory.  

Lifecycle Stage Each stage in the industrial analytics 

lifecycle is represented by technology and 

analytics teams. They function as containers 

for technical components to ingest, prepare, 

analyze and operationalize data-driven 

models. Stages are linked as per the 

industrial analytics quadrant from the 

previous phase - (1) Operation Technology, 

(2) Information Technology, (3) Data 

Analytics, and (4) Embedded Analytics.  

Technical 

Components 

There are two types of technical 

components depicted in the reference 

architecture. Firstly, endpoints between 

stages are used to explicitly declare 

associations and interfaces in the lifecycle 

(e.g. Operation Technology to Information 

Technology). Secondly, each stage contains 

specific technical components that are 

needed to fulfill their role in the lifecycle 

(e.g. data cleaning).  

Table 1. Reference architecture dimensions 

 

 

 

 

The technology and analytics teams are deliberately 

analogous with each stage in the reference architecture. This 

provides a consistent vocabulary to convey classifications 

and groupings throughout the methodology. The technical 

components and functions in each stage of the reference 

architecture are discussed in the following sections. 

3.2.1. Operation Technology Components 

Technical components in the Operational Technology stage 

archive operational data and establish communications with 

Information Technology. This is illustrated in the reference 

architecture, where operational data from a PLC in the real-

time stream is periodically archived by the Building 

Management System. These archives (e.g. log files) are 

stored on disk, which enables ingestion components to 

access and transmit historic operational data to a centrally 

accessible data lake. While systems and storage formats 

may change from factor-to-factory, the process of archiving 

and accessing operational data should be similar. 

Building analytics models that answer operational questions 

are largely dependent on the availability of high-quality 

training data, therefore, components at the Operation 

Technology stage are crucial to the industrial analytics 

lifecycle. Of the components depicted in the reference 

architecture, industrial information systems and data 

archives are almost certain to exist in modern manufacturing 

facilities. Where these components do not exist, it is the 

responsibility of Operation Technology to implement 

solutions that archive operational data from across the 

factory. In contrast, data ingestion components and 

communication endpoints may not exist given the traditional 

separation between Operation and Information Technology. 

Where these components do not exist, Operation and 

Information Technology must collaborate to agree 

specifications and protocols, with Information Technology 

taking responsibility for implementation and deployment. 
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3.2.2. Information Technology Components 

Technical components in the Information Technology stage 

are primarily used to store, process and prepare operational 

data transmitted from Operation Technology. These 

components collaborate to automate the delivery of 

analytics-ready data, which may be consumed by other 

stages in the industrial analytics lifecycle. The reference 

architecture illustrates the interactions between these 

components using the example of data from an Air Handling 

Unit (AHU). Initially, AHU data transmitted from Operation 

Technology is tagged and stored in the data lake. This 

triggers a call to the workflow engine, which searches for 

workflows that can clean and process AHU data. Where a 

suitable workflow is identified, the workflow engine 

constructs and executes a data processing job, and provides 

the transmitted AHU data as input. These jobs consist of 

multiple modules, where each module performs a single 

operation on the AHU data (e.g. sort by timestamp, remove 

duplicates etc.) to produce an analytics-ready data set.  

The Information Technology stage has three communication 

endpoints that connect to Operation Technology and Data 

Analytics in the industrial analytics lifecycle. As previously 

mentioned, the inbound endpoint for Operation Technology 

facilitates the transmission of data from the factory, while a 

second inbound endpoint for Data Analytics enables those 

undertaking analysis to access the final analytics-ready data 

set from workflows (e.g. AHU workflow), or data output 

from a particular workflow stage. To illustrate the 

usefulness of this design, consider a scenario where the final 

output from a particular workflow aggregates a time-series 

using daily averages, but analytical questions later arise that 

require clean 15-minute resolution data. By following the 

multistage approach, the 15-minute data may be obtained 

from an earlier stage in the workflow, before daily average 

calculations were applied. This illustrates how reusable and 

accessible workflows can reduce duplicated effort for data 

cleaning and transformation operations.  

Information Technology components illustrated in the 

reference architecture may exist in facilities where cloud-

based big data infrastructures have been adopted. However, 

where these components exist in a business enterprise 

context, they may require some amendments to work with 

industrial operational data (e.g. time-series). In facilities 

 

Figure 3. Industrial analytics lifecycle and reference architecture 
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where these components do not exist, Information 

Technology should be responsible for their design, 

development and implementation. These components are 

needed to abstract Data Analytics from time-consuming and 

complex processing of ad hoc and proprietary operational 

data, while also being critical to the scalability and 

resilience of the industrial analytics lifecycle.  

The workflows depicted in the reference architecture 

comprise multiple data processing modules, which are 

positioned in a particular order to produce an analytics-

ready dataset. Such datasets are commonly referred to as 

tidy data sets, where each column refers to a single 

variable/feature/measurement, and each row refers to a 

single observation at a point in time. Table 2 describes 

different types of processing modules that may be included 

in a workflow. These classifications provide a common 

vocabulary for common industrial time-series processing 

patterns. Each module accepts one or more files as input, 

and produces a single file as output. This ensures 

consistency in module implementations, while also enabling 

modules to be ‘chained’ (i.e. output from one module may 

be used as input for the next module). Finally, enforcing an 

input/output interface also enables modules to be easily 

substituted (e.g. replaced) without breaking workflows. 

Name Description 

Type 1 (Normalizer) Modules of type Normalizer take 

proprietary files from the data lake as 

input and wrangle them in to a basic 

time-series format consisting of 

timestamp and value columns.  

Type 2 (Mapper) Modules of type Mapper rename log 

files to give them context, as many 

raw log files in facilities use arbitrary 

or auto-generated names. Although 

renaming files only provides a 

minimal level of contextualization, it 

enables end-users and other processes 

to identify data by name.  

Type 3 (Aggregator) Modules of type Aggregator merges 

individual time-series log files to a 

single analytics-ready file.  

Type 4 (Mutator) Modules of type Mutator are used to 

transform any aspect of an analytics-

ready file. This includes deriving and 

appending new data (e.g. columns), or 

undertaking fundamental cleaning and 

transformation operations on existing 

data (e.g. percentage to decimal).  

Type 5 (Action) Modules of type Action undertake ad 

hoc routines/tasks when a workflow 

has been completed. This may include 

tasks such as transmitting the output 

to another database or system. 

Table 2. Classes of workflow processing modules 

 

When constructing a workflow consisting of multiple 

processing modules, some guidelines relating to the position 

and order of modules must be adhered to. These guidelines 

are described below; 

 The first processing module in a workflow should 

be of type Normalizer. Such modules are generally 

specific to the information system or repository 

from which the data originated. In the reference 

architecture example, the first Normalizer module 

in the AHU workflow may be responsible for 

transforming the BMS data to a generic time-series 

representation.  

 The second processing module in a workflow 

should be of type Mapper. This facilitates the 

labeling and high-level contextualization of the 

data being processed. In the reference architecture 

example, the second Mapper module in the AHU 

workflow may rename arbitrary log files using the 

sensor measurements being monitored in the AHU. 

 The third processing module in a workflow should 

be of type Aggregator. These modules produce a 

tidy data set by aggregating data from multiple log 

files. In the reference architecture example, the 

third Aggregator module in the AHU workflow 

may aggregate all measurements for a particular 

AHU to present them in a single file.  

 Processing modules of type Mutator can be 

positioned anywhere after the third module. Each 

Mutator module implements a single processing 

function. Therefore, where several data 

transformations must be applied to data in a 

workflow, the equivalent number of Mutator 

modules should be present. Similar to good 

software design principles, singularity and 

modularity can be used to promote reuse, while 

reducing maintenance.  

 Finally, modules of type Action can be used to 

execute triggers, such as emailing a notification or 

building a PDF report. Given these modules do not 

output a file that can be used by other modules, 

Action modules may only be positioned as the last 

module in a workflow.  

Given its intermediary role between Operation Technology 

and Data Analytics, coupled with the responsibility of 

providing data management and processing for the factory’s 

operational data, Information Technology may represent the 

most complex and time-consuming aspect of the industrial 

analytics lifecycle. To reduce this complexity, the reference 

architecture illustrates the operation of a prescriptive cloud-

based workflow pattern, which includes a formal taxonomy 

that classifies time-series processing routines. 
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3.2.3. Data Analytics Components 

Technical components in the Data Analytics stage use data-

driven methods to derive insights that can positively affect 

operations. This requires Data Analytics personnel and 

components to acquire analytics-ready operational data from 

Information Technology, build insightful data-driven 

models, and support the deployment of these models in the 

factory. The reference architecture illustrates an example of 

an R Console accessing and exploring data from an AHU 

workflow, before building, standardizing and 

operationalizing an AHU model (e.g. issue identification) to 

a real-time stream in the factory.  

The Data Analytics stage has three communication 

endpoints that connect to Information Technology and 

Embedded Analytics. These endpoints consist of two 

outbound channels, and one inbound channel. The outbound 

endpoint to Information Technology facilitates the 

acquisition of analytics-ready data from workflows, while 

the outbound endpoint to Embedded Analytics supports the 

deployment of production-ready models to real-time streams 

in the factory. The inbound endpoint from Information 

Technology may be used to automatically retrain existing 

data-driven models when new training data becomes 

available. These components facilitate turnkey data analysis, 

model building, standardization and deployment in the 

industrial analytics lifecycle, without having to focus on 

low-value, complex and time-consuming activities (e.g. data 

integration and cleaning). 

Some components illustrated in the reference architecture 

may already exist in facilities where statistical data analysis 

is used for business intelligence or reporting. Examples of 

components may include those relating to statistical 

software applications, such as R and SAS. The components 

relating to building, training and operationalizing data-

driven models are less likely to exist, but may be present in 

facilities currently adopting aspects of smart manufacturing 

or advanced analytics. Where these components do not 

exist, Data Analytics and Information Technology must 

collaborate to define requirements and specifications, with 

Information Technology leading implementation. Unlike 

other stages in the reference architecture, Data Analytics 

and Embedded Analytics stages prescribe the use of 

Predictive Modeling Markup Language (PMML) (Data 

Mining Group, 2016) to encode and standardize data-driven 

models. This aspect of the reference architecture may be 

abstracted in future iterations when there are well-known 

alternatives to PMML. 

3.2.4. Embedded Analytics Components 

Technical components in the Embedded Analytics stage 

facilitate the operationalization of production-ready data-

driven models, which enables outputs from Data Analytics 

to positively affect real-time operations. Where analytics 

models are not operationalized, the valuable data insights 

they provide are inaccessible to decision-making processes 

in the factory. The reference architecture illustrates an 

example of an embedded application in the factory, which 

acquires real-time AHU measurements from a PLC, before 

transmitting these measurements to a Scoring Engine for 

evaluation. The Scoring Engine passes these measurements 

to the PMML encoded AHU model to derive a result (i.e. 

issue identification), which is relayed back to the embedded 

application to take appropriate action. 

The Embedded Analytics has two communication endpoints 

that connect to Data Analytics and Operation Technology. 

These endpoints consist of one inbound channel, and one 

outbound channel. The inbound endpoint from Data 

Analytics supports the real-time deployment of data-driven 

models, while the outbound endpoint to Operation 

Technology provides embedded applications with access to 

continuous real-time measurements. While some types of 

embedded applications are likely to exist in modern 

manufacturing facilities, where closed or proprietary 

implementations have been employed, their inclusion in the 

industrial analytics lifecycle may not be viable. Generally, 

these embedded applications are associated with a particular 

aspect of the manufacturing domain (e.g. issue 

identification, maintenance, scheduling etc.).  

The subject matter experts in Embedded Analytics are 

needed to identify areas where analytics may have the 

greatest impact on operations. This knowledge should 

inform the development of analytics questions, and validate 

the accuracy of models before they are used in embedded 

analytics applications. Given these applications depend on 

PMML and Scoring Engine components to produce data 

intelligence, Embedded Analytics must collaborate with 

Information Technology to ensure their availability.  

The reference architecture presented in this phase of the 

methodology provides a formal and consistent view of an 

industrial analytics lifecycle. Developing a more 

prescriptive architecture is difficult considering the possible 

technology permutations that may exist from factory-to-

factory. Hence, the level of abstraction upon which the 

reference architecture is modeled aims to balance 

technology neutrality and high-level specification. This 

provides flexibility around technology selection, but 

exposes the risk that misinterpretation of the lifecycle may 

lead to inappropriate technology choices. While previous 

phases of the methodology described operational and 

technical components in the industrial analytics lifecycle, 

the next phase presents an analytics process that 

demonstrates how the lifecycle may be used to investigate 

an industrial engineering problem. 

3.3. Phase 3 of 3 - Industrial Analytics Process 

This phase of the methodology describes a sequential 

process for applying the industrial analytics lifecycle to 

operational challenges. Each step in the process prescribes 
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an action to be undertaken, as well as identifying teams 

responsible for their execution. This serves to coordinate 

workloads across multi-disciplinary teams, while ensuring 

efforts are guided by well-defined objectives. Furthermore, 

this formal and systematic approach may reduce the risk of 

project failure by clearly apportioning responsibilities and 

actions, while also facilitating the early identification of 

critical issues (e.g. data availability). Figure 4 illustrates 

each step in the industrial analytics process. 

 

Figure 4. Industrial analytics process steps 

The process does not currently provide conditional paths to 

support alternative actions, which may be necessary in 

scenarios where a particular step could not be completed. 

For example, it would not be possible to complete Step 3 

(i.e. data ingestion) without access to historical data. In this 

particular example, an alternative action may involve 

Operation Technology creating a new data archive. While 

future iterations of this process may include conditional 

paths, the current process depends on teams encountering 

issue(s) using their discretion to either (a) fix the issue(s), or 

(b) terminate the process. This industrial analytics process is 

used to structure the following case study, which focuses on 

the application of the industrial analytics methodology to 

identify operating issues in a large-scale industrial AHU.  

4. CASE STUDY 

This case study applies the industrial analytics methodology 

to an issue identification scenario in a large-scale 

manufacturing facility in Cork, Ireland. The objective of the 

study was to evaluate the methodology, and implement 

technology components in the reference architecture to form 

an industrial analytics lifecycle. This required the use of 

several technologies and platforms, which were chosen at 

different points in the process. However, technology 

decisions described in this study should not be considered a 

prescribed technical implementation. Indeed, changes in the 

manufacturing environment, available resources, or 

engineering application, may have resulted in completely 

different implementation decisions.  

4.1. Step 1 – Operational Question 

The operational question of this study focuses on issue 

identification in large-scale industrial Air Handling Units 

(AHU’s). Given the facility used in this study is subject to 

regulation and quality control, the analysis did not include 

AHU’s subject to quality assessment and validation. The 

rationale for choosing AHU issue identification as the 

operational question is provided below; 

 The study’s purpose is to demonstrate and validate 

the industrial analytics methodology. Therefore, 

operational questions should avoid potential 

impediments, such as restricted access stemming 

from quality policies or procedures. 

 Although the potential impact of the question is not 

central to this study, it should be a real operating 

problem that can be solved within the scope of the 

study, while providing the opportunity for further 

investigation. 

 Given the proposed methodology demands diverse 

skills and knowledge to execute an industrial 

analytics lifecycle, the operational question should 

align with the skills and knowledge of the authors. 

Once issue identification for AHU’s was agreed as the 

guiding operational question, the next step was to identify a 

repository of AHU data that could be used to build a data-

driven model.  

4.2. Step 2 – Historical Data 

Component-level sensors in AHU’s may be used to predict 

system health and energy inefficiencies. Examples of such 

measurements include mechanical component positions, 

temperature, and airflow. These measurements are typically 

Step 6 - Operationalize Model 
Embedded Analytics Team 

Operationalize the validated model in the factory to  
enable  real-time data-driven decision-making. 

Step 5 - Model Building 
Data Analytics Team 

Access analytics-ready data and begin the process of  
building a model to answer the question. 

Step 4 - Data Preparation 
Information Technology Team 

Process, transform and clean ingested data to produce  
an analytics-ready dataset. 

Step 3 - Data Ingestion 
Operation and/or Information Technology Team 

Setup or amend data ingestion in the factory to acquire  
historical data from the relevant repository. 

Step 2 - Historical Data 
Operation Technology Team 

Check if historical data is available and accessible to answer  
the questions using data-driven methods. 

Step 1 - Operational Question 
Operation Technology or Embedded Analytics Team 

Identify an operational question/objective that may have  
an impact on a particular aspect of operations 
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transmitted in real-time across automation and control 

networks, while they may also be periodically archived as 

disk-based repositories. In this study, an on-premises Cylon 

Building Management System (BMS) was identified as the 

main source of energy data. Automatic archiving of this data 

executed at 5AM each day. During the archival process, 

CSV log files were appended with data from the previous 

24-hour period, with each file containing historical 

measurements for a single sensor. Brief investigations of 

other on-premises BMS’s confirmed that archival processes 

across vendors are similar, but log file formats and data 

models output from these processes varied significantly.  

The identified Cylon BMS archive was explored to confirm 

the availability of AHU data, as well as compiling metadata 

to characterize the archive. Firstly, we randomly chose three 

AHU’s to investigate. Of those units, we decided to use the 

AHU with the most historical data as the subject for analysis 

in this study. This unit was labeled AHU9 and provided 

access to 4 years of 15-minute measurements. Secondly, the 

BMS archive was analyzed to produce metadata from the 

archive’s data properties. The archive consumed 1.06 GB of 

disk space on the BMS PC. This consisted of 838 log files, 

with each storing historical measurements for a single 

sensor. The timespan of measurements in each file ranged 

from a couple of months to 4 years. The largest file in the 

archive measured 13 MB, while the smallest file measured a 

mere 1 KB. Approximately 5% of all log files were larger 

than 5 MB, which loosely represented files with 4 years of 

data. Log files smaller than 1 MB were indicative of (a) new 

sensors that recently began archiving, or (b) legacy sensors 

where archiving was disabled. However, file size could not 

be used to accurately predict the range of measurements in a 

log file. For example, two log files measuring 5MB and 

12MB may contain the same date ranges and measurement 

resolutions, but the latter may contain higher precision 

readings, which simply consumes more Bytes on disk.  

The identification and verification of historical AHU data to 

support issue identification analysis was completed in this 

step. The next step focused on the development of a data 

ingestion process that integrated this historical data in a 

centrally accessible cloud-based repository. 

4.3. Step 3 - Data Ingestion 

Amazon Web Services (AWS) was chosen as the cloud 

platform to host Information Technology components. Of 

those components, the data lake was initially required to 

support data ingestion. The data lake was implemented 

using the Simple Storage Service (S3), which provided 

scalable and fault tolerant file storage, while providing an 

Application Programming Interface (API) for factory-to-

cloud communication. This API was integrated with a 

purpose-built data ingestion application written in C# .NET 

to continuously stream energy data to the data lake.  

The ingestion process was tested on different computers and 

networks to reduce potential technology biases (e.g. high 

bandwidth). First, the process was executed on a 

development PC with diagnostic tools enabled to monitor 

resource usage. The development PC specification included 

an Intel Core i5-4380U CPU @ 2.80GHz processor, 4 GB 

memory, and 200 GB solid-state hard drive, running on 

Windows 8.1 Enterprise. Bandwidth availability was 

measured at 40Mbps download and 10Mbps upload. Figure 

5 and Figure 6 show CPU and Memory profiles recorded 

during execution. Both profiles demonstrate utilization was 

low relative to available compute resources, with the 

process execution time taking approximately 11 minutes. 

Second, after testing, validating and profiling the process in 

the development environment, the application was deployed 

to the BMS PC in the factory. The BMS PC specification 

included an Intel Core 2 Duo E8400 @ 3.00GHz, 2GB 

memory, 500GB hard drive, running on Windows XP 

Professional with Service Pack 3. Bandwidth availability 

was measured at 55Mbps download and 4Mbps upload. The 

execution time of the process in the facility was 

approximately 39 minutes. Given diagnostic tools were not 

available on the BMS PC, execution time was derived 

programmatically by recording start and finish times. 

 

Figure 5. CPU profile for BMS archive ingestion 

 

Figure 6. Memory profile for BMS archive ingestion 

Given the satisfactory performance of the data ingestion 

application during testing, the application was setup as a 

scheduled task to execute at 9AM each day on the BMS PC. 

This provided the existing BMS archival process with a 4-

hour window to collect the previous days data, and refresh 

its data archive. When triggered by the scheduled task, the 

ingestion application read an XML-based configuration file 

to acquire endpoints and credentials for the data lake, as 

well as constructing contextual tags to label data (e.g. 

energy data from Site N). Figure 7 presents a screenshot of 

the configuration parameters used to ingest energy data, 

while Table 3 provides a summary of these parameters. 
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Figure 7. Configuration for BMS archive ingestion 

Parameter Description 

directoryOfLogs Local or network directory path that 

contains the log files. 

accessKey First part of an AWS credential that 

identifies the facility from which data is 

being ingested. 

secretKey Second part of an AWS credential that 

identifies the facility from which data is 

being ingested. 

bucketName Static label to name the industrial 

analytics platform. 

siteName Human-readable name of the facility 

from which data is being ingested - this 

forms part of a contextual tag for 

identifying datasets. 

datasetName Human-readable name of the dataset 

being ingested – this forms part of a 

contextual tag for identifying datasets. 

parameterList Limits ingestion to the listed files. 

fileType Limits ingestion to a particular file type. 

queueUrl Specifies the Information Technology 

endpoint for transmitting data.  

Table 3. Data ingestion configuration parameters 

4.4. Step 4 – Data Processing 

Given the availability of energy data in the data lake, Simple 

Queue Services (SQS) was used to orchestrate data 

processing across workflows using a publish/subscribe 

pattern, with ElasticBeanstalk used to host individual 

processing modules in each workflow. The processing 

instructions for each workflow were stored in SQL 

Relational Database Service (RDS) to control execution, 

while each cloud-based service was configured with auto-

scaling capabilities to support on-demand acquisition of 

compute resources for large-scale processing. Figure 8 

illustrates the database schema used to configure workflows 

and components. This schema illustrates Workflows are 

comprised of multiple stages, with each stage connected to 

Processors (i.e. processing modules) that represent the type 

of data manipulation to be performed. 

 

Figure 8. Database schema for workflow management 

Figure 9 illustrates the publish/subscribe processing pattern 

for the AHU workflow. Each stage in the workflow is 

associated with a (a) message queue to receive instructions, 

(b) background data processing module, and (c) storage 

repository to persist output. Figure 10 illustrates processing 

modules implemented in this study, and their relationship to 

the processing taxonomy from the methodology. These 

processing modules are summarized in Table 4.  

Type Name Description 

Parser cylon-log Transforms Cylon log files to a 

basic time-series format with 

timestamp and value. 

Mapper ahu-points Renames the auto-generated 

filenames using a convention 

for AHU instrumentation. 

Aggregator time-series Merges log files for AHU 

instrumentation and writes 

contents to a single file. 

Mutator ahu-mode Derives the AHU’s operational 

mode for each instance. 

Mutator ahu- delta Derives temperature differences 

across heating and cooling coils 

and appends the new data to the 

existing data set.  

Mutator ahu-labels Appends a classification label 

for AHU diagnoses to enable 

the data set to be used as 

training data for models. 

Table 4. Implemented AHU workflow modules 
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Figure 9. Implemented AHU workflow 

 

Figure 10. Taxonomy of processing modules in workflow 
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Figure 11 shows the native form of BMS energy data 

transmitted to the data lake. This format is not analytics-

ready given peculiarities in its structure. Firstly, header 

information on the first row provides metadata about the log 

file, such as the measurement type and interval (i.e. 900 

seconds), rather than variables or features. Secondly, the 

structure is primarily designed to provide compact data 

redundancy for operational data, with each row containing 

data for the previous 10 days. Column A contains 

timestamps for the first measurement of each row, which is 

contained in Column C. For example, the first value on the 

second row has a timestamp of 14/04/12 17:30, with a 

corresponding measurement of 23.02. Timestamps for each 

measurement after Column C must be manually derived by 

incrementally adding 15-minute values to the first 

timestamp (i.e. from Column A). Column B specifies the 

number of measurements on each row, starting from 

Column C (i.e. first value). Although 1024 measurements 

are specified for each row in the screenshot, logging issues 

or outages can affect the number of measurements archived. 

Given a measurement frequency of 900 seconds (i.e. 15 

minutes), each row of 1024 measurements should contain 10 

days of data, which means adjacent rows overlap with 9 

days of redundant data. Each row in the screenshot shows 

data logging at the same time every 24 hours (i.e. 5:30pm), 

but it was common for this pattern to shift without warning, 

which meant several control checks were needed to ensure 

timestamps and measurements were parsed correctly.  

 

Figure 11. Ingested log file for AHU return air temperature 

The first two stages in the AHU workflow transformed the 

Cylon BMS format to a basic time-series. Figure 12 shows 

the data output after cylon-log (stage 1 processing module) 

and ahu-points (stage 2 processing module) were applied. 

This shows data redundancy has been removed, with each 

row associated with a single observation (i.e. point-in-time), 

and each column representing a single measurement. The 

normalization of BMS data provided subsequent processing 

modules with a more conventional format upon which to 

execute data transformations. 

 

Figure 12. AHU return air temperature after cylon-log 

Figure 13 shows the output from stage 3, where individual 

sensor logs for AHU9 were merged to a tidy dataset. This 

dataset represents a single entity (i.e. AHU9), with each row 

containing a single observation (i.e. point-in-time), and each 

column containing a single measurement (e.g. return air 

temperature). The availability of such formats can greatly 

reduce the data wrangling and pre-processing effort 

associated with data analytics. Table 5 provides a summary 

of the AHU naming convention used to label columns. 

 

Figure 13. AHU log file after time-series merge
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Section Measurement Convention 

Return air Temperature [°C] retT 

Return air Humidity [%] retH 

Return air Enthalpy [kJ/kg] retE 

Return air CO2 [ppm] retC 

Return air VSD [%] retVSD 

Return air Flow [m3/s] retF 

Return air Motor power [kW] retM 

Return air Damp. Position  [%op] detD 

Exhaust air Damp. Position  [%op] exhD 

Outside air Temperature [°C] out 

Outside air Temperature  2[°C] outT2 

Outside air Humidity [%] outH 

Outside air Humidity  2[%] outH2 

Outside air Enthalpy [kJ/kg] outE 

Outside air Enthalpy 2 [kJ/kg] outE2 

Outside air Damp. Position [%op] outD 

Frost coil Supply water [°C] froS 

Frost coil Return water [°C] froR 

Frost coil Valve position [%op] froV 

Frost coil Off coil air [°C] froT 

Mixed air Temperature [°C] mixT 

Mixed air Humidity [%] mixH 

Mixed air Enthalpy [J/kg] mixE 

Heating coil Supply water [°C] heaS 

Heating coil Return water [°C] hear 

Heating coil Valve position.[%op] heaV 

Heating coil Off coil air [°C] heaT 

Cooling coil Supply water [°C] cooS 

Cooling coil Return water [°C] cooR 

Cooling coil Valve position.[%op] cooV 

Cooling coil Off coil air [°C] cooT 

Humidification Temperature [°C] humT 

Humidification Humidity [%] humH 

Humidification Dew-point [°C] humDew 

Humidification Status [1/0] humSta 

Humidification Valve position. [%op] humV 

Reheat coil Supply water [°C] rehS 

Reheat coil Return water [°C] rehR 

Reheat coil Valve position. [%op] rehV 

Reheat coil Off coil air temperature[°C] rehT 

Supply air Temperature [°C] supT 

Supply air Humidity [%] supH 

Supply air Enthalpy [kJ/kg] supE 

Supply air CO2 [ppm] supC 

Supply air VSD [%] supVSD 

Supply air Flow [m3/s] supF 

Supply air Motor power [kW] supM 

Supply air Pressure [Pa] Sup 

Zone Temperature [°C] zonT 

Zone Humidity [%] zonH 

Zone CO2 [ppm] zonC 

Table 5. AHU conventions (Bruton et al., 2014) 

Figure 14 shows new variables appended to the AHU 

dataset after the execution of ahu-mode and ahu-delta 

processing modules. The mode variable refers to the current 

operating mode of the AHU. These operating modes are 

classified in Table 5, while Figure 15 illustrates the logical 

transition from heating to cooling modes. The appended 

delta variables refer to temperature differentials between the 

off-coil heating (heaT) and cooling (cooT) temperatures, 

and the units mixing box (mixT). While mode may indicate 

the system-level state (e.g. heating or cooling), deltaCooT 

and deltaHeaT can infer component-level state. Comparing 

these measurements for state consistency may indicate 

potential operating issues. 

 

Figure 14. AHU log file after ahu-mode and ahu-delta
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Name Description 

Mode 1 Heating with Minimum Outside Air 

Mode 2 Modulation of Fresh air with Return 

air with no heating or cooling 

Mode 3 Maximum outside air with Cooling 

Mode 4 Minimum outside air with Cooling 

Table 6. AHU modes of operation 

 

Figure 15. AHU control sequence and modes 

The data processing logic for deriving operating modes, off-

coil delta temperatures and diagnostic classifications are 

based on engineering first principles presented in previous 

research (Bruton et al., 2014).  

4.5. Step 5 – Model Building 

The AHU workflow output an analytics-ready dataset to 

support the development of a data-driven model. This 

dataset was used to profile heating and cooling operations in 

the unit, develop a Support Vector Machine (SVM) 

(Jedliński & Jonak, 2015) for heating coil issues, and create 

a deployable model using PMML. The RStudio integrated 

development environment for statistical analysis, modelling 

and visualization, was used for analytics activities. These 

activities leveraged several R packages, including GGPlot2 

and base R library for time-series visualization, TidyR for 

data wrangling, Dplyr for data manipulation, E1071 for 

building an SVM model, and PMML for encoding the 

model, while data acquisition from the AHU workflow was 

implemented using HTTP GET requests, with site, workflow 

and stage parameters used to identify the dataset.  

The process began with an initial data exploration of the 

AHU’s operating trends. Figure 16 profiles deltaHeaT (red) 

and deltaCooT (blue) measurements from the AHU dataset. 

These measurements show temperature differences between 

off-coil heating and cooling sensors, and the units mixing 

box, over a 4 year period. The analysis showed the unit 

predominantly focused on cooling, with a consistent cycle 

visible throughout the time-series. In contrast, heating 

patterns showed inconsistent and sporadic spikes, with some 

persistent heating visible 75% of the way through the time-

series. While sudden surges of heating or cooling may be 

caused by control/mode changes, consistently high/low 

readings may indicate an underlying issue. 

A couple of observations were identified in the delta 

temperature profiles for further investigation. First, we 

investigated the AHU’s usage in the facility due to the 

strong cooling pattern. Given Ireland’s moderate climate 

such patterns would not be expected. However, after 

presenting this pattern to operational staff, we discovered 

the unit services the factory floor. Therefore, given the 

residual heat generated from equipment, the unit (i.e. 

AHU9) is continually cooling the space. Second, the delta 

heating pattern was unaffected when there was strong 

cooling, but cooling patterns were affected by heating 

surges. After discussions with maintenance personnel, we 

discovered this pattern occurred due to the heating sensor 

being positioned before the cooling sensor (i.e. air is cooled 

after passing the heating sensor). Third, given the AHU 

predominantly operates in cooling mode, identifying issues 

with cooling components may be difficult.  

 

Figure 16. Delta temperature off-coil heating and cooling  

Correlation analysis was undertaken to identify relationships 

in the AHU dataset, with the intention of informing feature 

selection, which was predominantly based on the subject 

matter expertise of the researchers. A correlation describes 

the relationship between two measurements, which may be 

either positive or negative. Positive correlations occur when 

one variable increases or decreases, in response to an 

increase or decrease in the other. Negative correlations 

occur when one variable increases, in response to a decrease 

in the other, or vice versa.  

Figure 17 shows the correlation matrix created from the 

AHU dataset. The relationships of interest were those which 

correlated with heating and cooling. Without considering 

special circumstances, engineering first principles indicate 

deltaHeaT deltaCooT 
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correlations should exist between outside temperature 

(outT), heating (deltaHeaT) and cooling (deltaCooT). While 

outside temperature (outT) was correlated with deltaCooT, it 

had no correlation with deltaHeaT. In this instance, the poor 

correlation between outside temperature and heating can be 

attributed to the AHU’s role, which is to continually cool 

the production space, meaning heating components are less 

likely to be engaged in response to outside temperature 

changes. Several other negative and positive correlations 

were associated with deltaCooT, all of which were assessed 

and validated using subject matter expertise.  

 

Figure 17. AHU measurement correlation matrix 

Given the strong correlation between outside air temperature 

(outT) and off-coil cooling delta temperature (deltaCooT), 

time-series analysis was used to visualize how cooling 

patterns modulated in response to outside temperature. 

Given this analysis focused on the visualization of the units 

cooling patterns, measurements associated with AHU mode 

1 (i.e. heating) were removed. Figure 18 shows outT (green) 

and deltaCooT (blue) measurements in a time-series. The 

pattern shows increases in outside temperature trigger the 

unit to increase cooling. Similarly, decreases in outside 

temperature trigger the unit to decrease cooling. This 

system-level health check of the AHU’s cooling operation 

did not identify any obvious issues.  

Figure 18. Outside air and off-coil cooling delta temperature 

The original delta temperature profile in Figure 16 displayed 

unusual heating behavior 75% of the way through the time-

series. Based on existing knowledge and subject matter 

expertise, AHU’s that are in heating mode (i.e. mode 1), and 

have a delta heating measurement of one degree or more, 

may be indicative of component-level issues. Therefore, the 

previously identified heating surge warranted further 

investigation. Before additional analysis was undertaken, 

measurements recorded while the unit was in heating mode 

(i.e. mode 1) were removed, so any heating surges could be 

considered a conflict with the AHU’s system-level mode. 

Figure 19 illustrates the time-series for deltaHeaT with a 10 

day rolling average applied to reduce noise. Similar to the 

original temperature profile, there is a sustained surge in 

heating at 75-80% of the way through the time-series. Error 

thresholds of plus and minus one degree were added to 

visualize normal operation of the heating component. Given 

the existence of data characterizing a heating component 

issue, the next step was to train and encode a data-driven 

model, which could later be deployed in the factory to 

identify these issues in real-time. 

outT deltaCooT 
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Figure 19. Delta off-coil heating 10 day moving average 

The original dataset of AHU measurements contained 

126,487 records at 15 minute resolution. Given most 

measurements were not examples of heating component 

issues, a random filtering process was applied to produce 

18,979 training examples, and 8,135 test examples. Each of 

these datasets contained a 70/30 split of examples with and 

without heating component issues. This redistribution was 

applied to increase the strength of the issue signal, with the 

expectation that relevant training data would improve the 

prediction performance of the model. Given the prior 

experience and skillset of the authors, a Support Vector 

Machine (SVM) was chosen to build a binary classification 

model for heating component issue identification, which 

was implemented using the E1071 package in R. To reduce 

the hypothesis search space, dimensionality reduction was 

applied to training and test datasets using engineering first 

principles, with some verification and validation from the 

correlation matrix. This resulted in the final training and test 

datasets consisting solely of temperature measurements, 

which was consistent with other analysis undertaken during 

this study (e.g. using delta temperature measurements for 

assessing AHU operation). 

Figure 21 shows a screenshot of the confusion matrix 

generated for the SVM model. This conveys the predictive 

performance of the model, which was determined using the 

available test data. The model predicted there were no issues 

with 6,019 of the examples. Of these predictions, it correctly 

asserted no issue 5,927 times, and incorrectly asserted no 

issue 92 times. Therefore, the model correctly predicted 

there were no heating issues in 98% of examples. In 

addition, the model predicted there were issues in 2,116 of 

examples. These predictions were correct for 2,043 

examples, and incorrect for 73 examples, which means the 

model correctly predicted a heating issue in 97% of 

examples. The high prediction accuracy may be attributed to 

large quantities of training data containing examples of the 

heating issue, while the concept to be learned was simplified 

by (a) restricting features to temperature measurements, and 

(b) limiting prediction to binary classification.  

 

Figure 20. SVM model performance confusion matrix 

Operationalizing data-driven models in real-time enterprise 

environments traditionally requires models to be interpreted 

and coded using an imperative programming language, such 

as C++ or Java. However, PMML is an emerging XML-

based standard that describes predictive models, which may 

be interpreted and executed using compliant predictive 

scoring engines. This facilitates model development using 

different statistical tools and applications, while also 

ensuring these models are accessible to embedded 

applications in the factory. Figure 21 shows the heating 

component issue identification SVM model encoded as 

PMML. This markup was generated using the PMML 

package in R, which supports the automatic encoding of 

models built using the E1071 package. To make this model 

accessible to applications in the factory, the PMML file was 

published to S3 and assigned a unique URL. 

 

Figure 21. PMML encoded predictive model 

deltaHeaT 
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4.6. Step 6 – Operationalize Model 

To enable real-time monitoring of heating components, a 

PMML compliant predictive scoring engine was setup on 

the cloud. This served as an endpoint for embedded 

applications in the factory to transmit real-time operational 

data using web services, and receive notifications of heating 

component issues. The scoring engine used during this 

study was OpenScoring (GitHub, 2016), which is a Java-

based engine available under the GNU Affero General 

Public License (APGL). This engine was deployed on an 

Amazon EC2 compute instance, and configured to use the 

PMML-encoded SVM model residing on S3. 

Figure 22 illustrates the sequential interactions of the real-

time monitoring process. First, an embedded application on 

a networked computer polls the relevant PLC to retrieve the 

AHU’s current operating measurements. Second, these 

measurements are transmitted to the OpenScoring web 

service to serve as input for the issue identification model. 

Third, the scoring engine retrieves the PMML-encoded 

SVM model from S3, and predicts whether an issue exists 

from the input data provided. Finally, the scoring engine 

returns a result to the embedded application with zero-or-

more issues (i.e. empty array indicates no issues). These 

interactions could be extended to include other systems and 

processes, such as the propagation of identified faults to 

maintenance and health monitoring systems, but these were 

not of primary importance to this study. 

 

Figure 22 Sequence diagram for embedded operations 

Given the exploratory nature of this research, an OPC 

simulator (MatrikonOPC, 2016) was used as a surrogate for 

production PLC’s to avoid any potential interference with 

factory operations. The simulator was deployed on the BMS 

PC and configured to use the AHU conventions presented in 

Table 5. This simulator was polled at 60 second intervals by 

a C# .NET background application to acquire current 

operating measurements, which were transmitted to the 

OpenScoring engine for evaluation. Where the scoring 

engine response included an identified issue, the 

background application recorded the timestamp and all 

sensor measurements for that point in time, as well as the 

identified issue (i.e. heating component). The background 

application was programmed to terminate after logging 20 

issues to enable engineers on-site to manually evaluate the 

predictions. This manual evaluation process was undertaken 

over a 7 day period, where 140 predictions were logged by 

the background application, with 100% of these predictions 

determined as correct, based on engineering first principles 

relating to AHU diagnostics (Bruton et al., 2014).  

5. DISCUSSION 

The following section discusses findings from the case 

study. These findings are discussed in the context of the 

roles and responsibilities from the industrial analytics 

methodology. These roles are (1) Data Integration and 

Management, and (2) Model Building and Deployment. 

5.1. Data Integration and Management 

Data ingestion was implemented and tested on two different 

computing environments. In both cases, ingesting the BMS 

archive of 838 log files, with up to 4 years of data, took 

between 10 and 39 minutes. Differences in these execution 

times were broadly attributed to differing hardware 

specifications (e.g. solid state drive and greater processing 

power), active background processes, and available upload 

bandwidth. However, these findings demonstrated the 

impact technologies and infrastructure may have on factory-

to-cloud data integration. 

Enterprise development technologies (e.g. C# .NET, J2EE 

etc.) were used for data ingestion. Given the adequate 

performance of the ingestion process, there does not appear 

to be an immediate need to investigate other tools, such as 

those associated with Big Data. Results indicated hardware 

specification and bandwidth impacted ingestion execution 

time, with a mid-range development PC completing the 

process three times faster than an older BMS PC. However, 

as facilities progress towards smart manufacturing, an 

increase in sensing technologies, coupled with an increase in 

measurement resolution, will inevitably place more stress on 

ingestion processes. To address these scaling and 

performance challenges, ingestion processes may (a) 

horizontally scale by deploying processes across multiple 

computers, (b) vertically scale by increasing hardware 

specification, (c) increase upload bandwidth capacity, or (d) 

optimize multithreading to leverage parallelism. 

The energy data collected from the factory highlighted 

potential peculiarities in proprietary data sources. Such data 

is not analytics-ready and requires complex processing to 

present it in a useful form. While ad hoc scripts could have 

been used to reshape the energy data, without formal 

processes to create, share and reuse these workflows, there 

is an inherent risk of duplicating time-consuming data 

processing tasks. Given data cleaning and transformation 

consumes much of the effort in analytics projects, while 

providing the lowest immediate value, facilities developing 

industrial analytics capabilities for smart manufacturing 
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should develop formal methods and architectures to 

standardize and automate these processes.  

The implementation of a formal multistage workflow for 

preparing industrial time-series data was presented in this 

research. This workflow used scalable and interchangeable 

cloud-based data processing modules to transform AHU 

data to an analytics-ready state. In addition, the multistage 

aspect of the workflow demonstrated how exposing outputs 

at each processing stage may facilitate reusability, while 

potentially reducing duplicated effort. Such an approach 

contrasts with input/output workflows, whereby stepwise 

transformations are encapsulated and inaccessible post-

execution. To illustrate the reuse potential of the multistage 

workflow, consider a scenario where a workflow is designed 

to output AHU data as a daily average for an analytics 

project. In the future, another analytics project needs access 

to the same data but at its original resolution (e.g. 15 minute 

intervals). Where outputs from multistage workflows are 

accessible, the original data may be acquired from an earlier 

stage in the existing workflow, without undertaking 

additional data integration and cleaning.  

5.2. Model Building and Deployment 

Turnkey analytics was demonstrated using a simple issue 

identification scenario for AHU heating components. Data 

exploration and modeling activities were undertaken using 

RStudio, with HTTP used to acquire analytics-ready data 

from the AHU workflow, which served to reduce common 

data processing overheads. Where similar data management 

and governance strategies do not facilitate seamless 

analytics pipelines, data processing overheads are likely to 

impede analytics outputs and productivity. The analytics-

ready AHU data from the workflow was used to train an 

SVM model to identify heating component issues, and 

encoded using XML-based PMML markup to promote 

interoperability and enable model deployment. While 

discussions regarding standards are prevalent in Operation 

and Information Technology, this research also highlights 

the importance and usefulness of open non-proprietary 

standards in analytics pipelines and processes.  

Operationalizing and embedding analytics is central to smart 

manufacturing. While data analytics and business 

intelligence activities can derive useful insights, their true 

impact may not be known until they can affect real-time 

decision-making in the factory. Therefore, facilities should 

appreciate the differences between model development and 

deployment, and data architectures that support both use 

cases (i.e. industrial analytics lifecycle). Model deployment 

in this research used a cloud-based scoring engine, which 

linked to the previous created PMML model. This real-time 

deployment was demonstrated using a purpose-built 

background application, which continuously acquired AHU 

measurements from an OPC simulator, and collaborated 

with the PMML compliant scoring engine to determine the 

AHU state. The issues identified by the embedded analytics 

application over a 7 day period were manually evaluated by 

engineers to ensure the technical integrity of the 

implementation, comprising real-time factory-to-cloud data 

exchange, and execution of the issue identification 

predictive model.  

6. CONCLUSIONS 

Data-driven operations for smart manufacturing are highly 

dependent on the availability of industrial analytics 

capabilities. However, developing these capabilities can be 

challenging due to the lack of formal and systematic 

approaches that inform their development. While ad hoc 

strategies can deliver some benefits, they may also exhibit 

duplicated effort and inefficient execution, resulting in less 

impact on operational performance. Industrial analytics is a 

multi-faceted topic that encompasses aspects of operation 

technology, information technology, statistics, engineering, 

and informatics. Given the multidisciplinary nature of 

industrial analytics, coupled with the diverse technologies 

and standards that may exist from factory-to-factory, highly 

prescriptive industrial analytics methodologies and 

frameworks are not plausible. Instead, facilities should use 

formal methodologies to support the development of 

industrial analytics lifecycles, which facilitate the 

operationalization of analytics models in the factory, while 

using technologies and standards aligned with their 

resources and environment.  

Thus, an industrial analytics methodology for developing 

industrial analytics capabilities was presented in this 

research. The methodology provides formal heuristics for 

developing teams, architectures and processes that form an 

industrial analytics lifecycle, while illustrating the 

technology convergences that occur. This methodology was 

demonstrated and validated using a case study focusing on a 

real-world issue identification scenario. The findings and 

observations compiled during the study highlighted several 

important points. Firstly, while analytics models deliver 

operational insights, robust and scalable information and 

data architectures are needed to support their development 

and deployment. Secondly, given the technology and 

analytics convergences that occur in the industrial analytics 

lifecycle, there is a significant need to adopt standards that 

facilitate interoperability and integration. Finally, industrial 

analytics can be delineated from traditional data analytics by 

the emphasis placed on affecting real-time decision-making 

in the factory. Where analytics outputs are not embedded in 

factory operations, the return on investment from analytics 

initiatives may be diminished.  
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APPENDIX A 

Abbreviation Description 

AHU Air Handling Unit 

AWS  Amazon Web Services 

BMS Building Management System 

CPS Cyber Physical Systems 

EC2 Elastic Cloud Compute 

HTTP Hypertext Transfer Protocol 

IT Information Technology 

OPC OLE Process Control 

OT Operation Technology 

PC Personal Computer 

PLC Programmable Logic Controller 

PMML Predictive Modeling Markup Language 

REST Representational State Transfer 

S3 Simple Storage Service 

SOA Service Oriented Architecture 

SOAP Simple Object Access Protocol 

SQS Simple Queue Service 

SVM Support Vector Machine 

 


