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ABSTRACT

Minimal hitting sets (MHSs) meliorate our reasoning in many
applications, including AI planning, CNF/DNF conversion,
and program debugging. When following Reiter’s ”theory
of diagnosis from first principles”, minimal hitting sets are
also essential to the diagnosis problem, since diagnoses can
be characterized as the minimal hitting sets of conflicts in the
behavior of a faulty system. While the large amount of appli-
cation options led to the advent of a variety of corresponding
MHS algorithms, for diagnostic purposes we still lack a com-
parative evaluation assessing performance characteristics. In
this paper, we thus empirically evaluate a set of complete
algorithms relevant for diagnostic purposes in synthetic and
real-world scenarios. We consider in our experimental eval-
uation also how cardinality constraints on the solution space,
as often established in practice for diagnostic purposes, influ-
ence performance in terms of run-time and memory usage.

1. INTRODUCTION

Minimal hitting sets (MHSs) are exploited in many applica-
tions. That is, for example, hitting a set of landmarks MHSs
can help in AI planning (Bonet & Helmert, 2010), they en-
able a straightforward transformation of conjunctive and dis-
junctive normal forms (CNF / DNF), and hitting sets of pro-
gram slices can be used for isolating program faults (Wotawa,
2002) when debugging software. Minimal hitting sets play a
significant role also in model-based diagnosis. That is, for
his ”theory of diagnosis from first principles” (Reiter, 1987)
Reiter made the connection explicit and characterized diag-
noses as the minimal hitting sets of conflicts between our
knowledge about a system (the model) and actual experienced
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faulty behavior (Reiter, 1987; Greiner, Smith, & Wilkerson,
1989). Around the same time, de Kleer and Williams pro-
posed their ”General Diagnostic Engine” (de Kleer & Williams,
1987) using an ATMS1 and minimal hitting set computation.
Newer approaches to model-based diagnosis that use SAT
solvers to compute diagnoses directly (Metodi, Stern, Kalech,
& Codish, 2012; Feldman, Provan, de Kleer, Robert, & van
Gemund, 2010) might not make the conflicts known to the
user, but the connection is still there in the theoretical back-
ground (as described by Reiter’s theory) and relevant data
would be learned in the solvers themselves. Recent work
like (Pill, Quaritsch, & Wotawa, 2015) suggests that MHS-
related knowledge specific to a domain could be exploited
also in such direct setups. In (Nica, Pill, Quaritsch, & Wotawa,
2013), we showed that the classic computation of diagnoses
via explicit conflicts and minimal hitting sets is still competi-
tive compared to direct approaches. In this paper our focus is
on evaluating the minimal hitting set computation aspect.

The wide applicability of MHS computation led to a variety
of available solutions that would be relevant also for diagnos-
tic purposes, e.g. (de Kleer & Williams, 1987; Reiter, 1987;
Greiner et al., 1989; Wotawa, 2001; de Kleer, 2011; Shi &
Cai, 2010; Lin & Jiang, 2003; Abreu & van Gemund, 2009),
and which were compared against one or the other compet-
ing approach. However, complementing a theoretical analy-
sis of selected MHS algorithms in a general context as offered
in (Eiter, Makino, & Gottlob, 2008), we currently still lack a
comparative view assessing performance characteristics from
a diagnostic perspective and whether these match common
expectations in the community.

While some algorithms, e.g. (de Kleer, 2011; Shi & Cai,
2010), aim at identifying some cardinality-minimal hitting
sets and may shed solutions during optimization steps as long

1Assumption-based Truth Maintenance System (de Kleer, 1986)
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as the derived solution is indeed a cardinality-minimal one,
we are interested in complete algorithms that can derive all
subset-minimal solutions. This is motivated by the fact that
in applications like model-based diagnosis, each hitting set
corresponds to a theoretical solution of a real-world problem,
and a corresponding incomplete algorithm might undesirably
omit the very actual solution to the problem in its results.

In practice, we quite often establish bounds on the desired
hitting sets’ characteristics. The corresponding aim is to limit
the search space in the context of the desired solutions’ com-
plexity rather than in the context of a computation’s com-
plexity. This way we do know which hitting sets (i.e., their
characteristics) we might miss in our results. Following the
assumption that the more complex a solution gets, the more
unlikely it is, the search’s goal is thus revised to be complete
“within given bounds on the solution’s complexity”. For di-
agnosis, we would, for instance, compute all diagnoses con-
taining up to three faults. Fortunately, algorithms like (Reiter,
1987; Greiner et al., 1989) allow us to continue the search
from all the intermediate results if we find that the actual so-
lution has not been found within given bounds. Since such
restrictions affect consumed computation resources, we took
also a specific interest in the related impact on performance
relations, i.e., in the context of cardinality restrictions.

Extending (Pill, Quaritsch, & Wotawa, 2011), we empirically
evaluated a selection of relevant, complete algorithms in this
paper. In order to assess the algorithms’ performance in terms
of run-time and memory footprint, we used precisely scal-
able artificial scenarios and synthetic samples generated for
a real world diagnostic scenario by injecting faults in digital
circuits. We implemented all algorithms in Python, accom-
modating the common trend to use higher level languages for
actual applications. While we also experimented with Java,
in the end we chose Python due to the better common perfor-
mance in earlier tests (Pill et al., 2011) (see also Sec. 3).

We structured this article as follows. In Section 2, we pro-
vide a formal introduction to the minimal hitting set problem
and offer brief descriptions of the algorithms selected for our
evaluation. Our experiments are depicted in Section 3, with
Section 3.2 focusing on the test platform and our results. Fi-
nally, we draw our conclusions in Section 4.

2. THE MINIMAL HITTING SET PROBLEM
AND SELECTED MHS ALGORITHMS

In terms of basic definitions for the minimal hitting set prob-
lem, we adopt the formulations of Reiter given in (Reiter,
1987), with a hitting set formally defined as follows:

Definition 1 (Hitting set). Given a set of sets SCS, a set
h ⊆ ⋃

CSi∈SCS CSi is a hitting set for SCS, iff for any set
CSi ∈ SCS the intersection with h is non-empty, i.e. ∀CSi ∈
SCS : h ∩ CSi 6= ∅. Let COMP =

⋃
CSi∈SCS CSi be the set of

elements that can be part of a CSi ∈ SCS.

Example 1. Let SCS be the set {{1,2,5}, {2,3,4}, {1,2},
{2,4,5}}. Then, the set {2} is a hitting set of SCS, and so
are {1, 2} and {1, 4}.
Obviously, {2} is the smallest possible hitting set for Exam-
ple 1, with {1, 2} being a superset. While {1, 4} is also larger
than {2}, it is no superset of {2} or any other hitting set.
These observations raise the question of how to actually de-
fine minimality in the context of hitting sets and they suggest
the consideration of the following two metrics.

Definition 2 (Subset-minimal hitting set). Given a hitting set
h for some SCS, h is said to be minimal with respect to subset
inclusion, iff there exists no other hitting set h′ for SCS, such
that h′ ⊂ h.

Definition 3 (Cardinality-minimal hitting set). Given a hit-
ting set h for some SCS, h is considered to be minimal with
respect to cardinality, iff there exists no other hitting set h′ for
SCS, such that |h′| < |h|.
The subset-minimal hitting sets for Example 1 are {2}, {1, 4}
and {1, 3, 5}, whereas {2} is the only cardinality-minimal
hitting set. Evident also from the example, a cardinality-
minimal hitting set is per definition also subset-minimal, while
the reverse cannot be concluded. That is, the relations re-
sulting from the partial order defined by subset-inclusion are
present also in the the partial order defined by cardinality,
but obviously not the other way around. In practice, one
might actually consider both aspects, that is, focus the search
on subset-minimal hitting sets (that contain no item that is
not strictly required) with a specific maximum size that is
most likely related to the complexity of the hitting set in the
application’s context. For the considered model-based di-
agnosis problem as defined in (de Kleer & Williams, 1987;
Reiter, 1987), we know that any superset of a diagnosis (a
subset-minimal hitting set of the conflicts) is also a solution
resolving (hitting) all encountered conflicts (in SCS). Thus
we would not be interested in expensive computations of so-
lutions that are not subset-minimal since we can easily derive
them from the subset-minimal ones. Furthermore, in practice,
we might consider to limit the search to all (subset-minimal)
single-, double-, or triple faults (Reiter, 1987) (and so on).

While we assume from here on subset-minimality when us-
ing the term minimal hitting set, we occasionally restrict the
search with an upper bound on the cardinality. While out-
side the scope of our paper, (possibly orthogonal) metrics
using application-specific weights or probabilities (de Kleer
& Williams, 1987) can also help with restricting the search
space effectively.

Given the widespread application options, researchers have
been proposing a variety of approaches for computing MHSs.
Interested in algorithms that can deliver the entire set of min-
imal hitting sets for a given set SCS, we briefly introduce our
selection of relevant algorithms.
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The traditional HS-DAG: In (Reiter, 1987) Raymond Re-
iter proposed not only a diagnosis theory, but also a corre-
sponding MHS algorithm. For his approach he maintains a
node- and edge-labeled tree that encodes his strategy for a
structured breadth-first search and reports the MHSs via spe-
cial leafs. That is, while edge-labels are in COMP, the labels
of non-leaf nodes are in SCS and those of the leafs in {X,×}.
A function h(n) reports for a node n the set of edge-labels
on a node n’s path from the root node, and h(n) of a leaf la-
beled X gives a minimal hitting set. Reiter constructs his tree
in a breadth-first manner as follows: Beginning with the ini-
tial root-node n0, the tree is derived iteratively by processing
new (unprocessed) nodes according to their distance from the
root (breadth-first). To this end, each new node gets labeled
with some CSi ∈ SCS such that CSi ∩ h(n) = ∅, where
h(n0) = ∅. If there is no such CSi, then h(n) is a minimal
hitting set candidate. If there is furthermore no other leaf n′

such that h(n′) ⊆ h(n), the node is labeled X, otherwise it
is closed by labeling it ×. For a node n’s label CSi, we then
create for each c ∈ CSi a new node n′ and an edge from n to
n′ labeled with c. Several subset-checks on all the labels are
used to prune the tree such that the nodes labeled X are in fact
MHSs and unnecessary tree parts are avoided as well as re-
moved. The latter could happen if there are non-minimal CSis
in SCS (s.t. there is some CSj in SCS with CSj ⊂ CSi). As
is well known, Reiter’s construction can exploit cardinality-
limits very efficiently in that only edges and nodes with a
h(n) satisfying the restriction have to be constructed. When
such a limit is increased subsequently, the computation can be
continued by expanding the priorly derived tree. Greiner et al.
presented with HS-DAG (Greiner et al., 1989) an improved
version that uses a directed acyclic graph (DAG) instead of
a tree and which addresses some minor but serious flaws in
Reiter’s original publication. The main idea of HS-DAG is to
re-use nodes with the same h(n). To this end, whenever the
children of some node are “created”, HS-DAG searches for a
node with a corresponding h(n) that it could reuse as a desti-
nation node for the newly created edge. In our evaluation we
will use an implementation of HS-DAG that we used also for
our diagnostic experiments reported in (Nica et al., 2013).

For our running example of SCS = {{1, 2}, {1, 2, 5}, {2, 3, 4},
{2, 4, 5}}, HS-DAG would construct the DAG shown in Fig. 1
during its search. For the root’s label (the first CSi = {1, 2}),
we out for 1 and 2 and create the corresponding nodes n1 and
n2. h(n1) = {1} does not hit CS3 = {2, 3, 4}, so we label
n1 accordingly. h(n2) = {2} hits all CSi ∈ SCS, so that we
label it with X, and continue with the next level. For n1’s
label we fan out for 2,3, and 4 and create the nodes (there are
no previous nodes with matching h(n) that we could reuse
as destinations). h(n3) is a superset of the label of node n2
marked X, so that we close node n3 and label it ×. For n4
there is some CSi ∈ SCS not hit by h(n4) so that we label n4
accordingly. For n5, there is no CSi ∈ SCS not hit by h(n5)

n0 : {1, 2}

n1 : {2, 3, 4}

n3 : ×

2

n4 : {2, 4, 5}

n6 : ×

2

n7 : ×

4

n8 : X

5

3

n5 : X

4

1

n2 : X

2

Figure 1. HS-DAG search for our running example.

so that it is labeled with X. Proceeding with the expansion
for n4, we finally arrive at the DAG depicted in the figure.
All dashed nodes can be pruned from the DAG, whose nodes
n2, n5, and n8 labeled X indeed report the correct MHSs
({2} = h(n2), {1, 4} = h(n5), and {1, 3, 5} = h(n8)).

A variant of Reiter’s idea avoiding nodes that would be
pruned—HST: Franz Wotawa presented with HST a vari-
ant of Reiter’s algorithm that aims to omit constructing nodes
that would be pruned by Reiter’s approach, and thus can avoid
the corresponding subset-checks (Wotawa, 2001). This is
achieved by adopting an idea used for subset computation:
For simplicity let us assume that COMP consists of the inte-
gers 1, . . . , |COMP | (otherwise we need some mapping func-
tion). The subset computation algorithm then starts with a
root node n0 labeled λ(n0) = |COMP | + 1. For each i
from 1 to λ(n0) − 1 a new child node ni is generated, la-
beled λ(ni) = i. Any (new) node n′ with l(n′) > 1 is
also treated accordingly. The set of node labels from any
node to the root node represents a corresponding subset of
COMP. HST adopts this idea for computing minimal hit-
ting sets, mapping the elements (in COMP) of the various
CSis to integers from 1 to |COMP | according to the order
in which they are encountered, the decreasing enumeration
starting with label |COMP |. HST maintains an internal vari-
able MIN storing the highest label value not encountered so
far (and correspondingly initialized with COMP) and con-
structs the tree as follows: For any new node, the set of labels
on its path to the root are checked whether there is some CSi
not hit so far, which then is either associated with this node,
or lacking such a CSi, the label set is a hitting set to SCS so
that the node gets closed and is labeled OK. If needed, new
mappings are established, with the node variable min(n) set
to MIN + 1 afterwards. For the HST hitting set algorithm, the
creation of the child nodes as described above for the subset
computation algorithm is limited to the range min(n) to l(n).
Like for HS-DAG, closing and pruning rules aim to minimize
the tree.
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n0 : {1, 2}MIN=5

n1 : X

4 = l(2)

n2 : {2, 3, 4}MIN=3

n3 : X

2 = l(4)

n4 : {2, 4, 5}MIN=1

n6 : ×

2 = l(4)

n7 : X

1 = l(5)

3 = l(3)

n5 : ×

4 = l(2)

5 = l(1)

Figure 2. HST search for our running example.

The tree constructed by HST for our running example as shown
in Fig. 2 is different to the one created by HS-DAG. Let us
start with the root node n0. Every node n has two labels;
one integer λ(n) ranging between 1 and |COMP | used as up-
per bound for the fan out, and one label that is either one of
{X,×} or some CSi ∈ SCS. For n0, λ(n0) is per defini-
tion |COMP | + 1, for all other n it is equal to the label of
n’s incoming edge. The other label for n0 is {1, 2}. Now
we have to establish a mapping l(c) between the components
c ∈ COMP and the integers describing already seen compo-
nents and used for the fan out. For n0, MIN is initialized to
|COMP |, and since components 1 and 2 are new, they are as-
signed l(1) = 5 and l(2) = 4 (MIN will be 3 for the next con-
sidered node n1, where report the initial MIN for nodes where
we fan out also in the Fig. 2). Now we create the child nodes
for integers i ranging from the minimum assigned label 4 and
up, bound and smaller than λ(n0), creating nodes n1 and n2.
Now we check for n1 whether the set of path labels (let us
call it v(n)) from the root to n1 would define a hitting set via
the corresponding components. We have v(n1) = {4}, and
via the mapping function l(2) = 4 the hitting set candidate
is {2}, where we have indeed that there is no CSi ∈ SCS
not hit such that it is a hitting set and n1 is labeled with X.
Closing and pruning works similar as for HS-DAG with the
corresponding nodes highlighted with × and dashed lines re-
spectively. For any node labeled with a CSi ∈ SCS rather than
X or ×, we follow the fan out principle mentioned above,
such that we end up with the tree shown in Figure 2. If we
compare node n4 with the corresponding node n4 created by
HS-DAG, we see that with HST we do not create a node for
Ci = 2, since l(2) = 4 is greater than λ(n4) = 3. Thus while
the construction is somewhat similar to HS-DAG’s there are
also differences. Nevertheless, also HST produces the correct
MHSs for our running example, defined by those nodes in the
tree as of Fig. 2 labeled X.

The Boolean variant of the BHS-Tree: A Binary Hitting
Set Tree is the backbone of the BHS approach (Lin & Jiang,
2003). Starting with SCS as the root node’s labeling set C,

we identify for each node’s labeling set C an element cs ∈
COMP in C that we use to split C into those CSis in C that
contain cs and those CSi that do not contain cs. Then we
create two child nodes and use these sets as their labels, where
for the former (the CSis in C that contain cs) we remove cs
from all individual Ci in the new C and report it separately.
A second label H for each node is used to store the “split-
elements” and is used in the computation of the MHSs when
traversing the tree “upwards”, that is from its leafs to the root.

The authors showed in their paper how to implement their
basic idea in a Boolean algorithm that does not need to main-
tain and prune a tree: Here, basically a Boolean formula C in
disjunctive normal form (DNF) encodes the CSis in SCS as
conjuncts of the corresponding negated bits for any c ∈ CSi.
Choosing a split element (bit) cs, one can iteratively resolve
a disjunction C of conjuncts into cs∧C1∨C2, with C1 a dis-
junction of those conjuncts in C not hit by cs, and C2 derived
by removing cs from all the conjuncts CSi in the original dis-
junction C. Several specific cases (e.g. when there is some
conjunction with a single cs) complete the general strategy,
as is depicted in the following five rules encoding their re-
solve functionH(C). Repeatedly applying these rules results
in another Boolean formula encoding the MHSs, where the
authors use a special function (implementing Boolean laws)
in order to achieve a normal form.

1. H(False) = True, H(True) = False;
2. H(c̄s) = cs;
3. H(c̄s ∧ C) = cs ∨H(C);
4. H(c̄s ∨ C) = cs ∧H(C);
5. H(C) = cs∧H(C1)∨H(C2) for some arbitrary atomic

proposition cs present in C, with C1 = {ci | ci ∈ C ∧
c̄s 6∈ ci} and C2 = {ci | c̄s 6∈ ci ∧ (ci ∈ C ∨ ci ∪ {c̄s} ∈
C)}.

Obviously, the heuristic used for selecting the “split element”
cs seriously affects performance. An intuitive and common
approach is to choose one of the elements that hit the most
CSis. For our running example, we would start for instance
with the DNF 1̄2̄∨ 1̄2̄5̄∨ 2̄3̄4̄∨ 2̄4̄5̄ as initial Boolean formula.
Rule 5 would be the appropriate one, and with the mentioned
heuristic we would choose element 2, s.t. H(1̄2̄∨ 1̄2̄5̄∨ 2̄3̄4̄∨
2̄4̄5̄) = 2 ∧ H(False) ∨ H(1̄ ∨ 1̄5̄ ∨ 3̄4̄ ∨ 4̄5̄). Rules 1 and
4 would then be the next steps. As mentioned, Boolean laws
are used to minimize duplicates (2∨2 = 2) and ensure subset
minimality of the hitting sets (2 ∨ 12 = 2). Using the rules,
we can derive the correct MHSs for our running example.

In (Pill & Quaritsch, 2012) we showed that an alternative
strategy choosing some cs from one of the smallest CSis in
C offers significant performance advantages for cardinality-
restricted searches while performance is on par for unrestricted
searches. In our experiments, we thus used our best vari-
ant (V3-R4’-Stop) from (Pill & Quaritsch, 2012), that uses
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this strategy and further optimizations that avoid unnecessary
loop iterations/recursions for cardinality restrictions. We re-
fer the interested reader to that paper for more details.

While known to offer attractive performance, a drawback of
the Boolean approach might be that SCS has to be known in
advance, whereas HST and HS-DAG do not require that.

Extraction from a matrix—Staccato: A binary matrix A,
where aij is true iff CSi ∈ SCS contains element j ∈ COMP,
is the backbone of Staccato (Abreu & van Gemund, 2009).
Inspired by the model-based diagnosis domain, Staccato was
designed to approximate the set D of MHSs given two pa-
rameters λ and L. The underlying idea is to use a mechanism
borrowed from spectrum-based fault localization in order to
identify a component ranking; which ones are more likely to
be at fault. In our setting, the heuristic amounts to counting
the CSis that contain a component cj . With L an upper bound
on the amount of solutions derived, λ defines the fraction of
the ranked components to be considered in an iteration. The
basic steps behind Staccato then are as follows (Abreu & van
Gemund, 2009):

1. Create matrix A, initialize D = ∅, and establish a rank-
ing for the elements cj .

2. Elements cj present in all CSis (MHSs of size 1) are
added to D.

3. While |D| < L, do the following for the first λ elements
in the ranking:
(a) Remove from A the element cj as well as all CSis

that contain it.
(b) Run Staccato with the new A.
(c) Combine all returned solutions with the element cj

and verify whether this is a minimal hitting set (i.e.
it is not subsumed so that the minimality of the so-
lution is ensured).

In order to compute the complete set of MHSs, our imple-
mentation behaves equivalent to a configuration with λ = 1
and L = ∞. Note that our setting also does not require the
binary array e used in the original publication to discriminate
between allowed behavior and conflicts, so we revised our
brief introduction accordingly. Like the Boolean algorithm,
Staccato obviously requires SCS to be initially known. For
our running example, obviously in the first ranking, compo-
nent 2 would be chosen and consequently eliminated from the
matrix; to be followed by one of the elements 1,4 or 5 since
they’re distributed equally.

The General Diagnostic Engine—GDE: In direct compe-
tition with Reiter’s algorithm, de Kleer and Williams pro-
posed their conflict-driven general diagnostic engine (de Kleer

& Williams, 1987). The concept of their utilized minimal hit-
ting set algorithm is very intuitive. Starting with an MHS-list
M containing only the empty set, for any newly derived CSi
all the minimal hitting sets ∆j in M for the priorly consid-
ered CSks are refined as follows: If ∆j hits CSi it stays un-
changed, otherwise it is removed from M and the supersets
∆l = ∆j ∪ {c} for all c ∈ CSi are added to M iff there
is no ∆m ∈ M such that ∆m ⊆ ∆l for the corresponding
∆l. A recent formalization of this approach can be found
in (Nyberg, 2011).

When SCS is completely known a priori, there is the funda-
mental question of which CSi sequence to choose for a com-
putation. Considering the upper bound of the “fan-out” when
refining ∆j ∈M for some CSi, we chose to process the CSis
in order of their (ascending) cardinality. With this strategy
we aimed at keeping the amount of MHSs in M low, in or-
der to minimize the amount of total refinements themselves
as well as the related subset-checks. Please note that also the
Boolean algorithm would follow this suggestion in choosing
its elements with our suggested heuristic. HS-DAG was ini-
tially defined also to consider the hitting sets in ascending or-
der, since the fan-our can be kept low this way, which is cer-
tainly of interest when we’re interested only in solutions up
to a certain size such that we would construct also the DAG
only up to that level. Furthermore pruning can be avoided
this way. Please note that in the literature this MHS algorithm
is sometimes referred to as “Berge’s” algorithm, see for in-
stance (Eiter et al., 2008).

For our example SCS = {{1, 2}, {1, 2, 5}, {2, 3, 4}, {2, 4, 5}},
the construction would create the following sequence of inter-
mediate solutions such that with each→ another CSi is taken
into account. Starting with the ∅, we get → {{1}, {2}} →
{{1}, {2}}→ {{1, 3}, {1, 4}, {2}}→ {{1, 3, 5}, {1, 4}, {2}}.

Collecting solutions with a SAT Solver: With today’s ef-
ficient SAT solvers, there is a trend towards compiling prob-
lems as SAT instances and then derive corresponding solu-
tions as satisfying assignments.

For instance, in the context of model-based diagnosis, an al-
ternative to computing conflicts and their minimal hitting sets
is, given some model, to let a solver determine the diagnoses
(the minimal hitting sets of SCS) considering the given data,
and let it derive one MHS (encoded in a satisfying assign-
ment) after another. Corresponding blocking clauses added
after finding a solution then exclude this MHS and its super-
sets from further computations. Recent work in that direc-
tion includes that of Metodi and colleagues (Metodi et al.,
2012). Sometimes such setups can offer advantages for di-
agnostic setups (Nica et al., 2013). Presumably this could
stem to a large degree from the integration of the various al-
gorithmic stages in the search (local conflicts are exploited in
the solver’s own strategy versus having a hitting set algorithm
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sit on top of it that provides only minimal information to the
underlying solver reporting the conflicts that have to be hit)
and not having to compute an explicit SCS (or the necessary
subset) as “intermediate format”.

Still, we would be interested in whether such a SAT-solver
oriented route could be taken also for the efficient computa-
tion of minimal hitting sets for a pre-known SCS. Borrow-
ing from the diagnosis setting where MAX-SAT solvers (cf.
MERIDIAN (Feldman et al., 2010)) or cardinality networks
(cf. (Metodi et al., 2012)) are exploited to ensure the mini-
mality of the diagnoses (equal to the minimal hitting sets of
SCS), we encode the MHS problem as follows: SAT solvers
usually take some description in conjunctive normal form as
input, so that we can derive the required model for an SCS
very easily. That is, any CSi in an SCS is encoded as clause
Cli in the form of a disjunction of the corresponding bits of
its elements. The SAT problem SAT(MHS) then combines all
Clis via logic and such that a satisfying assignment represents
indeed some hitting set of SCS.

Restricting the amount of component bits that can be true si-
multaneously to some integer (via MAX-SAT or cardinality
networks), we can derive all the MHSs of an SCS as follows,
when iteratively raising this limit:

1. Set the current cardinality card to 1 and M to ∅
2. While (card ≤ |SCS |)

(a) While (SAT(MHS) for cardinality card ) do
i. Compute an MHS ∆ (with current cardinality)

and add it to M
ii. Add the disjunction of ∆’s negated elements as

blocking clause
(b) card+ = 1

3. Return M as the set of MHSs

Adding for any derived minimal hitting set ∆ the respective
blocking clause (a logic or of all the negated “bits” in ∆)
via logic and to the problem description ensures (1) the min-
imality of the derived solutions in M , and (2) that the same
solution won’t be computed more than once. Evidently, the
approach thus requires a single call of the solving engine per
solution, even if the “program” itself is not newly invoked.

Restrictions on the search can be easily established by re-
placing the condition of the main-while-loop in Step 2 with
a more sophisticated one. While the given one ensures the
computation of all solutions for a complete approach (and
terminates compared to some infinite loop), obviously we can
easily adopt it. For a cardinality limit, we can simply replace
it with (card ≤ min{|COMP |, |SCS |, limit}).
For our experiments we implemented two approaches, which
basically resemble the ones we used in (Nica et al., 2013).
The first, HS-MaxSAT, implements the MAX-SAT variant

with the Yices2 solver, whose extended assertions can be used
to state (partial, weighted) MaxSAT problems. Adopting the
idea presented in (Feldman et al., 2010), we assign all clauses
in SAT(MHS) weight∞ via standard assertions, whereas for
any c ∈ COMP an extended assertion that the corresponding
bit is False is assigned weight 1:

∀clauses ∈ SAT (MHS) :(assert clause)

∀c ∈ COMP :(assert+ ¬c 1)

Using Yices’ (max-sat) command, we then obtain the max-
imum satisfiable subset in terms of the extended assertions
(assert+) for a given bound. In our case, this bound directly
relates to the derived MHS’s cardinality, since any component
whose bit is assigned True (and thus is contained in the MHS)
adds a weight of one to the SAT problem’s solution. A block-
ing clause for some derived MHS ∆ is added via (assert
¬∆) for the following computations.

Our second SAT-solver based implementation, coined HS-
SAT, encodes the MHS-problem as standard SAT problem
and features the SCryptoMiniSAT3 solver. A classical way
to encode cardinality constraints in the Boolean domain is
to make use of sorting networks like Odd-Even Mergesort
(OEMS) networks (Batcher, 1968). The underlying idea there
is to transform the summands ci ∈ COMP into a unary num-
ber (i.e.“sort” all the Trues to the left) and then add for some
bound k the clause ¬xk+1, where {xi|1 ≤ i ≤ |COMP |} are
the sorted bits. As in our case it is likely that |COMP | � k,
we use Cardinality Networks (Ası́n, Nieuwenhuis, Oliveras,
& Rodrı́guez-Carbonell, 2009) instead, that are tailored for
such scenarios. Compared to OEMS networks, this reduces
the number of clauses to O(n log2 k) from O(n log2 n), with
n equal to |COMP | in our case.

SCryptoMiniSAT has a specific feature with an internal loop
that reports all the solutions (in our case for a given cardi-
nality), adding the corresponding blocking clauses in the in-
ternal loop. Thus, all solutions for some cardinality k are
retrieved via a single “call”. For any increment of the cardi-
nality limit, the corresponding cardinality network attached
to the SCS model has to be redefined, and for earlier solu-
tions the corresponding blocking clauses have to be attached
as well, that is, before starting the solver for the new cardi-
nality scope anew.

For our example, let us assume that CN contains the clauses
for the cardinality network as described above. Then the ini-
tial CNF would consist of CN and the CNF of SCS. The latter
would consist of four clauses 1 ∨ 2, 1 ∨ 2 ∨ 5, 2 ∨ 3 ∨ 4, and
2 ∨ 4 ∨ 5. Starting with this CNF and a CN for size one,
we would derive a satisfying assignment where 2 is True and
all other variables are False. This reports the MHS {2}. We
then add a clause 2̄ to the CNF, and would not get a satis-
2http://yices.csl.sri.com
3http://amit.metodi.me/research/scrypto/
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fying assignment when using a CN for size one. Thus we
would replace it with a CN for size two. There, a satisfying
assignment would give us the MHS {1, 4}, such that we add
the clause 1̄ ∨ 4̄ to the CNF. We continue with the described
loop, and on termination we produced the expected MHSs.

3. EMPIRICAL EVALUATION

Unlike for our early experiments (Pill et al., 2011), in this
paper we concentrate on implementations in a single pro-
gramming language, avoiding a further dimension in terms
of the language. All the algorithms were thus implemented
in Python (CPython 2.7.1), which is easy to debug. Offer-
ing attractive performance in comparison to Java (as evident
from our early experiments) as well as scientific libraries like
SciPy, we consider Python an attractive, performant, and eas-
ily debuggable language that suits scientific development. This
is true specifically in the scope of rapid prototyping and proof-
of-concept implementations that offer then the attractive and
convenient option to replace performance critical code sec-
tions with custom C-code, while most of the code-base is kept
in Python. While newer Python interpreters such as PyPy
have been gaining in performance using methods like just-in-
time compilation, we relied on the more stable CPython ref-
erence interpreter, also for its broader support of third-party
libraries. Due to the fact that data types used in an imple-
mentation play an important role for run-time and memory
performance, in the following we give a short overview of
the types we used for performance-critical parts of the algo-
rithms. Note that our implementations are the result of a pro-
filing process aiming at a good trade-off between run-time
and memory characteristics.

The backbone of the HS-DAG implementation is the compact
Python-graph library (version 1.8), which is built upon DAG-
global neighbor and incidence hash maps (Python dicts).
In addition, we keep reverse hash mappings from node labels
(CSis) and potential hitting sets (h(n)) to their correspond-
ing nodes for an efficient implementation of the node reuse
and pruning rules. A list of nodes labeled OK (grouped by
their cardinality) speeds up involved subset checks. For the
implementation of HST, we replaced the graph library with
a single node class as HST builds a tree structure only. A
HST node forms a tree using a mapping node label→ child
node for its children and a parent node pointer. Our Staccato
version builds up on a (masked) 2D Boolean NumPy array
and its corresponding (C-implemented) access methods. We
considered two implementations of the Boolean algorithm.
That is, a recursive one that implicitly constructs a tree-like
structure, and an iterative one. This way we could investi-
gate whether any advantage of the Boolean algorithm over
the others would have its origin in avoiding a tree entirely.
Both Boolean variants utilize Python sets of frozensets
for the implementation of theirH function due to their highly
efficient operations. The iterative version stores its work-list

and solutions as lists of (h,C) tuples grouped by cardinality,
where h is a (partial) potential solution and C is the (possibly
empty) set of remaining CSis that still need to be addressed
(for this h). Similarly, GDE and the SAT-based algorithms
use sets of sets as their main data structure for storing so-
lutions, where the former again uses cardinality grouping to
reduce the number of subset checks necessary.

3.1. Test Suite and Experimentation Platform

Our test suite aggregated examples from several scenarios,
a selection reported in this paper. The artificial ones using
integer numbers as elements c ∈ COMP allowed us to pre-
cisely define and scale the features of an SCS. Our synthetic
real world scenarios are based on logic circuit diagnosis and
aim to show how real life example performance would corre-
late with that for the chosen artificial settings. These samples
were generated synthetically via fault injection.

Test Scenario TSA1: Completely disjoint CSis ∈ SCS
Given two integers m, n (m ≥ n), m components are dis-
tributed over n disjoint CSis ∈ SCS, where the difference
in size between any CSi is one at most. This maximizes
the amount and size of the MHSs for given |COMP |,|SCS |.
As |MHS | = |SCS |, any reasonable limit on their size does
not affect performance (relations). More formally, we have
that |COMP | ≥ |SCS |, ci ∈ CSi ∈ SCS → ci ∈ COMP,
∀ci ∈ COMP : ∃CSj ∈ SCS : ci ∈ CSj , and ∀CSi,CSj ∈
SCS :

∣∣|CSi| − |CSj |
∣∣ ≤ 1.

Example 2. TSA1(10, 3) = {{1, 4, 7, 10},{2, 5, 8},{3, 6, 9}}.

Test Scenario TSA2: Completely random CSis ∈ SCS
For this scenario SCS consists of n CSis that contain m com-
ponents on an entirely random basis. That is, each of the m
components appears in any of the n CSis with a probability
of 0.5. For this random setting we will evaluate the impact
on performance relations when constraining |MHS |, where a
well-sized sample set will be crucial in order to avoid any bias
from a specific random pattern.

Test Scenarios TSR1 to TSR4: Scenarios based on the IS-
CAS benchmark suite The ISCAS’85 benchmarks (Hansen,
Yalcin, & Hayes, 1999) contain ten circuits such as inter-
rupt controllers, modules for single-error-correction (SEC),
double-error-detection (DED) and arithmetic logic units (ALU)
with 160 to 3512 gates. Our Test Scenarios TSR1 to TSR4
were constructed from the circuits c499.isc (32bit SEC, TSR1),
c880.isc (8bit ALU, TSR2), c1355.isc (32bit SEC, TSR3),
and c1908.isc (16bit SEC/DED, TSR4). These circuits fea-
ture 41 / 60 / 41 / 33 inputs, 32 / 26 / 32 / 25 outputs, and 202
/ 383 / 546 / 880 gates respectively, where we equipped ev-
ery gate with a behavioral assumption encoding whether the
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gate operates correctly or not. Unsatisfiable cores of these as-
sumptions for the derived SAT Problem P represent the CSis
for a diagnosis problem SCS, where P has the form

P =
∧

gi∈G

¬AB(gi)⇒ outgi := fgi(in1
gi , in

2
gi , . . .)

with G the set of gates, and outgi , inj
gi and fgi are a gate gi’s

output-/input signals and its Boolean function. In order to
construct some SCS, we purposefully injected m faults (ag-
gregating to the desired MHS ∆) by altering the logic func-
tion of m gates (Pill et al., 2011). Aiming to avoid that for
a scenario’s in- and output values the individual faults mask
each other, we froze all output lines that changed after al-
tering a gate, and allowed only the remaining outputs to flip
when choosing the next gate. Using the in- and output values
as observations, we computed the desired SCS as the set of
conflict sets derived during a cardinality-restricted on-the-fly
diagnosis using HS-DAG with Yicesacting as theorem prover.
Obviously this allows MHSs with a cardinality lower than m,
so that we verified ∆’s validity in terms of subset-minimality.

3.2. Experimental Results

Like for our earlier experiments (Pill et al., 2011), we ran the
tests reported in this paper on a MacBook Pro (early 2011)
with an Intel Core i5 CPU (2.3GHz), 4GB RAM, and a solid-
state drive with Mac OS X 10.6 as operating system. Swap-
ping and the GUI were disabled for these tests. Facing re-
source limits of 300 seconds and 2GiB of memory, all sam-
ples were given as pre-computed, cardinality-sorted SCS. For
our memory statistics, we polled the operating system in a
separate process about the resident set size (RSS) and filed
the maximum value experienced for the run of a sample.

3.2.1. Experimental Results for TSA1 and TSA2

Figures 3 and 4 show the algorithms’ performance for our two
artificial test scenarios TSA1 (with disjoint CSi) and TSA2
(with random CSi). We plot average values from 20 samples
using logarithmic scales for both axes. We aimed at 120 ab-
scissae for the range on the x-axis, so that with |COMP | ≈
103i/120 for 0 ≤ i ≤ 120 and |COMP | ≥ 3 necessarily a
natural number, we ended up with 86 points for Figure 3.

Figure 3 depicts the performance for the disjoint CSi of TSA1,
with a growing |COMP | and a fixed SCS size of three. A
corresponding HS-DAG tree would be of depth |SCS | = 3,
and the fan out of a non-leaf node would be approximately
|COMP |/|SCS |, that is between one and 334 for a |COMP |
range of three to 1000. Since |MHS | equals |SCS | for TSA1,
we chose to report the values for a size of three so that the run-
times would be comparable to the other examples reported in
this paper. Please note that the performance relations are sim-
ilar for other sizes of SCS.

Despite the obvious differences in the actual run-times, the
algorithms scale similarly, with HST the only exception that
scales worse. The two SAT-solver based approaches and Stac-
cato are not even close to the pace offered by GDE and the
Boolean algorithm variants. Consequently, the direct SAT
solver-route seems to be an unattractive one for MHS com-
putations, which, as we will see, is seconded by the results
for the other tests scenarios. While memory consumption
was not bad, run-time performance was severely lacking, with
several orders of magnitude between theirs and the run-time
experienced for the top performing algorithms. Regarding
a comparison between the two direct SAT solver variants,
the observation that HS-SAT using cardinality networks and
SCryptoMiniSAT’s internal loop beats the HS-MaxSAT vari-
ant correlates with the trend that we observed for direct diag-
nosis computations in (Nica et al., 2013).

Still, the only implementation that HS-SAT could outperform
entirely was Staccato. Our Staccato implementation could not
even solve all of the smallest samples for TSA2, so that we
exclude Staccato from further consideration and do not report
further results. Also HST could beat HS-SAT only up to ten
components. This relation however changes for the other test
scenarios, as we will see later on.

Between the top-performing algorithms, the size of a problem
seems to be an important aspect regarding a ranking. That is,
up to run-times of ten milliseconds/30 components, GDE beat
all competitors, presumably profiting from the bare and effi-
cient data structure needed. Our iterative and recursive imple-
mentations of the Boolean algorithm were quite close to each
other and started setting the pace at around 30 components,
outperforming GDE by more than an order of magnitude for
more than 200 components. Around run-times in the 500 mil-
lisecond range, also HS-DAG caught up with GDE and had
a very slight advantage for higher |COMP | while it trailed
GDE up to an order of magnitude for a HS-DAG run-time in
the millisecond-range for |COMP | = 10.

Memory consumption of the top performers was quite close,
with also HS-DAG consuming only slightly more memory
and HST the only algorithm that used much more memory
than the others for more than twenty components.

For the random samples in the second artificial test scenario,
we report in Figure 4 our results for samples with a hundred
components and a growing |SCS |. For these conditions, com-
puting the entire set of solutions quickly violated the resource
limits, so that we restricted the MHS search to a maximum
cardinality of three (which would, for instance, amount to one
to triple-fault diagnoses in a diagnostic context).

The two SAT-solver based implementations showed bad per-
formance also for these random samples. Interestingly enough,
however, while the Boolean variants set the pace to beat up to
an |SCS | of about 500 with a convenient distance that occa-
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sionally exceeded an order of magnitude to the next best con-
tender, for larger samples this advantage diminished, so that
even the faster SAT-solver variant HS-SAT could outperform
them. While the run-time performance of the two Boolean
variants was quite similar, for TSA2 we saw a huge gap in
the memory consumption. That is, the open work-package
list that, for instance, enables the iterative variant to continue
computation with the stored data for a new cardinality limit,
takes its toll, so that from an |SCS | of 200 upwards it con-
sumed most memory of all the implementations, with a gap of
almost two orders of magnitude at |SCS | = 4000 compared
to the top performers. These top results regarding the mem-
ory footprint were offered by GDE and HS-SAT, that actually
were quite close to each other in their memory consumption.
At this point, we would like to note that our strategy choos-
ing the split element for the Boolean variants and the opti-

mizations discussed in the algorithm description have quite
an impact on the results. That is, for instance, for this test sce-
nario this seriously affects the border up to which they outper-
form HS-DAG. While we refer the interested reader to (Pill &
Quaritsch, 2012) for more details regarding an evaluation of
the impact, we added for Figure 4 the variant “Boolean-Rec.′”
that did not come with these optimizations and altered strat-
egy, but used the usual “most common element” split strategy.
Both run-time performance and the memory footprint took a
huge hit, so that the mentioned border was shifted from about
500 to around twenty, and the memory footprint got much
closer to the iterative variant.

Run-time-wise, GDE and HS-DAG set the pace for samples
with an |SCS | larger than around five hundred, where in gen-
eral they were quite close in performance for samples with
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more than twenty CSis. Below twenty CSis, we argue again
that we experienced advantages coming from the bare and
efficient data structure GDE uses. In respect of memory-
consumption, GDE was much more attractive than HS-DAG,
with a convenient gap evident from Figure 4 for a wide range
of the sample size.

Considering both artificial scenarios, we saw that the Boolean
algorithms live up to the common knowledge in the commu-
nity that they are attractive, but they can be beat. GDE and
HS-DAG can beat them depending on the scenario and the
actual problem size, where we experienced slight advantage
for the former regarding performance. Interestingly enough,
the Boolean implementations were outperformed for smaller
samples for TSA1 and larger samples for TSA2, so that we
saw no common trend in this respect.

3.2.2. Experimental Results for TSR1 to TSR4

Glimpsing at real-world performance, we evaluated the algo-
rithms in the context of samples taken from diagnosis runs
for circuits from the ISCAS benchmark. Like with TSA2, we
had to restrict the MHS search regarding maximum cardinal-
ity for these samples. For each of our test scenarios TSR1 to
TSR4 (202 ≤ |COMP | ≤ 880), we generated a set of 100
samples by inserting faults and generating the corresponding
SCSs via letting a diagnostic engine run up to triple fault di-
agnoses (see Section 3). Aiming to scale the maximum MHS
size in the search from one to three, we then verified that there
was at least one MHS of size three.

In Figure 5, we report the run-times and memory footprint
for a maximum |MHS | ∈ {1, 2, 3} when inserting single
faults, arranging all 400 samples according to their |SCS |.
The amount of samples per |SCS | can be found at the bot-
tom right, with resource limit violations (that we encountered
for a maximum |MHS | of three only) getting reported at the
bottom left. Our random fault injection resulted in a large
variance of |SCS | (e.g. 4/120.3/548 min/avg/max for TSR4)
and a sample’s structural features. Thus, we applied a moving
average filter that derives for any point x0 on the x-axis the
mean value of those samples within

[
x0/
√

2, x0
√

2
]

(with
at least a single sample in the window). This enabled us to
unveil trends otherwise obscured. Sample/algorithm combi-
nations that violated either the time or memory limit were
considered with the threshold value for the corresponding re-
source, but not for the other.

For |MHS | = 1 (the topmost part of Figure 5) we added a fur-
ther computation variant coined “intersection”. As its name
suggests, this variant computes the minimal hitting sets of
size one as the intersection of all the individual CSis in some
SCS. More formally, the set M of MHSs of size one is com-
puted as M =

⋂
CSi∈SCS CSi. The actual implementation re-

lied on Python’s set.intersection method. Obviously,
this was our simplest computation method for the case that

only MHSs of size one are of interest, so that we use it as
reference for our discussion.

We can see from the top-left graph of Fig. 5 that the recursive
variant of the Boolean algorithm is on par with this intersec-
tion approach for larger samples (i.e. |SCS | > 300) but has
a considerable performance penalty for smaller samples as it
needs to build and maintain more complex data structures.

Considering their performance, we saw three groups of algo-
rithms when searching for MHSs of size one. The direct SAT
solver variants HS-SAT and HS-MaxSAT formed the slowest
group, with the Boolean algorithms offering the best perfor-
mance in the top group. The remaining HS-DAG, HST and
GDE form the intermediate group with performance in be-
tween (but closer to the top group rather than the SAT vari-
ants). For the top group we see quite close performance that
for larger SCS sizes even comes quite close to the reference
values of the intersection variant. In the intermediate group
we saw HST outperforming HS-DAG most of the time, with
GDE even faster for smaller samples (|SCS | . 30) and close
or slightly slower run-time performance for larger samples.
The SAT-based variants were, on average, around two orders
of magnitude slower than the algorithms in the intermediate
group. These two were also the only ones with a significant
deviation in the memory footprint (to the worse), while all the
others performed quite close in this respect.

We experienced similar performance relations when setting
the maximum |MHS | to two, with the only two changes be-
ing that (1) the gap between the two SAT-based algorithms
became larger and (2) the intermediate group gained in per-
formance such that for samples with a large |SCS |, GDE even
became the fastest solution. Regarding memory characteris-
tics, we saw the Boolean-Iterative variant lacking, like for
TSA2, which we presume to originate in its internal open
work-package list that may become quite bloated.

When searching for solutions with up to three elements, the
samples quickly experienced resource violations for some of
the algorithms, as we report in the bottom-left graph of Fig. 5.

Other than that, HST was beaten by HS-DAG for these tests
(for the majority of the graph’s range), while it was the other
way around for smaller problem sizes. Correlating with pre-
vious results, GDE and the recursive variant of the Boolean
algorithm showed top performance, and were in fact the only
ones to complete all samples without resource violations. The
Boolean-Iterative variant suffered from memory exhaustion
for the two largest samples.

For real world test scenarios like our TSR1 to TSR4, there is
always the question of which parameters to choose for con-
structing the abstract test data. In our case, besides a model’s
structural features as defined by the ISCAS circuits, the num-
ber of injected faults should be one of those significant param-
eters influencing performance. Investigating the influence of
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the number of injected faults on the algorithms’ performance,
we repeated the same experiments but injected triple faults.
Figure 6 shows the corresponding results.

Besides small variations in the relations in that one variant
would slightly gain or loose in performance compared to an-
other one, we experienced the same performance relations as
for the injected single faults. Interestingly enough, however,
overall we saw better run-time performance for the injected
triple faults. This is evident also from the bottom left graph in
Figure 6 that shows much less resource violations than for the
injected single faults. Analyzing the test data, we found that
the average and maximum problem size was lower than when
injecting single faults, i.e. for TSR4 we now had 4/15.5/154
min/avg/max for |SCS | instead of 4/120.3/548. While this ob-

viously depends also to some degree on the specific random
pattern (i.e., where the injected faults are placed during the
generation process), it suggests that in the diagnosis domain,
injecting a higher number of faults does not necessarily result
in a harder benchmark for the corresponding algorithms, as
evident from our reported run-times.

Summing up our results for the ISCAS samples, we saw the
Boolean algorithm (especially the recursive variant) to be the
best performing contender for our real-world scenario on av-
erage, beaten by GDE only occasionally. The bad perfor-
mance of the SAT-solver route for solving the MHS compu-
tation problem was confirmed also for the real world samples
with their restrictions regarding maximum MHS cardinality.
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3.2.3. Common Performance Trends

Overall, the Boolean algorithm showed very attractive perfor-
mance, in line with common expectations in the community.
But it can be beaten. So the simple but elegant MHS compu-
tation approach of GDE can outperform the Boolean idea, de-
pending on the scenario. If beaten by the Boolean approach,
often GDE’s performance is also still quite close to that of
the Boolean one. For practical purposes, it furthermore has
the advantage that it can be implemented very easily. The
route of computing MHSs via SAT solvers showed very infe-
rior performance throughout our tests, and also Staccato when
configured to be complete (as required for our comparison)
performed badly. While HS-DAG also could sometimes out-
perform the Boolean idea, this was less often the case when
compared to GDE. The main advantage of HS-DAG is its ca-
pability to steer conflict computation as discussed in the next
section. For some applications this might be the enabling
factor. But when it comes to overall raw MHS computation
performance, from our selection, the Boolean algorithm and
GDE were the algorithms to beat.

4. DISCUSSION AND CONCLUSIONS

Summarizing our work discussed in this paper, we evaluated
a selection of complete MHS algorithms in terms of runtime
performance and memory footprint. Several algorithms and
implementations had to construct the MHSs from given sets
SCS that contained the sets CSi aggregating the individual
component sets to hit. Two artificial test scenarios that are
extreme in their character due to their entirely disjoint or ran-
dom CSis respectively, were used in conjunction with SCSs
collected during the diagnosis of digital circuits from the IS-
CAS benchmark. Let us rehearse our experience with the
individual algorithms, beginning with the top-performers.

The Boolean algorithm is well known to be an attractive so-
lution for MHS computations, where, expectedly, it was also
one of the top-performers in our tests. Some drawback that
one could imagine is its concept of working with intermediate
versions of the initial SCS that, due to the binary splitting into
(a) the search space that contains some chosen split element
and (b) the one that excludes it from solutions, could result in
some rather inefficient encoding of the current search state.
This could be the reason that our iterative implementation
which stores all the “open” variants (“branches”) as work-
packages and considers plus refines them in a breadth-first
manner (similar to the trees in HS-DAG and HST) shows bad
memory performance for some samples (cf. the results for
TSA2 in Figure 4). At the cost of not being able to continue
computation when some cardinality limit is raised, a recur-
sive implementation can help in that respect, as is evident in
the same figure. While the performance of both variants re-
garding run-time and memory was often quite close, the re-
cursive variant occasionally showed these advantages regard-

ing memory consumption (comparing the results for TSA2 in
Figure 4 with those for the single-fault ISCAS samples and a
search for |MHS | ≤ 3 shown in Figure 5).

GDE offered also very attractive performance, often even be-
ing the top performing algorithm in some selected range of
the samples. We argue that its strength comes from its bare
and efficient structure of both the search itself and the encod-
ing of its current state. Besides in the run-time performance,
this showed also in the memory footprint that was always ex-
cellent. In our opinion, this bare structure is an essential and
attractive aspect of this algorithm, as an implementation can
be set up in no time and with very few lines of code. This
makes it a very robust solution from a user’s point of view,
complementing its attractive run-time performance. It also
reduces the usual efforts in respect of optimizing the code.

While HST and HS-DAG were often not as fast as the pre-
viously discussed contenders, they offer the option of being
able to drive also an on-the-fly computation of an SCS in a
diagnostic context. As mentioned in our discussion of the
SAT-solver setups in Section 2, this would involve the use
of an engine like a SAT solver to, given some model, verify
the intermediate theories that some constructed set is indeed
a minimal hitting set. In more detail, we would check with a
solver whether assuming the components in h(n) to be faulty
makes the observed behavior consistent with the model (see
(Reiter, 1987; Pill et al., 2015)) and if not, then we would ask
the solver for a minimal unsatisfiable core as new node label.

Staccato has an interesting feature, namely that it can approx-
imate solutions. However, when configured to be complete,
our implementation showed very inferior performance com-
pared against the other solutions.

This brings us to our last group of contenders that encode the
search for MHSs as SAT problems. Despite the fact that an
SCS can be efficiently encoded in a Boolean formula in con-
junctive normal form (the latter often used as input format
for a SAT solver), our two variants of a corresponding search
showed very inferior performance. For an MHS computation
problem, it thus seems that the overhead involved in the gen-
eral purpose solver’s search is unattractive compared to the
fine-tuned algorithms that it had to beat.

Whether tuning a solver’s features to this problem could over-
come the experienced performance penalty will have to be
subject to future work. This includes also research regarding
the performance impact of the variable order.

While we optimized our implementations to a fair extent and,
for instance, tried several options regarding the strategy for
choosing the split element in the Boolean algorithm, an inter-
esting aspect for future work would also be a thorough inves-
tigation of such fine-tuning aspects as well as more general
ones, like the order of the individual CSis in SCS.
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Using both artificial and some synthetic real-world samples,
an open question is to which extent the performance relations
we discussed would be reflected in individual, different prob-
lem domains. That is, for instance, the answer to the question
whether HS-DAG or HST would outperform the other was
not consistent in our tests, so that we can easily conclude that
it would be situation dependent. Like we saw between the
single and triple fault injections for the ISCAS samples, or
between the two artificial test scenarios, the structural fea-
tures of an SCS can vary extremely, so that such relations are
subject to some variation.

Some interesting input for investigating and assessing the ef-
fects of such structural features, will come from research con-
cerning Max Fault Minimal Cardinality problems (Feldman,
Provan, & van Gemund, 2008; de Kleer, 2008). This tech-
nique supports us in constructing problems that aim to max-
imize the cardinality of the smallest solutions, ideal for test-
ing scalability of algorithms like (de Kleer, 2011; Shi & Cai,
2010) focusing on computing a minimal cardinality diagno-
sis. While this is not ideal for our type of complete algorithms
(it does set so to say a minimum tree depth at which we can
find a solution, but the MFMC problem does not formalize
the whole structural aspects of the tree), combined with fu-
ture research results inspired by (Koitz & Wotawa, 2016) this
will allow us to further explore this aspect.

Aside structural features, also an established bound on the
cardinality of desired solutions showed influence to some ex-
tent. The conclusion that either GDE or an implementation of
the Boolean algorithm should offer attractive performance for
some actual problem, however, was a valid one in all of our
tests, and we would expect it to be for a multitude of domains.

Aside the distinctive feature of HS-DAG and HST regarding
an on-the-fly computation of SCS that can be of interest for
some problems, we would thus recommend to have GDE and
the Boolean algorithm always in mind when selecting an al-
gorithm, specifically considering that an implementation of
GDE can be done quite quickly.
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