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ABSTRACT

This paper presents a method to define the optimal mainte-
nance scope of a production system consisting of multiple
k-out-of-n systems connected in series. Maintenance recom-
mendations are based on Remaining Useful Life (RUL) pre-
dictions obtained from a Prognostics and Health Management
(PHM) system for each production unit within the production
system. Defining the techniques applied in order to estimate
the degradation level of production units is out of the scope
of this paper. It is assumed here that a PHM system is avail-
able and provides the degradation level and RUL estimates
for each production unit. The goal is to find the maintenance
scope that minimizes the expected total cost per cycle until
the next maintenance activity. A k-out-of-n load-sharing sys-
tem is assumed, which means that the failure of a production
unit results in a higher load (and consequently a higher degra-
dation rate) on the surviving production units. The total cost
comprises the production cost and the maintenance cost. Pro-
duction cost of each k-out-of-n system is also affected by the
number of surviving production units. A preventive mainte-
nance cost is incurred to maintain a degraded but still func-
tional production unit. A corrective maintenance cost is in-
curred to maintain a failed production unit. An Ant Colony
Optimization (ACO) approach is adopted, which allows the
proposed method to deal with large instances of the problem.
A numerical example is presented to illustrate the application
of the proposed method.

1. INTRODUCTION

The manufacturing sector is very competitive and the success
or failure of companies in this sector is highly influenced by
the operational strategies adopted (Heddy et al., 2015). In
order to become more competitive, companies in the man-
ufacturing sector are adopting and implementing the Smart
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Manufacturing Systems (SMS) concept. Smart Manufactur-
ing Systems are the integration of advanced technologies to
enable the implementation of new processes and increase the
efficiency of the existing methods (Weiss et al., 2015).

Smart Manufacturing Systems include technologies in a wide
range of domains such as automation, decision support, sens-
ing, communication and robotics. The integration of these
technologies provides a variety of benefits for companies such
as improvements in efficiency and reductions in costs (Weiss
et al., 2015), (Bernarden, 2012). Several papers on Smart
Manufacturing Systems have been recently published in the
literature (Ghonaim, Ghenniwa, & Shen, 2011) (Y. Lu, Mor-
ris, & Frechette, 2015) (Brodsky, Krishnamoorthy, Menascé,
Shao, & Rachuri, 2014).

One of the topics addressed in the smart manufacturing con-
text is maintenance optimization. Maintenance activities have
a direct effect on system availability and are responsible for
a relevant part of the operational cost. Defining the main-
tenance scheduling and the maintenance scope for complex
manufacturing systems with redundancy and processes inter-
actions is a challenging task. In order to accomplish this task,
smart manufacturing systems require technologies that pro-
vide information on the system under consideration and its
components. The information required by smart manufactur-
ing systems may include the degradation level and the esti-
mated Remaining Useful Life (RUL) of the system and its
components (Jung, Morris, Lyons, Leong, & Cho, 2015). In
this context, the use of Prognostics and Health Management
(PHM) data emerges as a powerful tool to support the im-
plementation of smart manufacturing systems (Malinowski et
al., 2015). PHM technology comprise techniques that enable
condition-monitoring, diagnostics and prognostics of compo-
nents, systems and processes (Vachtsevanos, Lewis, Roemer,
Hess, & Wu, 2006).

PHM systems provide the ability to quantify the degrada-
tion level and estimate the RUL of a monitored component
(Vachtsevanos et al., 2006). These systems collect data from
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the monitored component and generate an index to indicate
how degraded the component is. The degradation level can
be estimated, for instance, based on a comparison between
the nominal and the actual performance of the component
(Kacprzynski, Roemer, & Hess, 2002).

The term “prognostics” refers to the ability of predicting the
future health of the monitored components, systems and pro-
cesses. The main information provided by the prognostic
function is the RUL. The term “health management” refers
to the decision making process to improve maintenance, lo-
gistics and operations. This decision making process is based
on the information provided by the PHM system and addi-
tional available data such as cost models and resources avail-
ability. Operational constraints such as facility capacity and
budget restrictions are also taken into account in this pro-
cess (Malinowski et al., 2015), (Barajas & Srinivasa, 2008).
The literature on PHM systems acting as a decision support
tool is extensive and many papers have been recently pub-
lished in the literature with solutions for inventory manage-
ment (Rodrigues & Yoneyama, 2012), task assignment prob-
lems (Medeiros, Rodrigues, Shiguemori, Santos, & Nasci-
mento Jr, 2014) and maintenance scheduling (Sandborn &
Wilkinson, 2007), (Gebraeel, 2010), (Rodrigues, Medeiros,
& Kern, 2015).

In this paper, a method to define the optimal maintenance
scope for a production system is presented. A production
system consisting of multiple k-out-of-n systems connected
in series is considered. Maintenance scope recommendations
are based on RUL predictions of each production unit ob-
tained from a PHM system. A k-out-of-n load-sharing system
is assumed. In a k-out-of-n load-sharing production system,
when a production unit fails and stops working, the remain-
ing production units are subjected to a higher load, result-
ing in a higher degradation rate (Amari & Bergman, 2008),
(Mohammad, Kalam, & Amari, 2013).

The proposed method recommends the maintenance scope
based on a cost criterion. Total cost is broken into production
cost and maintenance cost. Production cost of each k-out-of-
n production system is influenced by the number of surviv-
ing production units. Maintenance cost can be preventive (if
maintenance is performed in a degraded but still functioning
production unit) or corrective (if maintenance is performed in
a failed production unit).

The number of possible solutions (i.e., possible maintenance
scopes) grows exponentially with the number of production
units within the production system. The Ant Colony Opti-
mization (ACO) algorithm is used in this paper to provide a
way to deal with large instances of the problem. The ACO
algorithm has been successfully applied in a variety of com-
binatorial problems, including maintenance scheduling prob-
lems (R. Zhou, Lee, & Nee, 2008), (Rodrigues, Gomes, et al.,
2015).

The remaining sections of this paper are organized as follows.
Section 2 summarizes the related papers in condition-based
maintenance (CBM) for multi-component systems. Section
3 describes a k-out-of-n system and the load-sharing model
adopted in this paper. Section 4 presents the formulation
of the problem under consideration. Section 5 presents the
degradation model used for each production unit and the in-
fluences of the load-sharing model in the degradation model
parameters. Section 6 introduces the proposed method. Sec-
tion 7 introduces the ACO algorithm, which is used to find
a maintenance scope that reduces the expected total cost per
cycle. Section 8 illustrates the application of the proposed
method in a numerical example. Section 9 discusses the im-
plementation and some opportunities for further improvements
in the proposed method. Concluding remarks are presented in
Section 10.

2. LITERATURE REVIEW

Condition-based methods have become a topic of great inter-
est among academic researchers and industry practitioners. In
the last few decades, many papers have been published in the
literature with component level and system level maintenance
CBM methods (Ahmad & Kamaruddin, 2012). Some of the
relevant papers are briefly reviewed below.

Camci (2009) discusses the importance of considering the de-
pendencies among components in a CBM optimization method
for multiple component systems. Three different types of de-
pendencies are studied, namely, functional dependence, eco-
nomic dependence and stochastic dependence. A CBM opti-
mization method using Genetic Algorithm is proposed. Re-
sources availability and maintenance conflicts are included
as constraints in the proposed method. The paper shows the
need of optimizing cost and availability for the whole system
rather than applying failure thresholds for individual compo-
nents in order to fully benefit from CBM.

Y. Zhou, Zhang, Lı́n, and Ma (2013) present a maintenance
optimization method for series-parallel systems. The pro-
posed method considers economic dependencies among com-
ponents and discrete inspection intervals based on the state of
the components in order to maximize the average revenue per
time unit. The authors argue that, for many practical sys-
tems, continuous monitoring of components may be imprac-
tical due to economical or technical issues. Therefore, their
model assume that system health condition is updated only
during inspections which are carried out at discrete times.
The interval between two consecutive inspections is also op-
timized.

Rodrigues, Gomes, et al. (2015) use a fault tree representation
of the system in order to compute a sistem-level RUL based
on RUL predictions of individual components. Fault trees
are widely adopted in many industry sectors and can be used
to represent complex functional dependencies among com-
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ponents. The authors present an optimization maintenance
method to select a subset of components to be repaired in or-
der to assure a minimum system safety level until the next
scheduled maintenance intervention with minimum cost. In
the proposed model, failures do not affect the degradation rate
of surviving components. The authors show that, for com-
plex systems, it is crucial to assess the impact of each compo-
nent in the whole system degradation level. The ACO algo-
rithm was used with very satisfactory results. The authors use
simulation-based experiments to demonstrate that the pro-
posed method provides better results than simply maintaining
the most degraded components without taking into account
their influence in the whole system.

Huynh, Barros, and Bérenguer (2015) develop a multi-level
CBM decision making method which combines maintenance
decisions at both system level and component level. The au-
thors use a k-out-of-n system to investigate the performance
of the proposed method. Economic dependencies among com-
ponents are represented by opportunistic maintenance strate-
gies. The authors compare the proposed multi-level CBM
method with a method that relies only on the RUL of the com-
ponents. They conclude that the multi-level decision making
approach is more efficient in avoiding inopportune mainte-
nance interventions and taking into account the interactions
among components.

Rodrigues, Medeiros, and Kern (2015) present a CBM opti-
mization method for multiple identical components that con-
siders the economical benefits of maintaining multiple com-
ponents at the same time instead of scheduling maintenance
interventions for different components at different time in-
stants, based on individual optimization recommendations.
The objective function to be minimized is the expected main-
tenance cost per time unit. A gamma process is used to model
the degradation process of components. Components health
condition are updated during inspections that are equally dis-
tributed in time. However, the authors show that the pro-
posed method can be easily adapted to consider inspections
not equally distributed in time.

This paper aims to contribute to the literature on CBM meth-
ods for multi-component systems. A method to define main-
tenance scopes based on the system health condition is pro-
posed. The proposed method uses RUL predictions obtained
from a PHM system. Economic and structural dependencies
among production units are considered. A load-sharing ap-
proach is used to model the influence of a failure event in the
surviving production units. Improvements could be obtained
by allowing uncertainties in the time required for each main-
tenance.

3. k-OUT-OF-n SYSTEMS

Redundancy is a widely used technique to improve system
availability. The k-out-of-n:G system is a popular type of

redundancy applied in fault-tolerant systems which can be
found in many industrial applications (Moghaddass, Zuo, &
Wang, 2011), (Khatab, Nahas, & Nourelfath, 2009). For ex-
ample, some commercial aircraft have five displays in the
cockpit. The aircraft can be dispatched if at least three dis-
plays are operating. Thus, the multidisplay system may be
represented by a 3-out-of-5:G system. Another common ex-
ample of a k-out-of-n:G system can be observed in the au-
tomotive industry: Vehicles are usually equipped with one
spare tire. The vehicle can be driven if at least four tires are
in good condition. Thus, the vehicle may be represented by a
4-out-of-5:G system (Kuo & Zuo, 2003).

An n-component system that works if and only if at least k
of the total n components work is called a k-out-of-n:G sys-
tem. An n-component system that fails if and only if at least
k of the total n components fail is called a k-out-of-n:F sys-
tem. Based on these two definitions, a k-out-of-n:G system
is equivalent to an (n-k+1)-out-of-n:F system (Kuo & Zuo,
2003). In this paper, the term k-out-of-n system will be used
to indicate a k-out-of-n:G system.

Both series and parallel systems are special cases of a k-out-
of-n system. A series system can be represented by an n-out-
of-n system. Similarly, a parallel system can be represented
by a 1-out-of-n system (L. Lu & Lewis, 2008).

3.1. k-out-of-n Load-Sharing Systems

Most methods applied to multiple component systems adopt
the assumption of i.i.d. components. However, in many real
world applications, a load is shared by several components or
systems. Examples of load-sharing systems include electric
generators in a power plant and pumps in a hydraulic sys-
tem. In these applications, when a component fails, the load
is distributed by the remaining components, resulting in a
higher degradation rate to the surviving components (Yinghui
& Jing, 2008).

A k-out-of-n load-sharing system can be defined as a k-out-
of-n system in which the following properties hold:

• The surviving components share the load.
• The degradation rate of a component is affected by the

magnitude of the load it shares.
• The higher the number of failed components, the higher

the degradation rate of each surviving component.

The Capacity Flow Model proposes an expression for the in-
crease in the degradation rate of surviving components as a
function of the number of failed components (Pozsgai, Neher,
& Bertsche, 2003). Let LD(y) be the load-sharing degrada-
tion factor, where y is the number of failed production units
in the k-out-of-n system, with y = {0, . . . , n − k}. It is as-
sumed that the load is equally distributed among all surviving
components. The expression to compute LD(y) is presented
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in Eq. (1).

LD(y) =

[
n

n− y

]βD
(1)

where βD is the load-sharing degradation exponent that mod-
els the additional load shared by the surviving components,
with 0 ≤ βD ≤ 1.

When y = 0 (i.e., all components are functioning), each
component is subjected to its nominal load and LD(0) = 1.
If βD = 1, the total load is constant. If βD = 0, then
LD(y) = 1,∀y and the fail of a component does not affect
the surviving components.

4. PROBLEM STATEMENT

Consider a production system composed by NS k-out-of-n
systems connected in series. Each k-out-of-n system i, with i
= {1, . . . , NS} has ni production units and works if and only
if at least ki production units are functioning. Figure 1 shows
the production system under consideration.

Each k-out-of-n system within the production system is a load-
sharing system. In a k-out-of-n load-sharing production sys-
tem, when the number of failed production units increases,
the load per surviving production unit also increases. This
process continues until the number of failed production units
reaches n − k + 1. At this moment, the k-out-of-n system
stops working. The whole production system fails as soon as
one of the k-out-of-n system fails.

A load-sharing degradation factorLD(y), where y is the num-
ber of failed production units in the k-out-of-n system, is used
in order to modify the degradation process of the surviving
production units. A detailed description of the degradation
process of each production unit and the effects of the load-
sharing degradation factor in the degradation model are pre-
sented in Section 5.

Let S = [s1, . . . , sNP ] be the maintenance scope vector, where

Figure 1. Multiple k-out-of-n systems connected in series.

NP is the total number of production units in the production
system, obtained by Eq. (2). Each element si of the mainte-
nance scope vector, with i = {1, . . . , NP }, is a binary variable
that assumes value 1 if production unit i is maintained and
zero otherwise.

NP =

NS∑
i=1

ni (2)

A fixed maintenance cost CF is incurred if at least one pro-
duction unit is maintained. A preventive maintenance cost
C

(i)
P is incurred if maintenance is performed in production

unit i while it is still functioning. A corrective maintenance
cost C(i)

C is incurred if maintenance is performed in produc-
tion unit i when it is already failed.

The following assumptions are also made:

• The production system under consideration operates in
production cycles. Maintenance activities can be carried
out at the end of each cycle.

• The amount of time required for performing a mainte-
nance activity is small and may be neglected.

• Maintenance activities always bring the production unit
to an “as good as new” condition (i.e., the degradation
level returns to zero).

• A production unit fails and stops working as soon as
its degradation level is equal to or greater than a failure
threshold level FT .

• A maintenance intervention is required if the probability
of the production system finishimg the next production
cycle without failing is lower than a safety level SL.

The problem consists in finding the maintenance scope S
which minimizes the expected total cost per cycle, TC(S),
until the next maintenance activity is performed. The total
cost comprises the production cost and the maintenance cost.
The steps to compute TC(S) are presented in Section 6.

5. DEGRADATION PROCESS

Let zi(t) be the expected degradation level of production unit
i at the end of cycle t. It is assumed that the increment in
the degradation level zi of each production unit in each pro-
duction cycle is a random variable that follows a gamma dis-
tribution. The degradation evolution of a production unit is
illustrated in Fig. (2). The PDF (probability density function)
of the gamma distribution is presented in Eq. (3).

f(x|w, θ) =
xw−1 · exp−x

θ

Γ(w) · θw
;x,w, θ > 0 (3)
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where w is the shape parameter of the gamma distribution, θ
is the scale parameter of the gamma distribution and f(x|w, θ)
is the probability density function evaluated at x given w and
θ. Γ(w) is the Gamma function evaluated at w, as presented
in Eq. (4).

Γ(w) =

∞∫
x=0

xw−1 · exp−xdx (4)

The mean µ and the variance σ2 of a gamma distribution with
shape parameter w and scale parameter θ are given by Eqs.
(5) and (6), respectively (van Noortwijk, 2009).

µ = w · θ (5)
σ2 = w · θ2 (6)

It is assumed that, when a production unit fails, the incre-
ment in the degradation level of each surviving production
unit in the same k-out-of-n system for the next cycles is still
a random variable that follows a gamma distribution. The pa-
rameters of the resulting gamma distribution are affected by
the load-sharing degradation factor according to the follow-
ing assumptions:

• Assumption 1: The mean of the resulting gamma distri-
bution is multiplied by the load-sharing degradation fac-
tor LD(y).

• Assumption 2: The variance of the resulting gamma dis-
tribution is not affected.

Let µy and σ2
y be, respectively, the mean and the variance

of the gamma distribution that represents the increment in the
degradation level of a production unit in one production cycle
when y production units in the k-out-of-n system are failed.
Also, let w0 and θ0 be, respectively, the shape and the scale

Figure 2. Degradation evolution of each production unit.

parameter of the gamma distribution that represents the in-
crement in the degradation level of a production unit in one
production cycle when y = 0 (i.e., all production units in the
k-out-of-n system are functioning). It is easy to show that,
in order for Assumptions 1 and 2 be simultaneously satis-
fied, the shape parameter w and the scale parameter θ of the
gamma distribution have to vary as a function of the umber
of failed production units y according to Eqs. (7) and (8),
respectively. Remember that LD(0) = 1.

wy = w0 · [LD(y)]2 (7)

θy =
θ0

LD(y)
(8)

6. PROPOSED METHOD

As mentioned earlier, the goal is to find the maintenance scope
S to be carried out now which minimizes the expected total
cost per cycle until the next maintenance intervention, TC(S).
The next maintenance intervention is assumed to be performed
when the probability of the whole production system failing
reaches the value 1 − SL. The expected total cost per cycle
TC(S) can be obtained using Eq. (9).

TC(S) =

M(S) +
L(S)∑
j=1

Pj(S)

L(S)
(9)

where L(S) is the expected number of cycles that the produc-
tion system will operate until it reaches the safety level SL if
a maintenance activity with scope S is carried out, M(S) is
the total maintenance cost associated with the maintenance
activity with scope S and Pj(S) is the expected production
cost in the j-th cycle if a maintenance activity with scope S
is carried out now.

6.1. Computation of M(S)

The total maintenance cost associate with a maintenance ac-
tivity with scope S, M(S), can be calculated using Eq. (10).

M(S) = CF +

NP∑
i=1

si ·
[
δi · C(i)

C + (1− δi) · C(i)
P

]
(10)

where δi is a binary variable that assumes value 1 if produc-
tion unit i is failed and zero otherwise.

6.2. Computation of L(S)

In order to compute the expected number of cycles that the
production system will operate until it reaches the safety level
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if a maintenance activity with scope S is carried out, L(S),
the first step is to update the degradation level of maintained
production units. The assumption that maintenance activities
always bring the production unit to an “as good as new” con-
dition is used, and the degradation level of maintained pro-
duction units are set to zero. The degradation level of the
remaining production units are not affected.

Then, the next step is to compute the RUL distribution for
each production unit. Let zi(0) be the current degradation
level of production unit i. Let pi(j) be the probability that
production unit i will fail at the end of the j-th cycle from
now. Once the current degradation level of production unit i
and the distribution of the increment in the degradation level
in each cycle are known, the RUL distribution of production
unit i is given by Eq. (11) (Rodrigues, Medeiros, & Kern,
2015).

pi(j + 1) = p(F (x|w, θ) ≥ FT − zi(j)|zi(j) < FT ) (11)

where F (x|w, θ) is the CDF (cumulative distribution func-
tion) of the gamma distribution, pi(j) is the probability that a
failure in production unit i will be detected at the end of the
j-th cycle from now, zi(j) is the expected degradation level
of production unit i at the end of the j-th cycle from now and
FT is the failure threshold.

If a production unit i is failed, then pi(0) = 1 and pi(j) = 0
∀j > 0. If a production unit i is functioning, then pi(0) =
0 and pi(j) ∀j > 0 can be recursively computed using Eq.
(12).

pi(j + 1) =

[
1−

j∑
v=0

pi(v)

]
· Ω (12)

where

Ω = p [F (x|j · wy, θy) ≥ FT − zi(j)] (13)

where y is the number of failed production units in the k-out-
of-n system containing production unit i. The parameters wy
and θy are computed according to Eqs. (7) and (8), respec-
tively.

The next step is to compute the RUL distribution for each
k-out-of-n system. Let pk(j) be the probability that k-out-
of-n system k, with k = {1, . . . , NS}, will fail at the end of
the j-th cycle from now. Let v be a combination of n-k+1
production units of k-out-of-n system k and V be the set of
all possible combinations v. The k-out-of-n system k will fail
when all production units belonging to a combination v ∈ V
fail. Once the failure probability pi(j) of all production units
in the k-out-of-n system k are known, the failure probability

of the k-out-of-n system k can be obtained using Eq. (14).

pk(j) =
∑
v∈V

[∏
i∈v

pi(j)

]
(14)

Now, it is necessary to calculate the RUL distribution for the
production system as a whole. Let ps(j) be the probability
that the production system will fail at the end of the j-th cycle
from now. Once the failure probability of each k-out-of-n
system k is known, the RUL distribution of the production
system can be obtained using Eq. (15).

ps(j) = 1−
NS∏
k=1

[1− pk(j)] (15)

Finally, the expected number of cycles that the production
system will operate until it reaches the safety level SL if a
maintenance activity with scope S is carried out can be ob-
tained according to Eq. (16).

L(S) = minj| [ps(j) > 1− SL]− 1 (16)

6.3. Computation of Pj(S)

In the proposed method, it is assumed that the failure of a pro-
duction unit in a k-out-of-n system increases the degradation
rate of the surviving units. It is also assumed that the overload
of the surviving production units results in an increase of the
production cost of the corresponding k-out-of-n system.

LetLC(y) be the load-sharing cost factor, where y is the num-
ber of failed production units in the k-out-of-n system, with
y = {0, . . . , n − k}. The expression to compute LD(y) is
presented in Eq. (17).

LC(y) =

[
n

n− y

]βC
(17)

where βC is the load-sharing cost exponent that models the
additional production cost of the k-out-of-n system, with 0 ≤
βC ≤ 1. When y = 0, LC(0) = 1 and the system operates
with nominal cost.

In order to compute the expected production cost for the whole
system in the j-th cycle if a maintenance activity with scope
S is carried out, Pj(S), it is necessary to compute the ex-
pected production cost for each k-out-of-n system k in each
cycle j, j = {1, . . . , L(S)}.

Let p = {pk,0j (S), . . . , pk,n−kj (S)} be a probability vector,
where each element pk,yj (S) is the probability that y produc-
tion units of k-out-of-n system k will fail at the end of the j-th
cycle, assuming that a maintenance activity with scope S is
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carried out. The steps to calculate vector p are as follows.

Set p = 1 (initialization). Then, for each production unit i in
k-out-of-n system k, use the probability that production unit
i will fail at the end of the j-th cycle, pi(j), to update vector
p according to Eq. (18).

p =

[
p
0

]
· (1− pi(j)) +

[
0
p

]
· pi(j) (18)

After using all probabilities pi(j) to update vector p, discard
all elements pk,yj (S) with y>n-k from vector p. Then, nor-
malize vector p such that the sum of all its elements equals
one. Then, the expected production cost of k-out-of-n system
k in the j-th cycle, P kj (S), can be obtained using Eq. (19).

P kj (S) =

n−k∑
y=0

pk,yj (S) · LC(y) · Pk (19)

where Pk is the nominal production cost of k-out-of-n system
k (production cost incurred when y=0).

Finally, the expected production cost for the entire production
system in the j-th cycle if a maintenance activity with scope
S is carried out now, is obtained using Eq. (20).

Pj(S) =

NS∑
k=1

P kj (S) (20)

7. ANT COLONY OPTIMIZATION

The ACO algorithm will be used to find good maintenance
scopes in order to minimize the expected total cost per cycle
TC(S).

The ACO algorithm was chosen because it suits the structure
of the problem under consideration, which can easily be rep-
resented in the form of a weighted graph (Cordon, Herrera,
& Stützle, 2002). The nodes of the graph represent produc-
tion units and the edges of the graph represent the decision of
selecting a production unit to be maintained or not.

Although many papers have been published showing com-
binatorial problem applications in which the ACO outper-
forms other optimization algorithms such as Simulated An-
nealing (Chmait & Challita, 2013), Bacterial Foraging Op-
timization Algorithm (Afac & Saini, 2011) and Genetic Al-
gorithm (Adbuljabbar, Khalefa, & Jabar, 2013), it should be
noted that other metaheuristics could be equally employed,
with no conceptual alterations in the proposed method.

7.1. Algorithm Description

The basic principle of the ACO algorithm is to have a popula-
tion of m artificial ants that find possible solutions to a com-

binatorial problem. In the ant system, the problem is repre-
sented by a graph, in which ants walk through branches from
the starting node to the final node and build paths that repre-
sent possible solutions to the problem. Ants choose the next
node to be visited based on a state transition rule (Colorni,
Dorigo, & Maniezzo, 1991).

In the proposed framework, possible solutions are codified as
binary vectors of length NC , where NC is the number of pro-
duction units in the whole production system. Each element
si of the maintenance scope vector S can be filled with “1”
when production unit i is maintained, or “0” when the pro-
duction unit i is not maintained. The solutions are evaluated
according to their expected total cost per cycle.

7.2. Pheromone Update Rule

At the end of each iteration of the ACO algorithm, when all
ants have walked through the branches, the pheromone up-
date rule is applied. This rule consists in removing a fraction
of pheromone from all edges (emulating natural evaporation)
and then adding an increment of pheromone to those edges
visited by the ant that has found the best-so-far solution. In
the next iteration of the algorithm, those edges belonging to
the best-so-far solution will have higher probability to be vis-
ited by other ants. The increment of pheromone can be fixed
for all branches belonging to the best-so-far solution or can be
proportional to the heuristic distance of the branch. A fixed
increment is used in this paper.

In order to reproduce the behavior of real ants more closely,
an increment of pheromone should be given to all edges vis-
ited by any ant in the current iteration, directly proportional
to the number of ants walking by the edges and inversely pro-
portional to the edge heuristic distance. However, simulations
have shown that an increment in only the edges belonging to
the best-so-far solution results in a better performance of the
algorithm (van der Zwaan & Marques, 1999). Therefore, the
best-so-far updating strategy will be used in this paper.

7.3. Parameters Tuning

In order to implement the ACO algorithm, a set of parame-
ters must be defined. The ACO algorithm parameters are the
number of ants in the colony, m, and the pheromone evapora-
tion rate, ρ. The choice of parameters is problem-specific and
depends on the required accuracy of the solution (Gaertner &
Clark, 2005). In the absence of a mathematical model to de-
termine the optimal values for the algorithm parameters, they
have to be determined empirically (van der Zwaan & Mar-
ques, 1999).

7.4. Stop Criterion

At the end of each iteration of the ACO algorithm, the stop
criterion must be checked. Commonly used stop criteria de-
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pend not only on the total number of iterations, but also on the
number of consecutive iterations without any improvement in
the best solution.

The stop criterion adopted in this paper is based on the prob-
abilities associated to the branches belonging to the best so-
lution. In order to illustrate this criterion, let us consider an
example with four production units. Assume that, at the end
of an iteration, the probability associated to each branch Pi is
as indicated in Table 1, where P (0)

i is the probability that an
ant will generate a solution in which production unit i is not
maintained. Similarly, P (1)

i is the probability that an ant will
generate a solution in which production unit i is maintained.
Note that these probabilities are associated to the amount of
pheromone deposited in each branch. Also, let the best solu-
tion found so far be to maintain production units 1 and 4. In
this situation, the path that leads to the best solution is P (1)

1 ,
P

(0)
2 , P (0)

3 and P (1)
4 (Rodrigues, Gomes, et al., 2015).

Table 1. Stop criterion example.

Prod. Unit i 1 2 3 4
P

(0)
i 40% 55% 75% 30%
P

(1)
i 60% 45% 25% 70%

In this example, the mean probability of the path correspond-
ing to best solution is 65%. This value is expected to increase
as the number of iterations increases. The stop criterion is
met when the mean of the probabilities belonging to the best
solution is higher than a stop coefficient λ.

8. NUMERICAL EXAMPLE

This section presents a numerical example to illustrate the
definition of the maintenance scope in order to minimize the
expected total cost per cycle. In this example, a production
system comprising four k-out-of-n systems connected in se-
ries is considered.

The k-out-of-n structure can be found in many production
systems. The production system considered in this exam-
ple could represent, for instance, an electrical power system.
Each k-out-of-n system could represent one stage of the elec-
trical power system (generation, transmission, conversion, dis-
tribution, etc.). Each production unit in a k-out-of-n system
could represent one device in the respective stage (generating
units, transmission lines, transformers in a substation, distri-
bution lines, etc.). The minimum number of functioning pro-
duction units k in each k-out-of-n system could represent the
minimum number of production units needed to meet the de-
mand.

It is assumed that all production units in each k-out-of-n sys-
tem are identical. The increment in the degradation level zi of
each production unit i during each cycle is a random variable

that follows a gamma distribution. Table 2 shows the con-
figuration (k, n), the nominal parameters of the gamma dis-
tribution w0 and θ0, the nominal production cost Pk and the
preventive maintenance cost CP of each k-out-of-n system.
Figure 3 shows the block diagram of the production system
under consideration.

A fixed maintenance cost CF of 40 is used. The corrective
maintenance cost CC is assumed to be 2.5 times more ex-
pensive than the corresponding preventive maintenance cost
CP . The failure threshold level FT and the safety level SL
are 100 and 0.95, respectively. Also, the degradation load-
sharing exponent βD and the cost load-sharing exponent βC
are assumed to be 1.0 and 0.5, respectively.

Table 3 shows the current degradation level of each produc-
tion unit. It can be seen that three production units (B, D
and J) are failed. However, the production system as a whole
is still functioning since each k-out-of-n system has at least
the required k functioning production units. System status is
illustrated in Fig. 4.

8.1. Current Expected Total Cost per Cycle

The first step is to calculate the expected total cost per cy-
cle assuming that no maintenance activity will be carried out,
which will be denoted by scope S0. By definition, M(S0) =
0. To calculate TC(S0), Eq. (9) is reduced to the following
expression:

Table 2. System Data.

System 1 System 2 System 3 System 4
k 3 1 2 2
n 6 2 4 3
w0 3.5 3.0 2.5 2.5
θ0 2.5 2.0 2.0 1.5
CP 30 40 50 60
Pk 80 120 150 50

Figure 3. Production system block diagram.
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Table 3. Current degradation level.

Production Current Production Current
Unit Degradation Unit Degradation

A 9 I 15
B 100 J 100
C 23 K 33
D 100 L 51
E 41 M 13
F 56 N 22
G 25 O 37
H 55

TC(S0) =

L(S0)∑
j=1

Pj(S0)

L(S0)
(21)

Table 4 shows the load-sharing degradation factor LD and
the load-sharing cost factor LC for this example, based on
the number of failed production units y in each k-out-of-n
system.

Table 4. Load-sharing factors.

System n y LD LC
1 6 2 1.50 1.22
2 2 0 1.00 1.00
3 4 1 1.33 1.15
4 3 0 1.00 1.00

Using Eqs. (12) to (16), it is possible to conclude that, if no
maintenance activity is carried out, the system will operate
for more 3 cycles before reaching the safety level SL. Thus,
L(S0) = 3. The expected production cost Pj(S0) for cycles
j = [1, . . . , L(S0)] are obtained as described in Section 6.3.
The values are shown in Table 5. Finally, using Eq. (21), it is
possible to obtain TC(S0) = 442.7.

Figure 4. System current status.

Table 5. Production cost if no maintenance is carried out.

Cycle j Pj(S0)
1 441.2
2 441.3
3 445.5

8.2. Reducing the Expected Total Cost per Cycle

Now, the objective is to find a maintenance scope S that will
reduce the expected average total maintenance cost. The ACO
algorithm is used to find the maintenance scope S that mini-
mizes the expected total cost per cycle TC(S).

A colony with 20 ants (m = 20), a pheromone evaporation
rate ρ of 10% and a stop coefficient λ of 0.9 were used. These
values were obtained after a series of simulations. As men-
tioned earlier, these parameters must be defined empirically
since a mathematical model to determine the optimal values
for them does not exist. A total of 50 simulations were per-
formed using the ACO algorithm with the chosen parameters.
The results are presented in Table 6.

Table 6. ACO algorithm result.

Maintained Prod. Units TC(S) Occurrences
{B, D, F, H, J} 431.55 30
{B, D, J} 431.69 17

{B, D, E, F, H, J} 432.47 2
{D, J} 436.04 1

In this example, the maintenance scope with the highest num-
ber of occurrences (maintain components B, D, F, H and J) is
the optimal solution for this specific problem. It was validated
by running an exhaustive search. The second ranked mainte-
nance scope (maintain components B, D and J) is the solu-
tion in which only the failed production units are maintained.
The fourth ranked maintenance scope (maintain components
D and J) is the only solution found during the simulations that
does not maintain all failed production units (production unit
B is not maintained in this scope).

In the simulations, the average number of iterations until the
stop criterion is reached was 32. In each iteration, one solu-
tion (maintenance scope) for each of the 20 ants is evaluated.
So, the average number of maintenance scopes evaluated in
each run of the ACO algorithm is 32 × 20 = 640. The to-
tal number of possible maintenance scopes for a production
system with 15 production units is 215 = 32, 768 (including
scope S0). It means that the ACO algorithm evaluated only
1.95% of the search space to find close to optimal solutions
(the optimal solution was found in 60% of the times). Figure
5 shows the expected total cost per cycle for the optimal so-
lution. For a comparison purpose, the expected total cost per
cycle for maintenance scope S0 is also shown in Fig 5.
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Figure 5. Comparison of the expected total cost per cycle.

As mentioned earlier, if no maintenance intervention is car-
ried out, the production system is expected to reach the safety
level SL in three cycles, with an average total cost per cycle
of 442.7. In the optimal solution, the production system is
expected to reach the safety level SL in eight cycles, with an
average total cost per cycle of 431.6.

In the optimal solution, the expected cost in cycle 1 is higher
because the maintenance cost is incurred. However, for the
next cycles, the expected cost becomes lower and compen-
sates the amount of money spent in order to perform the main-
tenance intervention.

9. DISCUSSION

In this paper, the use of RUL predictions in a framework to
define maintenance scopes in order to minimize the expected
total maintenance cost was investigated. The numerical ex-
periments showed that the maintenance scope definition pro-
cess can be performed more efficiently when PHM informa-
tion is taken into account.

The implementation of the proposed method in a manufac-
turing facility shall consider that maintenance interventions
must be carried out with minimum impact in production ac-
tivities. Maintenance interventions can be scheduled, for in-
stance, to be carried out overnight or at weekends. In this sce-
nario, the proposed optimization routine would be run at the
end of each work day, which would be considered as a pro-
duction cycle. It is worth pointing that it only makes sense to
run the optimization model if new information on the current
degradation level of at least one production unit is available.

In order to compute the probabilities pi(j) in Eq. (11), it was
considered that no failures will occur between the current cy-
cle and the next maintenance intervention. It may lead to an
optimistic estimation of L(S) since the occurrence of a fail-
ure would increase the degradation rate of some production
units. However, the decision on performing a maintenance in-
tervention is made at the end of each cycle, and it is assumed

that production unit failures are self-announcing. Then, when
a production unit fails, the degradation rates of the surviving
production units belonging to the same k-out-of-n system are
updated at the end of the cycle.

In this paper, the uncertainty in the estimation of the current
degradation level z of each production unit is not considered.
Further improvements of the proposed method may include
considering the uncertainties in the current degradation level
of each production unit, as well as the uncertainties in the
parameters of the gamma distribution of each production unit.

The mathematical formulation considers that the production
cost of a production unit is affected only by the number of
failed production units in the k-out-of-n system. Another op-
portunity for improvements in the proposed method is to con-
sider other factors that may affect production cost such as raw
material quality, human factors and production workload.

10. CONCLUSIONS

A method to define the optimal maintenance scope for a pro-
duction system consisting of multiple k-out-of-n load-sharing
systems connected in series is presented. In the proposed
method, RUL predictions obtained from a PHM system are
used to recommend maintenance scopes according to a cost
criterion. Total cost is broken into production cost and main-
tenance cost.

The ACO algorithm was applied in order to provide the ca-
pability of solving large instances of the problem. The ACO
algorithm has been successfully used in many combinatorial
problems, and the results observed in the proposed method
were very satisfactory. Close to optimal solutions were ob-
tained by evaluating a very small fraction of the search space.
In the numerical example presented to illustrate the applica-
tion of the proposed method, although less than 2% of the
possible solutions were evaluated, the proposed method found
the optimal solution in most simulations.

10



INTERNATIONAL JOURNAL OF PROGNOSTICS AND HEALTH MANAGEMENT

Planning and scheduling maintenance activities is a crucial
task in manufacturing systems. In the competitive manufac-
turing sector, high availability and low production cost are
required for production units. As the production system com-
plexity increases, managing the maintenance processes such
as planning, scheduling and scope definition becomes a very
challenging task.

PHM systems can be a powerful tool to enable the imple-
mentation of smart manufacturing systems. By estimating the
degradation level of production units, PHM systems provide
valuable information to allow the maintenance processes to
be executed in an automated framework.

Future research may extend the scope of this paper by in-
vestigating the application of different metaheuristics for this
problem. The application of hybrid methods combining fea-
tures of different metaheuristics could also be investigated.
Additionally, an investigation on the benefits provided by in-
corporating PHM information in CBM methods which con-
sider different combinations of the most commonly studied
assumptions (economic, functional and stochastic dependency,
load-sharing models, system-level health condition predic-
tion, discrete or continuous health monitoring, etc.) could
also be conducted.
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