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ABSTRACT

The Adaptive Multi-scale Prognostics and Health Manage-
ment (AM-PHM) is a methodology designed to enable PHM
in smart manufacturing systems. In application, PHM in-
formation is not yet fully utilized in higher-level decision-
making in manufacturing systems. AM-PHM leverages and
integrates lower-level PHM information such as from a ma-
chine or component with hierarchical relationships across the
component, machine, work cell and assembly line levels in
a manufacturing system. The AM-PHM methodology en-
ables the creation of actionable prognostic and diagnostic in-
telligence up and down the manufacturing process hierarchy.
Decisions are then made with the knowledge of the current
and projected health state of the system at decision points
along the nodes of the hierarchical structure. To overcome
the issue of exponential explosion of complexity associated
with describing a large manufacturing system, the AM-PHM
methodology takes a hierarchical Markov Decision Process
(MDP) approach into describing the system and solving for
an optimized policy. A description of the AM-PHM method-
ology is followed by a simulated industry-inspired example
to demonstrate the effectiveness of AM-PHM.

1. INTRODUCTION

In manufacturing, prognostics and health management (PHM)
is growing as an alternative to reactive or fixed-interval poli-
cies for machine maintenance and replacement. Manufactur-
ing PHM diagnostic and prognostic model leverages sensor
data to estimate the health states of machines and their com-
ponents, with these estimates often being expressed in terms
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of remaining useful life (RUL) (Lee et al., 2014). Health es-
timates are then the basis for deciding when to perform ma-
chine maintenance or replacement, so as to optimize costs
and improve performance through the reduction of unplanned
breakdowns. Such decision systems are adequate for use in
legacy manufacturing environments in which operational pro-
files – such as machine cutting speeds, work cell production
rate, and production line balance – are fixed or defined over
narrow bands.

With the manufacturing world seeing an increase in automa-
tion and a greater inclusion of machines and robots within
various processes (Marvel, 2014), global manufacturing ini-
tiatives are emphasizing the development and integration of
smart manufacturing technologies. The smart manufacturing
paradigm, which is seen as key to maintaining economic sta-
bility within an increasingly competitive global market (Holdren,
2011), includes sensing, communication, and computing sys-
tems that can support more dynamic control of operational
profiles than is seen in traditional environments (Davis, Edgar,
Porter, Bernaden, & Sarli, 2012). One may envision that
next-generation PHM systems for smart manufacturing en-
vironments will use health estimates to inform control, main-
tenance, and replacement decisions based upon operational
profiles.

Compared to traditional environments, smart manufacturing
systems can be rapidly reconfigured to produce a new prod-
uct, implement a new process, or take advantage of tech-
nological advancements in equipment. PHM decision sys-
tems to support smart manufacturing should share this agility
by recomputing control policies on time scales that match
the rate of change of the factory. The clear implication is
that next-generation manufacturing PHM systems cannot be
driven by historical observations of the production process
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alone, as the process will likely change before a model can be
developed and leveraged.

In the manufacturing PHM literature, there is a notable ab-
sence of methodologies to support agile and flexible PHM
systems in smart manufacturing environments (Peng, Dong,
& Zuo, 2010). Additionally, the literature on manufacturing
control does not address the use of health information in op-
erational decisions beyond machine inspection, maintenance,
and replacement (Choo, Beling, LaViers, Marvel, & Weiss,
2015). To address these gaps, we propose a methodology
termed Adaptive Multi-scale PHM (AM-PHM). AM-PHM is
characterized by its incorporation of multi-level, hierarchical
relationships and PHM information gathered from a manu-
facturing system. AM-PHM utilizes diagnostic and prognos-
tic information regarding the current health of the system and
constituent components, and propagates it up the hierarchical
structure. By doing so, the AM-PHM methodology creates
actionable prognostic and diagnostic intelligence along the
manufacturing process hierarchy. The AM-PHM methodol-
ogy allows for more intelligent decision-making to increase
efficiency, performance, safety, reliability, and maintainabil-
ity.

AM-PHM, at a given level along the system hierarchy, re-
ceives operational directives and other constraints from the
higher-level node. These operational directives and constraints
describe the production goals under consideration by the de-
cision makers (e.g., supervisors or planners) at the higher
level. Based on the current health of the subsystems the de-
cision maker (e.g., operators or control units) simulates the
outcome of operating under several different modes of oper-
ation or operational profiles. The action that best fits the op-
erational directive and constraints is selected. The expected
results of the decision and the health state of the current node
are reported to the higher-level node.

This paper takes a first step in demonstrating that the trade-
offs associated with PHM based decision making can be ap-
propriately represented in a MDP framework. The contri-
butions include a formulation of the AM-PHM methodology
and a demonstration of the methodology on a simple exam-
ple.

The remainder of the paper is organized as follows. Sec-
tion 2 examines the current state of PHM capabilities and
standards in manufacturing. Section 3 presents the concept
of AM-PHM methodology. Section 4 includes the proposed
AM-PHM features for describing the health state of systems
in a hierarchical MDP framework and discusses example im-
plementation of the AM-PHM methodology as applied to an
industry inspired example work cell to show the effectiveness
of the AM-PHM methodology. Section 5 concludes the paper
by highlighting the significance of AM-PHM in manufactur-
ing.

2. CURRENT STATE OF PHM IN SMART MANUFACTUR-
ING

PHM is categorized into product PHM and process PHM de-
pending on the nature of the system being monitored (Vogl,
Weiss, & Donmez, 2014). Product PHM provides health mon-
itoring, diagnostics, and/or prognostics for a finished system,
such as an automobile, aircraft, or power generation station.
Process PHM, on the other hand, provides health monitoring,
diagnostics, and/or prognostics to a system that integrates one
or more pieces of equipment to complete a task, such as in
assembly processes, welding processes, and machining pro-
cesses. The proposed methodology in this study develops a
decision system for process PHM specifically for hierarchi-
cally structured manufacturing environments. However, the
presented ideas and methodology could be extended to prod-
uct PHM and other environments in future research.

Diagnostics, estimating the current health state of a system,
and prognostics, estimating the future health state of a sys-
tem, are essential for any PHM system. There is a signifi-
cant amount of literature covering these subjects, including
general reviews (Jardine, Lin, & Banjevic, 2006; Lee et al.,
2014; Peng et al., 2010), method specific reviews (Si, Wang,
Hu, & Zhou, 2011), and industry specific reviews (Hameed,
Hong, Cho, Ahn, & Song, 2009; Lu, Li, Wu, & Yang, 2009;
Sikorska, Hodkiewicz, & Ma, 2011; Zhang & Lee, 2011).
However, these diagnostic and prognostic methods focus on
accurately predicting current health states or remaining useful
life (RUL), and do not address decision making in a sophisti-
cated manner. If maintenance and replacement decisions are
addressed in these studies, they are limited to a single action
once the system has reached a critical threshold, and/or the
scope is limited to a single machine or component.

Diagnostic and prognostic modeling occupies one region of
the literature, while a separate region addresses PHM deci-
sion systems for manufacturing environments. The goal of a
PHM decision system is to find maintenance and replacement
policies using current and future health states, where a policy
dictates actions given the health state or knowledge about the
future health state of a system. A majority of the PHM deci-
sion systems assume that the health state information is given
or can be found by inspecting the asset. Lam and Yeh (Lam
& Yeh, 1994) compare five maintenance policies for a deteri-
orating system when the state of the system can be identified
through inspection: failure replacement, age replacement, se-
quential inspection, periodic inspection, and continuous in-
spection. Grall et al. (Grall, Bérenguer, & Dieulle, 2002)
consider both the replacement threshold and the inspection
rate as decision variables. Both of these studies consider the
system a single unit without any sub-components.

Numerous studies investigate multi-component systems un-
der different assumptions about observing or estimating the
health state of components. Multi-component decision sys-
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tems often cluster or group maintenance activities under the
assumption that the components are economically dependent
(Bouvard, Artus, Berenguer, & Cocquempot, 2011). Dur-
ing group maintenance, several components are repaired at
once reducing overall cost. Shafiee and Finkelstien (Shafiee
& Finkelstein, 2015) propose an age-based group mainte-
nance policy on a multi-component system with two deci-
sions: either the component has degraded to the point of re-
placement and preventative maintenance is performed on all
components in the system, or the entire system undergoes
preventative maintenance at a given time even if none of the
system’s constituent components have worn to the point of
replacement. Van Horenbeek and Pintelon (Van Horenbeek
& Pintelon, 2013) propose a method for maintaining multi-
component systems where the current state is found through
inspection, and the RUL is then estimated based on the cur-
rent state. The proposed methodology in this study assumes
that the state information is available to the decision system.
However, AM-PHM could be easily adjusted to include in-
spection to gain state information.

There are several studies that implement decision making us-
ing diagnostic and prognostic estimations of the health state
(Montgomery, Lindquist, Garnero, Chevalier, & Jardine, 2006;
Wu, Tian, & Chen, 2013; Yam, Tse, Li, & Tu, 2001). These
studies consider the entire system as a whole with a single
estimate for the health of the system, and do not address the
fact that the system is composed of several sub-components
which influence the health state estimates. Jonge et al. (de
Jonge, Klingenberg, Teunter, & Tinga, 2016) combine the
idea of clustering maintenance for multi-component systems
with diagnostic monitoring of the component health states.

All of the previously referenced studies on PHM decision
system limit the scope of decision making to a single level.
Nguyen et al. (Nguyen, Do, & Grall, 2015) investigate a
multi-level decision-making maintenance policy, where the
two levels are the system level and the component level. Huynh
et al. (Huynh, Barros, & Berenguer, 2015) also develop a
multi-level maintenance policy for complex systems and use
a k-out-of-n:F deteriorating system where k components must
fail in order for the entire system to fail. Inspection reveals the
current state of the component, then RUL is estimated given
the current state. While these two studies expand decision
making to two levels, this is far from considering the entire
hierarchy of a manufacturing system when making mainte-
nance and replacement decisions. To the best of our knowl-
edge, there is no literature addressing PHM decision systems
for hierarchically structured manufacturing systems that con-
sider decisions multiple levels above the component level.

Markov decision processes (MDPs) are a widely used model
for decision making and have been applied to the mainte-
nance and replacement decision making process. An MDP
is composed of states, actions, and a reward signal, where

a reward is received for taking an action given a state: and
then the state evolves. In an MDP the next state of the sys-
tem is determined by the current state and action. The his-
tory as to how the current state has been reached does not
affect the system’s transition into the next state. Thus, an
MDP is an effective way of representing a manufacturing
system in which the next state of production or wear is de-
pendent upon the current state of production or wear and
the action taken. A detailed description of an MDP is pre-
sented in a later section. Amari et al. (Amari, McLaugh-
lin, & Pham, 2006) use an MDP for finding an optimized
policy for maintenance on a single diesel engine, and Ro-
belin and Madanat (Robelin & Madanat, 2007) apply MDPs
to bridge deck maintenance. Chan and Asgarpoor (Chan &
Asgarpoor, 2006), Tomasevicz and Asgarpoor (Tomasevicz
& Asgarpoor, 2009), and Chen and Trivedi (Chen & Trivedi,
2005) use semi-Markov decision processes for PHM decision
systems. A semi-Markov decision process is an extension
of an MDP where the duration spent in states is modeled.
Maillart (Maillart, 2006) explores partially observable MDPs
(POMDPs) as a non-specific PHM decision system, and Byon
et al. (Byon, Ntaimo, & Ding, 2010) and Byon and Ding
(Byon & Ding, 2010) both apply POMDPs to wind turbines.
POMDPs are another extension of MDPs where the state is
not observable, but signals correlated with the hidden state
are observable.

Studies on MDPs and PHM decision systems are limited to
single entities due to the curse of dimensionality (Powell,
2011). For MDPs, the curse of dimensionality refers to the
increased difficulty in 1) estimating the value of actions given
the state and 2) finding optimal policies as the state and ac-
tion spaces increase in size. Therefore, the literature regard-
ing MDPs and PHM decision systems often assumes that the
possible number of health states is small, and that the possi-
ble number of actions is also small. In contrast, the method-
ology presented in this study proposes to model numerous
components at multiple levels of a hierarchy with a large ac-
tion space. A straight-forward flat application of any of these
methods to a system with several hundred components is dif-
ficult due to the explosion of the state and action spaces.

One assumption common to all the papers discussed so far in
this section is that operations remain constant and are not a
decision variable. For example, the cutting speed of a turning
process is held constant and cannot be adjusted. AlDurgam
and Duffuaa (AlDurgam & Duffuaa, 2013) propose a par-
tially observable MDP in which operations are considered a
decision variable. AlDurgam and Duffuaa represent changes
in the operations through multiple transition matrices. The
AM-PHM methodology will closely resemble the model in
(AlDurgam & Duffuaa, 2013), but with multiple components
and a completely observable state space.

In summary, the existing literature on PHM decision systems
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does not consider the entire hierarchy of the manufacturing
environment. A vast majority of the literature focuses on
single components or machines, and studies which do con-
sider multi-component systems do not go past what this study
would consider the machine level. The literature regarding
MDPs as PHM decision systems is limited to small state and
action spaces due to the curse of dimensionality, and the sig-
nificant increase in the number of computations required to
find an optimal policy. A vast majority of the literature as-
sumes that operations remain constant and are not considered
a decision variable. The AM-PHM methodology will address
these limitations in the existing literature.

3. ADAPTIVE MULTI-SCALE PHM CONCEPT

Existing literature on PHM decision systems is limited to
maintenance, replacement, and inspection decisions, and lacks
consideration of operational decisions. Also, the literature
focuses on either components or groups of components, and
does not consider work cells or assembly lines. Furthermore,
most literature is based on unrealistic assumptions, such as a
small state spaces, or consistent operations over time. AM-
PHM contributes to the world of process PHM by addressing
these limitations through a novel integration of health infor-
mation into operational decision-making.

AM-PHM is a methodology that enables intelligent control
for hierarchical manufacturing systems. It is designed to pro-
vide decision-makers with values for adhering to policies, the
current health state of assets in the manufacturing system, and
the predicted health states of assets at future points in time. In
AM-PHM decisions are made in a sequential manner at each
decision node. Production order information and operational
directives are passed down the hierarchy, and component or
machine health information is passed up the levels of the hi-
erarchy.

In AM-PHM, a decision-maker is not limited to the machine
operator. Rather, it refers to any person or machine such as
the control unit of a manufacturing robot or the supervisor of
an assembly line that is responsible for making decisions that
can influence the outcome of the system. Each node of the
hierarchical structure is a decision point where the decision-
maker is situated in the AM-PHM methodology. Conceptu-
ally, an AM-PHM module resides at every decision point of
the hierarchical structure of the manufacturing system.

Once all information is gathered at the decision nodes, AM-
PHM creates operational profiles, which include operational
policies and projected health information. Each operational
profile is associated with a value for following a policy. Es-
timated by AM-PHM, a value is a cumulative reward for fol-
lowing a profile. Decision-makers whether it be a person or a
machine can then choose the operational profile best suited
for completing requirements and directives. Conceptually,
decisions at the highest level can be thought of as a multi-

objective reward function, where the goal is to maximize,
through a sequence of decisions, a set of weighted rewards

max
K∑
k=1

ωkRk (1)

whereK is the number of objectives,Rk is the reward associ-
ated with the kth objective, ωk is the weight given to the kth

objective, 0 ≤ ωk ≤ 1∀k, and ΣKk=1ωk = 1.

In AM-PHM, decision making person at the highest level se-
lect the weights, and then pass them down to the lower levels
of the hierarchy where the objective function is used to find
an optimized policy. Decision-makers select weights based
on the current objectives of the manufacturing facility, such
as meeting regular demand, meeting unexpectedly high de-
mand, or planning for a lack of demand in the future. Multi-
objective functions are passed down from the highest level to
lower levels, where the lower levels are modeled as smaller
separate models. The lower level system reports back the op-
timized likely outcomes based on the particular reward struc-
ture, objective function and constraints handed down by the
higher-level node.

To form an optimization problem which can be solved, the
conceptual information flow such as in Figure 1 must be con-
verted into a model. AM-PHM formulates a mathematical
model by representing the system in terms of the decisions,
states of the system, and rewards. Actions including main-
tenance decisions and operational policies are determined by
optimizing for a multi-objective reward structure, which can
change based on the production goals and directives sent from
the higher levels of the hierarchy. Thus, AM-PHM addresses
the task of model formulation, multi-scale decision making,
and hierarchical health information formulation.

AM-PHM formulates the model by converting the conceptual
information flow displayed in Figure 1 to mathematical mod-
els with objective functions that can be solved to find policies.
Specifically, this task involves defining the inputs and out-
puts of the model; defining the time scale and time horizon
at each level of the hierarchy; defining how health informa-
tion flows up the levels of the hierarchy and how objective
functions flow down the levels of the hierarchy; and outlining
mechanisms for creating single reward functions from multi-
objective functions from higher levels of the hierarchy.

AM-PHM addresses the decision making at each level of the
hierarchy. In AM-PHM, decisions begin at the highest level
because this is where the company defines their productiv-
ity and quality targets. Decisions flow downward into spe-
cific machining processes and equipment demands. As a ma-
chine’s health degrades, that information flows upwards and
impacts decisions related to productivity. Given these de-
cisions, multi-objective functions are developed and passed
to the lower levels. A major portion of this task involves
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Figure 1. Conceptual representation of AM-PHM

converting high-level decisions into multi-objective functions
that can be optimized at lower levels.

A manufacturing system is often represented as a hierarchical
structure. For a typical manufacturing facility there are as-
sembly/fabrication lines which are further divided into work
cells or work stations which are further divided into one or
more machines (Hopp & Spearman, 2011). For this paper,
the hierarchical structure of facility, assembly line, work cell,
machine, and component will be used as a primary example,
although there exists more complex methods of describing a
manufacturing facility.

In AM-PHM, health information is passed up the hierarchy.
The health state at each node is an abstraction of the health
state of its subsystems. The health state at a node may be
represented as a vector of all the health states of the subsys-
tems, the weighted average of the health of the subsystems,

the worst health among the subsystems, or as a result of a
function that accounts for the interconnected relations of the
subsystems as necessary to convey health information.

One notable assumption made at this point for AM-PHM is
that the health model for the lowest level of the hierarchy is
known and the health states of the lowest subsystems are ac-
curately known. Also the AM-PHM methodology assumes
that the hierarchical structure of the manufacturing system is
known. The issue of not having an accurate model of the ma-
chine or component is discussed in Section 5.

4. AM-PHM DESCRIPTION

In this section a mathematical framework for describing the
AM-PHM methodology is presented. One of the trade-offs
that the decision-maker must keep in mind is to weigh the
immediate reward(s) versus long term reward(s). An MDP-
based approach in modeling the manufacturing system is one
way to find an optimized decision that considers such trade-
offs. In an MDP model the transition to the next state depends
on the current state and not on the history of state changes
leading up to the current state. For a manufacturing system
the next wear state of a component depends on the current
wear state and not so much as to how the component reached
its current wear state. Thus, an MDP approach is appropriate
for describing the manufacturing system and the AM-PHM
methodology.

However, the MDP-based model has complexity issues that
make the description of a large scale system challenging. Hence,
a hierarchical MDP approach is introduced. The hierarchical
MDP approach divides the system into smaller more manage-
able sub-sections such as the machine or component model.
The hierarchical MDP approach of the AM-PHM methodol-
ogy is applied to an industry inspired numerical example.

4.1. Markov Decision Process

The framework used for the AM-PHM methodology is to de-
scribe the manufacturing system as an MDP. The reason for
using an MDP approach is because in the MDP framework
the next state of the system depends on the current state and
not on the history of how the current state was reached. For
example, the critical information needed to predict the wear
of a component at the next sampling point is the current wear
on the component and how that component will be used.

There are four elements that make up the MDP model - state,
transition probability, action, and reward. The state space
S is a finite set of states that the system can be in. Actions
A is a finite set of actions that are possible in the system.
State transition probability P , and reward R are defined in
Equations (2) and (3) respectively. (Sutton & Barto, 1998)

Pass′ = Pr(St+1 = s′|St = s,At = a) (2)
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Ras = {Rt = r|St = s,At = a} (3)

where the state of the system at time t (St) is state s, the action
taken at time t (At) is a and the system transitions into state
s′. The transition probability matrix P is the probability of
the state changing from one state to another depending on the
current state s and the chosen action a. For an action a, each
row of Pa represents the current state and the columns cor-
respond to the next state. Thus, element Pas,s′ represents the
probability of the system transitioning from state s to state s′

when action a is taken. Since, the P is a collection of prob-
ability distributions, the sum of each row of the sub-matrix
Pamust add up to 1.

The rewardR is the reward associated with the system being
in current state s and taking action a. The reward structure
reflects the cost of interest such as the objective in Equation
(1). The objective is now to maximize the expected cumula-
tive reward.

A policy π is a mapping of states to actions and the distri-
bution of possible actions given the state is π(a|s). A major
component of solving an MDP is finding the value of being
in a state. For MDPs, the value of a state and following a
policy is defined as vπ(s) = E[Gt|St = s]. In an MDP
the state transition is stochastic meaning that the state and
action only selects a probability distribution for state tran-
sition. Therefore, the value of being in a particular state
consists of the reward for the current state and the expected
reward from the next states. A state action pair when fol-
lowing a policy can also have a value, which is defined as
qπ(s, a) = Eπ[Gt|St = s,At = a]. The value function and
the action-value function can be decomposed into

vπ(s) =
∑
a∈A

π(a|s)

(
Ras + γ

∑
s′∈S
Pass′vπ(s′)

)
, (4)

and

qπ(s, a) = Ras +
∑
s′∈S
Pass′

∑
a′∈A

π(a′|s′)qπ(s′|a′). (5)

where γ is the discount factor which is a number between 0
and 1 used to discount the reward received in the future. For
this paper γ is set to one meaning there is no discount. The
MDP is solved by finding the policy that maximizes the value
function or the action-value function. For example small MDPs,
with less than several dozen states, the optimal policy π can
be found through backward dynamic programming. For MDPs
with large state and action spaces, iterative methods must be
used to find a policy.

4.2. AM-PHM as MDP

The MDP model approach is used to formalize the AM-PHM
methodology. In the AM-PHM world, since the expected fu-
ture reward for a system depends on its current health state
and not on the previous steps it took to reach the current
health state, the MDP approach is the appropriate framework
for representing the manufacturing system. Another notable
characteristic of system health is that the health states do not
transition in reverse simplifying the transition matrix. A worn
out component will not turn back to a newer state unless a
maintenance action is taken. The components have a prob-
ability of transitioning to a more worn out state depending
on the operation decision made by the decision-maker. Such
a characteristic helps simplify the state transition property in
the MDP.

The decision-maker now has a tool to quantitatively compare
the case of immediate fast production causing greater wear
on components versus the case of slower production leading
to lesser wear on the components. A simple one level MDP
description is given as an example. The hierarchical approach
will be addressed in subsequent subsections.

S = {s1, s2, ..., sn} (6)

A = {a1, a2, ..., am} (7)

The state space S is the finite set of states used to describe
the manufacturing system. In AM-PHM the states are based
on the health of the system as in Equation (6) where sk rep-
resents a particular health state such as Good, Ok, or Worn.

The action spaceA is the finite set of actions that can be taken
by the decision-maker as in Equation (7) where ak corre-
sponds to a possible action such as Fast, Slow, or Run Mainte-
nance. Note that the action provided is not limited to a main-
tenance decision but includes operational decisions as well.

The transition probability matrix P is the probability of the
state changing from one to another depending on the current
state s and the chosen action a as shown in Equation (2). P
can be built from historic operational and maintenance data,
or from machine models.

The rewardR in Equation (3) indicates the amount of reward
associated with the current state s and action a. R is built
from historic cost and production information or the user may
defineR as deemed appropriate. The reward structure is also
called the cost structure in some cases. The objective of the
MDP is to create a policy that will maximize/minimize a par-
tiuclar cumulative function of the reward. Thus, the reward
structure may change according to the user’s directives.

6



INTERNATIONAL JOURNAL OF PROGNOSTICS AND HEALTH MANAGEMENT

4.3. AM-PHM as Hierarchical MDP

In theory, the transition matrix P needs to cover all possible
transitions between states. The size of P is mn2 at the lowest
level description of the system. The reward functionR needs
to cover all the states and actions. The resultingR is an n×m
matrix for the lowest level description of the system. When
the MDP framework is expanded to describe multiple com-
ponents and machines the number of possible states increase
exponentially which also increases the size of the transition
matrix exponentially as well. The size of the transition ma-
trix for a manufacturing system consisting of x identical work
cells each containing y identical machines each containing z
components is shown in Equation (8). If each work cell struc-
ture is heterogeneous the number of states will be the product
of all the states of the lowest level nodes.

N(S) = nxyz (8)

The size of the transition matrix and the size of the reward
function in the expanded model is shown in Equations (9)
and (10) respectively.

N(P ) = mn2xyz (9)

N(R) = mnxyz (10)

The size of the state space and the transition matrix grows
exponentially as components are added into the system. The
size soon becomes too large to handle. Also, in reality the
number of observable transitions between states is limited. It
is difficult to observe or explore all possible state transitions
to fill the entire transition matrix. For example for a manu-
facturing system with five states per component, four compo-
nents per machine, four machines per work cell, four work
cells per assembly line, two assembly lines per facility and
three possible actions at the lowest level, the transition matrix
will have 3 × 5(2×4×4×4×2) elements which is greater than
2.59× 10179. Thus, a more manageable approach is needed.

The flat MDP approach where no hierarchical structure is as-
sumed, runs into the curse of dimensionality (Powell, 2011)
as machines are added into the model. Even if the operations
are limited to two modes, the action space quickly grows with
the number of components or machines. Similarly, the state
space, which represents the health of all components or ma-
chines, also quickly grows as components and machines are
added to the hierarchy. This growth is often referred to as
the curse of dimensionality. Methods are needed to break
the curse of dimensionality and, at least in an approximate
or heuristic sense, compute policies for large state and action
spaces.

One method to overcome the exploding dimensionality is the

hierarchical MDP approach. By utilizing the hierarchical in-
formation of the manufacturing system the state space is re-
duced to a more manageable level. Most manufacturing sys-
tems are structured in a hierarchical manner. If the hierarchy
of the system is known then the system may be divided into
smaller sub-MDPs.

Three approaches to hierarchical MDP were independently
developed around the turn of the century: the options for-
malism (“Between MDPs and semi-MDPs: A framework for
temporal abstraction in reinforcement learning”, n.d.), the hi-
erarchy of abstract machines (Parr & Russell, 1998), and the
MAXQ framework (Dietterich, 2000). Each of these treats
the root problem at the top of the hierarchy as a semi-Markov
decision process (Sutton & Barto, 1998) because sub-tasks
can take a variable length of time. The options method breaks
the problem into options that include a policy, a termination
condition, and an initiation set of states, while the hierarchy
of abstract machines breaks the problem into independent au-
tomata called abstract machines that include a set of machine
states, a function for converting the states of the whole MDP
into machine states, and a stochastic next-state function. The
MAXQ framework decomposes the value function and con-
siders each sub-task an MDP. In all three approaches, the hi-
erarchy must be provided by the designer of the system.

In this research, the MAXQ framework will be adopted and
customized to work with AM-PHM because a manufacturing
facility can be easily broken down into sub-MDPs given its
natural hierarchy. The MAXQ method can be transferred to
the manufacturing environment by treating components at the
lowest level of the hierarchy as independent and having their
own state space. Further, the hierarchical decomposition al-
lows for the policies learned on one sub-task to be transferred
to other similar sub-tasks.

Dietterich (Dietterich, 2000) provides a list of five conditions
under which one can reasonably implement state abstraction.
These original set of five conditions are designed for hierar-
chical systems with sequential tasks. However, conditions
such as requirements for a termination state for each sub-
MDP can be relaxed for a manufacturing system with parallel
assembly lines, work cells, or machines. The modified con-
dition for state abstraction for the reduction of state space in
a hierarchical MDP approach are reduced to three conditions.
The first condition calls for the transition probabilities of the
sub-MDPs to be independent. In a manufacturing system the
state transition in one machine does not effect the state tran-
sition probability of another machine. The second condition
calls for the reward structure of the sub-MDPs to be indepen-
dent. The reward for taking action a in one machine is only
affected by the current state of that particular machine and not
by the current states of other machines in the manufacturing
system. The third condition calls for the result distribution
of a sub-MDP to be independent. For example with the ex-
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istence of a smaller subset of funneling terminal states of a
sub-MDP, other sub-MDPs are shielded from the sub-MDP
having different starting states which allows for state abstrac-
tion. For a parallel manufacturing node the starting state of
one sub-MDP does not have an affect on other sub-MDPs as
each MDP is considered independent from one another.

The state space can be abstracted for a manufacturing sys-
tem satisfying these conditions such as a parallel manufactur-
ing system with a fleet of identical work cells or a sequen-
tial manufacturing systems separated by a buffer of work-
in-progress parts. State abstraction reduces the state space
to a more manageable level. The MAXQ approach is fur-
ther developed into an online model-free version of the re-
inforcement learning algorithm called MAXQ-Q, where the
value-action function is now dependent on the ith sub-task:
qπ(i, s, a) = vπ(s, a) + cπ(i, s, a), where cπ(i, s, a) is the
expected discounted cumulative reward for completing sub-
task i.

4.4. AM-PHM Example

An example assembly line involving multiple machines is de-
scribed in this section. The assembly line consists of two
work cells - Work Cell 1 and Work Cell 2. Both work cells
produce identical products with each consisting of two ma-
chines. The machines can operate under two different modes
of production - Fast and Slow. Fast production results in
greater wear to the machine while achieving greater produc-
tion than in Slow production. Assume that the health of Ma-
chine 1 is at 66% of its RUL while the health of Machine 2,
3, and 4 are at 100%. The assembly line only has enough
resources to operate one machine for 60 days. The assem-
bly line decision-maker must distribute the limited resources
to the four machines and decide on the mode of production
for each machine with the goal of achieving greatest profit.
Assumptions and simplifications were made in this example
scenario to prevent the example from becoming unnecessar-
ily complicated. One of the assumptions is that the wear of
the system is independent of individual operators. Nonethe-
less, the structure and the ratio of the cost and time involved
are derived from real world manufacturing data.

The goal is to make a sequence of decisions or create a policy
for making sequential decisions that will maximize the ex-
pected gain under the set of constraints. The decision space in
the example manufacturing system is not limited to the main-
tenance decisions but is expanded into operating parameter
decisions as well. Since the health of the machines are either
known or estimated, and the different modes of production
lead to different frequencies in maintenance, the decision-
maker needs a method for weighing the trade-off between
short term gain and long term effects on system health in or-
der to make an optimized decision. The AM-PHM method-
ology with the manufacturing system described as an MDP

Figure 2. Example Assembly Line Hierarchy

is an effective way to find this optimal policy. The numerical
analysis in this section was performed in MATLAB using the
Markov decision processes toolbox.

In AM-PHM, existing knowledge on the hierarchical struc-
ture of the system is taken into account. The hierarchical ap-
proach allows for decomposition of a large scale model into
a set of more manageable smaller size subsets and achieves
agility by only having to partially reconstruct the model when
sub-systems are replaced. The example hierarchical structure
of a manufacturing environment used in this paper consists of
a single assembly line with multiple work cells, each of which
has multiple machines, each in turn comprised of multiple
components. However for simplicity the component level is
not considered in this example as shown in Figure 2. The
assembly line consists of two work cells. Work Cell 1 and
Work Cell 2 each produce identical products and consist of
two machines each.

The states reflect the health of the system. At the compo-
nent level the wear progression trend of the component is
known through wear curves, user experience, and material
property based models. The discretization into health states
is user defined. The states may be divided based on equal
wear increments, equal RUL increments or any other user de-
fined set of rules. In the example the health states are divided
into three states based on equal RUL increments from expe-
rience. There are two additional maintenance states added
to distinguish preventative maintenance and reactive main-
tenance. Note that any maintenance conducted before the
health of the machine reaches the Bad state will be considered
preventative maintenance whereas maintenance conducted at
the Bad state will be considered reactive maintenance incur-
ring a higher maintenance cost and longer maintenance time.
The complete set of states is represented in Equation (11).

S = {Good, Ok, Worn, Prev-Maint., React-Maint.} (11)

Health states at higher-levels of the hierarchy are represented
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based on the health of its subsystems and effects between sub-
systems. The states at higher-levels may be represented as a
discretized abstraction based on user defined criteria of the
health states of the subsystem or as a vector of the health
states of the subsystem. For the example in this paper for
higher-level nodes a maximum health approach is taken where
the states are represented as the best health of its subsystem.

The decisions available to the decision-maker are different
depending on the level along the hierarchy. The available set
of decisions is based on user input, user experience and other
inherent limitations such as safety restrictions or machines
limited capabilities. For the example in this paper, the avail-
able decisions at the assembly line and work cell level are the
allocation of resources such as available man-hour or raw ma-
terials to each subsystem. At the machine level the available
decisions are as listed in Equation (12). Note that the oper-
ational parameters and the maintenance decisions are among
the available decisions. For higher levels in the example case,
decisions are the distribution of resources to its subsystems.

A = {Slow, Fast, Maintenance} (12)

Once the states and actions are defined, the state transition
probability matrix (P ) is constructed. The transition proba-
bility is the probability of transitioning to another state based
on the current state and action. The transition probability is
constructed from information gained through means such as
historic data and physical models. The probabilities are con-
structed bottom-up as the probability from the lowest level
will affect the transition at higher levels. The mean time be-
tween failures of the machine and mean time to repair was
used to derive the transition probability of the example. The
probability distribution for state transition in for the Slow ac-
tion is based on the mean time between failures for the ma-
chine which is estimated as 21 days. The Fast action is ap-
proximately twice the speed resulting in a 50% reduction in
the probability to remain in the same state. The lower left ele-
ments of the transition matrices for actions Slow and Fast are
0 since the machine health cannot improve on its own. When
the Maintenance action is chosen the state transitions to either
Preventative Maintenance or Reactive Maintenance depend-
ing on the current state. The mean time between maintenance
is estimated to be 10 days for Preventative Maintenance and
13 days for Reactive Maintenance. There is a 10% chance
that the maintenance is not performed perfectly resulting in
a state of Ok instead of Good after maintenance. Equations
(13) through (15) represent the transition probability matrices
used in the example. The rows represent the current states and
the columns represent the next states.

PSlow =


0.86 0.12 0.01 0 0.01

0 0.86 0.08 0 0.05
0 0 0.86 0 0.14
0 0 0 1 0
0 0 0 0 1

 (13)

PFast =


0.43 0.51 0.03 0 0.03

0 0.43 0.47 0 0.1
0 0 0.43 0 0.57
0 0 0 1 0
0 0 0 0 1

 (14)

PMaint. =


0 0 0 1 0
0 0 0 1 0
0 0 0 0 1

0.09 0.01 0 0.9 0
0.063 0.007 0 0 0.93

 (15)

The reward is assigned to each state-action pair and is de-
fined by the user. Depending on the users focus, the reward
may represent monetary cost and gain related to the system or
may be the result of a scoring criteria created for the specific
needs of the user. Which reward structure to choose is depen-
dent on the goal set at the highest level of the hierarchy. The
directive and constraints are handed down to the lower level
nodes that specify which reward structure to choose. At the
lowest level, the reward structure for this example is a com-
bination of the cost of operation, the cost of maintenance and
the value added through production based on data obtained
from an actual production facility. The system is optimiz-
ing for maximum monetary profit. At the higher-level nodes
the reward is the sum of all the rewards from the sub-nodes.
The health based states of the machine level and the asso-
ciated reward is shown in Figure 3. For the reward matrix
in Equation (16) the gain achieved by producing under Slow
and Fast action are represented in the first two columns. The
third column represents the reward associated with the Main-
tenance action. The bottom two rows of the first two columns
are filled with a great loss to encourage a consistent selection
of Maintenance action when in the maintenance states. The
reward associated with the Maintenance actions are greatest
when in the Ok state to highlight the fact that both prema-
ture replacement and reactive replacement cost more than re-
placing at an optimal point. The rewards are marked in the
arrows in Figure (3). Note that rewards are only associated
with state-action pairs. The actions Fast and Slow cannot be
selected when in Prev. Maint. or Maint. state. When solving
the MDP for the optimal policy a negative number less than
−40 was selected as the reward associated with these state-
action pairs.
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Figure 3. MDP of a machine with the state-action rewards marked.

R =


100 190 −20
80 150 −10
0 0 −15

N/A N/A −20
N/A N/A −40

 (16)

Once the system is modeled as an MDP, the optimal policy
search is performed. The goal is to create a sequence of de-
cisions to follow depending on the current state that would
maximize the cumulative reward over time. The operational
directives and constraints flow from the higher-level node to
the lower-level nodes. The PHM information is reported from
the lower-level nodes up to the higher-level node. At each
node decisions are made based on the projected outcomes
calculated within the constraints and available health infor-
mation. Figure 4 shows the optimal policy for any machine
for a 60 day finite horizon. The displayed policy is the same
for each of the four machines because they are identical. Note
that the time unit has been scaled into days. However, any
other time unit such as seconds, minutes or hours may be
used as the decision interval. The choice to use days as the
time interval in this case is to simplify the example.

The information from the machine level analysis in addition
to the knowledge on the current state of health of the ma-
chines is used to make decisions at the work cell and assem-
bly line level. Following the constraints of the example case
the assembly line must find the best way to distribute the re-

sources to operate for 60 machine-days and the health state
of Machine 1 is Ok and the health state of Machine 2, 3, and
4 is Good. The assembly line asks each work cell to report
back the estimated reward when 1, 2, 3, ..., 60 machine-days
of resources are handed down.

Each work cell asks each machine to report the expected cu-
mulative reward when operated under the optimal policy for
1, 2, 3, ..., 60 days. Since we know beforehand that the four
machines are identical, an MDP for the 60 day horizon needs
to be solved only once and the results can be shared among
the four machines. In a system with heterogeneous machines
this benefit of reusing the MDP results will diminish. How-
ever, even under heterogeneous machine conditions the hier-
archical approach still provides a modular solution that pre-
vents the system state space from expanding exponentially.

The work cells report the best policy for the amount of al-
located resources and the expected reward. For Work Cell
1 it would be a skewed result as Machine 1 is not in good
health. For Work Cell 2 it will always be an even split of
resources between the two machines as both machines have
equal health.

The Assembly Line distributes the resources based on the best
projected return from each work cell. In this example, the
best distribution is to allocate 24 machine-days to Work Cell
1 and to give Work Cell 2 36 machine-days. Work Cell 1 will
further distribute 7 machine-days to Machine 1 and 17 ma-
chine days to Machine 2. Work Cell 2 will split the resources
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Figure 4. Policy for machine operation. The policy for each individual machine is identical.

Figure 5. Resource distribution for the Assembly Line

evenly into 18 machine days and distribute to both Machine
3 and Machine 4 as shown in Figure 5.

AM-PHM is a methodology for constructing a dynamic con-
trol policy. Therefore, it uses the most up-to-date information
when estimating the optimal policy. After one day has passed
and resources have been initially distributed based on the pre-
vious policy, then the health states and the available resources
are updated, and a new updated policy for optimal operation
is derived using the current information. The process repeats
until all 60 machine-day resources have been depleted.

5. DISCUSSION

The AM-PHM approach suggests a way of making health in-
formation based operational decisions in a manageable way
to increase operational efficiency. AM-PHM expands the use
of health information from maintenance based decision mak-
ing into operational decision making at all levels of the man-
ufacturing system hierarchy. AM-PHM also takes a hierar-
chical approach to the analysis of the manufacturing system
avoiding the issue of exponential state space growth associ-

ated with increase in the number of states, components, and
machines. A simplified example MDP model of an assembly
line based on data collected from an actual manufacturing fa-
cility demonstrates the usefulness of AM-PHM.

In representing the AM-PHM methodology as a hierarchi-
cal MDP, the hierarchical approach results in a collection of
smaller more manageable sub-MDPs compared to a flat MDP
approach. Size reduction for the example case is from 5(2×2)

states for a flat MDP model to 5 states for the hierarchical
MDP approach. The discrepancy between the flat model and
the hierarchical model becomes more evident as more ma-
chines/components are added to the manufacturing system.

Several key assumptions were made for the hierarchical MDP
representation of the AM-PHM methodology. First, we as-
sumed that the health states of the machine/component were
always accurately observable. Second, we assumed that not
only the hierarchical structure was known beforehand but also
the exact model for the individual machine/component was
known. Third, we assumed that all the machines in the as-
sembly line were identical which made possible the repeated
use of the same machine model. However, in reality some of
these assumptions may be difficult to apply.

In the example, we assume that the transition probabilities of
the MDP are given. In practice, these probabilities could be
difficult or impossible to estimate from collected data for sev-
eral reasons. First, readily available maintenance data could
be difficult to map to the state transitions needed to construct
the Markov chain transition probability estimates. Second,
the amount of data needed to accurately estimate the tran-
sition probabilities grows significantly with the number of
states. To address this issue, we propose using model-free
reinforcement learning algorithms in future research on AM-
PHM.
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Reinforcement learning (Sutton & Barto, 1998) is the area
of machine learning that deals with sequential decision mak-
ing. In reinforcement learning, an agent or decision maker
interacts with an environment, and based on the interaction
receives a reward. The environment evolves with time influ-
enced by the actions. An MDP is one model for the agent, en-
vironment, and reward often used in reinforcement learning.
A policy is a function that maps states of the environment to
actions, and learning this policy is the goal in sequential deci-
sion making. When the model for the environment is known,
a policy is learned through planning. When the model is ini-
tially unknown, reinforcement learning is used to explore the
environment and learn a policy. If the model cannot be ade-
quately learned from interaction with the environment or the
model is too large to solve efficiently, as is the case in most
manufacturing facilities, model-free reinforcement learning
algorithms should be implemented.

In reinforcement learning, a best policy may be derived with-
out the full knowledge of the system model. However, there
needs to be the possibility for the agent that is searching for
the best policy to be able to interact with the target environ-
ment such as the machine. So if the agent has full access to
a machine and is able to take different actions and learn from
the reward and resulting state of the machine, then an optimal
policy may be reached.

One challenge with reinforcement learning is that the agent
must have access to the environment. However, in a manufac-
turing facility full access to a machine is not always granted.
Thus, for future work we plan to build a machine simulator
that will provide knowledge on the behavior of the machine
to be used in the reinforcement learning process.

6. CONCLUSION

The AM-PHM methodology enables the creation of action-
able prognostic and diagnostic intelligence up and down the
manufacturing process hierarchy. Decisions are made with
the knowledge of the current and projected health state of the
system at decision points along the nodes of the hierarchi-
cal structure. To overcome the issue of exponential explosion
of complexity associated with describing a large manufactur-
ing system, the AM-PHM methodology takes a hierarchical
Markov Decision Process (MDP) approach into describing
the system and solving for the optimal policy. The AM-PHM
methodology is applied to an industry inspired numerical ex-
ample to demonstrate its effectiveness.

For future work, the AM-PHM methodology will be tested
on data collected from an industry partner as well as being
implemented on a production facility test bed. There are sev-
eral challenges to the implementation that will be investigated
in the future work. First, the MDP must be learned from col-
lected data, however this could prove difficult because readily
available maintenance data might not translate to MDP tran-

sition and reward functions. We propose constructing a sim-
ulation of the manufacturing environment to bridge the gap
between the collected data and learning the MDP. Second, ex-
plore model-free reinforcement learning techniques that will
learn policies through directly interacting with the simulation
of the manufacturing environment. Third, in the example, it is
assumed that system degradation is independent of individual
operators. Future work will include an analysis of operator
effect on the system. Fourth, it is assumed that the current
health state and the remaining useful life of each component
is known with certainty. Future work must integrate diagnos-
tic and prognostic systems with the presented control system.
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NOMENCLATURE

K number of objectives
Rk reward associated with the kth objective
ω weight given to the kth objective,
S set of all possible states in the Markov De-

cision Process
A set of all possible actions in the Markov

Decision Process
P state transition probability represented as a

transition probability matrix in the Markov
Decision Process

R reward associated with each state - ac-
tion pair represented in matrix for in the
Markov Decision Process

St state at time t
s, s′ states
At action at time t
a action
r reward
Pr(X = x) probability of random variale X being x
E(X) expected value of random variable X
π policy that defines the action to be taken

for each state
vπ(s) expected total reward under policy π
γ discount factor
qπ(s, a) action-value function
n number of states
m number of actions
N(S) number of states in state space S
x number of work cells
y number of machines for each work cell
z number of components for each machine
N(P) number of elements in the transition prob-

ability matrix P
N(R) number of elements in the reward matrixR
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