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ABSTRACT 

This paper develops a framework for the extraction of a 

reliability block diagram in component-based systems for 

reliability prediction with respect to specific missions. A 

mission is defined as a composition of several high-level 

functions occurring at different stages and for a specific 

time during the mission. The high-level functions are 

decomposed into lower-level functions, which are then 

mapped to their corresponding components or component 

assemblies. The reliability block diagram is obtained using 

functional decomposition and function-component 

association. Using the reliability block diagram and the 

reliability information on the components such as failure 

rates, the reliability of the system carrying out a mission can 

be estimated. The reliability block diagram is evaluated by 

converting it into a logic (Boolean) expression. A modeling 

language created using the Generic Modeling Environment 

(GME) platform is used, which enables modeling of a 

system and captures the functional decomposition and 

function-component association in the system. This 

framework also allows for real-time monitoring of the 

system performance where the reliability of the mission can 

be computed over time as the mission progresses. The 

uncertainties in the failure rates and operational time of each 

high-level function are also considered which are quantified 

through probability distributions using the Bayesian 

framework. The dependence between failures of 

components are also considered and are quantified through a 

Bayesian network (BN). Other quantities of interest such as 

mission feasibility and function availability can also be 

assessed using this framework. Mission feasibility analysis 

determines if the mission can be accomplished given the 

current state of components in the system, and function 

availability provides information whether the function will 

be available in the future given the current state of the 

system. The proposed methodology is demonstrated using a 

radio-controlled (RC) car to carry out a simple surveillance 

mission. 

1. INTRODUCTION 

Model-based design (Schmidt, 2006; Schattkowsky & 

Muller 2004; Mosterman, 2007) provides a powerful 

framework for the design of complex systems using system 

architecture and component behavior models. It provides a 

common platform for modeling, data analysis and system 

verification. It is also used to analyze and manage the 

complexities and failures due to component-to-component 

interactions during the design of the system. The errors in 

the system design can be located early and corrected even 

before the system goes into the manufacturing phase. In 

addition, the component models can be re-used, which helps 

in upgrading existing systems and development of new 

systems.  

The first step in the creation of domain-specific models is 

the creation of a domain-specific custom modeling language 

that encodes all the syntactic and semantic information such 

as various objects, properties and relationships in the 

models that will be created using the modeling language. 

The GME (Ledeczi et al, 2001) provides a flexible platform 

for the creation of such modeling languages. During the 

design phase, several models can be created and evaluated 

_____________________ 

Saideep Nannapaneni et al. This is an open-access article distributed under 
the terms of the Creative Commons Attribution 3.0 United States License, 

which permits unrestricted use, distribution, and reproduction in any 

medium, provided the original author and source are credited. 



INTERNATIONAL JOURNAL OF PROGNOSTICS AND HEALTH MANAGEMENT 

2 

against several criteria such as performance, reliability and 

cost. Each design is associated with a different cost, 

performance and reliability. The selection of a particular 

design is made through a tradeoff between the cost, 

performance and reliability of the system. For example, in 

an aircraft inertial measurement unit (IMU) (Dubey, 

Mahadevan & Karsai 2012), six accelerometers were 

provided even though only four were necessary. This 

improved the reliability but incurred additional costs. For 

commercial airplanes where people are involved, reliability 

takes priority over performance and cost. For unmanned 

vehicles where people are not involved, performance might 

take preference over reliability. Each design alternative is 

tested under several scenarios before the final design 

alternative is selected. A scenario is termed as a mission in 

this paper. A mission can be understood as a collection of 

activities or functions to be performed. In this paper, 

reliability is considered as the evaluation criterion and a 

framework for reliability prediction is proposed.  As 

mentioned above, model-based design framework provides 

a common platform for modeling and data analysis. Here, 

the model-based design framework is utilized for modeling 

a system and for mission-based reliability prediction. 

Given a mission description, the components used to 

accomplish the mission functions are indigenous to the 

system that is undertaking the mission. As an example, a 

simple mission can be to move from point A to point B. 

There can be many choices to move from A to B such as 

using a gas-powered car or an electric car. The components 

used in the gas-powered car (fuel tank, engine) are different 

from the components used in the electric car (batteries) to 

carry out the same function. In general, not all the 

components in the system are used to carry out the mission. 

A system may provide many more functions that are not 

necessary for a particular mission. In such cases, all the 

components corresponding to those functions will be unused 

and do not appear in the reliability assessment. Therefore, it 

is necessary to extract the components that will be 

associated with a particular mission based on the mission 

functions. This is accomplished through the concepts of 

functional decomposition and function-component 

association that is later explained in Section 4. For example, 

assume that B can be reached from A in a straight path 

without taking any turns. In such a case, the steering wheel 

component will be unused and does not appear in reliability 

prediction. 

Reliability prediction in component-based systems provides 

a mechanism to estimate the failure probability for the 

overall system from the failure probabilities of individual 

components (Kececioglu, 1972; Krishnamurthy & Mathur, 

1997). Here, component-based systems refer to the systems 

that can be assembled from individual components. 

Reliability prediction may also be used to evaluate design 

feasibilities, compare design alternatives, identify potential 

failure areas in design, trade-off between design factors, 

provide insight on the need for redundant components, or 

replace an existing system with a more reliable system 

(O’Connor, Newton & Bromley, 2002). There are two types 

of mechanical components – repairable and irreparable 

components. Repairable components are the components 

that if failed can be restored to working condition. On the 

other hand, irreparable components cannot be restored to the 

working condition when failed. In the case of repairable 

components, mean time between failures (MTBF) is a 

measure of reliability whereas mean time to failure (MTTF) 

is a measure of reliability for irreparable components 

(Wood, 2001). In this paper, all the components are 

assumed irreparable.  Reliability prediction is essential 

before the beginning of the mission and during the mission. 

Reliability prediction is necessary to calculate the reliability 

in real-time during the mission in the presence of failure of 

any of the components.  

Well-known techniques for reliability assessment include 

Failure Modes, Effects and Criticality Analysis (FMECA; 

Bouti & Kadi, 1994; Teng & Ho, 1996), Fault Tree Analysis 

(FTA; Lee, Grosh, Tillman & Lie, 1985), Event Tree 

Analysis (ETA; Kenarangui, 1991) and Reliability Block 

Diagrams (RBD; O’Connor, Newton & Bromley, 2012). In 

this paper, reliability prediction is performed using a 

reliability block diagram because it can be constructed 

easily using the Boolean expressions employed in the 

proposed methodology. An introduction to a reliability 

block diagram is provided in Section 2. 

In some cases, the reliability information (failure rates) of 

some components may not be known precisely but some 

estimates might be available from historical records or from 

similar components. In addition, the operational time taken 

by the system in carrying out some functions cannot be 

identified deterministically since it is influenced by several 

factors such as the environment, condition of the system etc. 

Therefore, factors such as variability (randomness) and 

uncertainty (due to lack of knowledge) in variables should 

be considered in computing the reliability of the system in 

carrying out a mission. Here, it is assumed that the 

uncertainty in the operational times is due to the uncertainty 

in the environmental conditions (weather, pathways and 

other surroundings) and future loadings. Thus, other 

aleatory uncertainty sources can also be included by 

translating them into the uncertainty in operational times. 

Numerous approaches are available to represent the various 

aspects of uncertainty such as Bayesian probability theory 

(Sankararaman & Mahadevan, 2011; Nannapaneni & 

Mahadevan, 2015), possibility theory (Alola, Tunay & 

Alola, 2013), interval analysis (Rao & Cao, 2002), evidence 

theory (Bae, Grandhi & Canfield, 2004). Bayesian 

probability theory is employed in this paper where 

probability distributions are used to represent variability as 

well as uncertainty in variables. 



INTERNATIONAL JOURNAL OF PROGNOSTICS AND HEALTH MANAGEMENT 

3 

In systems where several components are connected to each 

other, the failure of a component during the mission may 

increase the failure rates of other working components. Such 

dependencies should also be considered while assessing the 

reliability which influences the real-time decision making 

process. Bayesian networks (Koller & Friedman, 2009) have 

been used in several applications such as bioinformatics 

(Friedman, Linial, Nachman & Pe’er, 2004), epidemiology 

(Jiang & Cooper, 2010), software systems (De Campos, 

Fernández-Luna & Huete, 2004), civil infrastructure (Bensi 

& Der Kiureghian, 2010), mechanical systems (Urbina, 

Mahadevan & Paez, 2012), manufacturing systems 

(Nannapaneni & Mahadevan, 2014) for modeling the 

dependence between several variables. This technique is 

used in this paper for modeling the dependence between 

failures of components. 

In this paper, we pursue a combination of unit-level 

monitoring and MTTF-based methods for real-time 

reliability prediction. Before the beginning of the mission, 

the reliability prediction for the mission is made using 

available data, i.e., data on similar systems, historical data, 

model simulation data, data from previous missions of the 

same system. When the mission in progress, the reliability 

prediction is carried out by updating the system parameters 

(health of components) through health monitoring, which 

now becomes unit-specific reliability prediction for the 

mission. 

 

The overall contributions of this paper are as follows – (1) 

Extraction of mission-specific reliability block diagram for 

reliability assessment; (2) Quantification of uncertainties in 

reliability analysis parameters (failure rates and operational 

times) and their incorporation in reliability estimate; (3) 

Modeling the failure rate dependence of a component on the 

health of other components using a Bayesian network; and 

(4) Decision-making under uncertainty based on real-time 

reliability estimates during the mission. 

A key benefit of the proposed methodology is that the 

reliability prediction can be carried out in an automated 

manner. The automation procedure is briefly discussed at 

the end of Section 3.1.  

The rest of the paper is organized as follows. Section 2 

provides background concepts on the reliability modeling of 

mechanical components, reliability block diagrams, 

expressions for reliability analysis, uncertainty 

characterization in reliability analysis parameters, and 

Bayesian networks to model failure dependence between 

components. Section 3 discusses the system assumptions 

and presents the proposed methodology for reliability 

assessment in component-based systems. In Section 4, the 

proposed methodology is demonstrated using an example in 

which a radio-controlled (RC) car is used to carry out a 

simple surveillance mission. Concluding remarks are 

provided in Section 5. 

2. BACKGROUND 

2.1. Reliability modeling of a mechanical component  

Three kinds of failures are considered at different stages 

during the service life of mechanical components – (1) early 

life failures, (2) random failures, and (3) wear out failures. 

The failure rate corresponding to the early-life failures 

decreases with the service time of the component. Random 

failures are characterized by constant failure rates since 

failures can occur at any time during the service of the 

component. Wear-out failures are characterized by an 

increasing failure rate, where the failure rate of a component 

increases with the service time of the component. The first 

phase does not have a failure probability evaluation but 

early failures are used for design and development. The 

failure probability during the second phase is generally 

modeled using an exponential distribution (Eq. 1) and 

during the third phase is modeled using a Weibull 

distribution (Eq. 2) 

 𝑃𝑓(𝑡) = 1 − 𝑒−𝜆𝑡 (1) 

 
𝑃𝑓(𝑡) = 1 − 𝑒

(−
𝑡
𝜂

)
𝛽

 (2) 

In Eq. (1), 𝜆 represents the inverse of mean time between 

failures (MTTF), also called the failure rate. In Eq. (2), 𝜂 

represents the scale parameter (time at which the failure rate 

is 0.632) and 𝛽 represents the shape parameter. The values 

of these parameters can be obtained from the manufacturer, 

historical data, experimental data or simulations. In this 

paper, all the components are assumed to be in the second 

phase of random failures. 

2.2. Reliability Block Diagram 

A reliability block diagram is a graphical representation 

showing the logical connections between several 

components in a system. They are used to compute the 

reliability of a system in carrying out a function using the 

reliability information of individual components and 

Boolean rules of combinations (Bennetts, 1982). When two 

components are connected in series, then the function 

requires both the components and if the components are 

connected in parallel, either of the components is sufficient 

to carry out the function. Figures 1(a) and 1(b) shows series 

and parallel connections for two components 𝐶1and 𝐶2.  

 

 

 
(a) Series     (b) Parallel (c) 𝑟 out of  𝑛 

Figure 1. Different connections of components in an RBD 
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If components are connected in series, the overall reliability 

is the product of individual reliabilities of components if the 

component failures are independent.  

 𝑅(𝑆) = 𝑅(𝐶1) × 𝑅(𝐶2) (3) 

If the components are connected in parallel, the overall 

reliability assuming independence between components is 

obtained as 

𝑅(𝑆) = 𝑅(𝐶1) + 𝑅(𝐶2) − 𝑅(𝐶1)𝑅(𝐶2) (4) 

In Eqs. (3, 4), 𝑅(𝑆), 𝑅(𝐶1), 𝑅(𝐶2) refer to the reliabilities of 

the overall system, components 𝐶1  and 𝐶2  respectively. 

When the component requirement for a function is specified 

using the “𝑟  out of 𝑛 ” operator, then all possible series 

combinations are obtained and connected in parallel. The 

reliability of this component-system is calculated using 

series and parallel connection rules as given above. The 

number of combinations is equal to (𝑛
𝑟
), which is equal to 

𝑛!

(𝑛−𝑟)!𝑟!
 . Consider an example where a function 𝐹 requires 

two out of available three components. Let the three 

components be 𝐶1, 𝐶2, 𝐶3. In this case,  𝐹 can be carried out 

using 𝐶1, 𝐶2  or 𝐶2, 𝐶3  or  𝐶1, 𝐶3 . The combinations can be 

represented in the reliability block diagram as shown in 

Figure 1(c). 

2.3. Quantification of uncertainty in failure rate and 

operational time 

The failure rate of a component is estimated using the 

available failure data of that component. In this regard, 

consider the following three cases – (1) time-to-failure data 

from a single source, (2) time-to-failure data from multiple 

sources (multiple batches), and (3) Multiple MTTF values 

are available for the same component but from different 

sources (batches).  

In the first case, an entire probability distribution can be 

obtained for MTTF (𝜆) by using the available data in the 

Bayesian framework. Let 𝐷𝑡  represent the available time-to-

failure data, then the posterior distribution of MTTF (𝜆) can 

be computed in the Bayesian framework using Eq. (5).  

 𝑓(𝜆|𝐷𝑡) ∝ 𝐿(𝐷𝑡)𝑓(𝜆) (5) 

In Eq. (5), 𝐿(. ) and 𝑓(. ) refer to the likelihood function and 

PDF respectively. If the available data is a combination of 

point and interval data, then the technique developed in 

(Sankararaman & Mahadevan, 2013) for likelihood 

construction can be used.  

In the second case, when time-to-failure data is available 

from multiple sources, then MTTF can be estimated after 

aggregating all the data (one-step estimation) or perform 

sequential estimation (multi-step estimation) where a 

posterior distribution is obtained by using first set of time-

to-failure data, then this posterior is used as a prior for 

updating the MTTF estimate using the second dataset. This 

process is carried out until all the time-to-failure data are 

used.  

The third case represents the case when different sources 

provide MTTF values corresponding to their batches. In a 

parameter estimation problem, this represents the case when 

data is directly available on the parameter. In such a case, 

non-parametric distribution is directly fit to the data. The 

non-parametric PDF construction technique is briefly 

discussed below. Let 𝑇 represent the MTTF of a component 

and 𝑇𝑖  ( 𝑖  = 1 𝑡𝑜 𝑛 ), [𝑇𝑗
𝑙 , 𝑇𝑗

𝑢]  (𝑗 = 1 𝑡𝑜 𝑚)  represent the 

available point data and interval data respectively. The 

domain of 𝑇  is then discretized into 𝑄  points and let the 

PDF values at these points be equal to 𝑞𝑖  (𝑖 = 1,2 . . , 𝑄). 

Since 𝒒 = 𝑞𝑖(𝑖 = 1,2 … 𝑄)  is unknown, they can be 

estimated by solving the following optimization problem: 

𝑀𝑎𝑥 𝐿(𝒒) =  ∏ 𝑓𝑇(𝑇 = 𝑇𝑖|𝒒
𝑛

𝑖=1
) 

  ∏ [𝐹𝑇(𝑇 = 𝑇𝑗
𝑢|𝒒) − 𝐹𝑇(𝑇 = 𝑇𝑗

𝑙|𝒒)]
𝑚

𝑗=1
 

such that 

𝒒 ≥ 0; 𝑓𝑇(𝑇) ≥ 0; ∫ 𝑓𝑇(𝑇)𝑑𝑇 = 1 

(6) 

In Eq. (6), 𝐿(. ) refers to the likelihood function and 𝑓(. ), 

𝐹(. ) refer to the PDF and CDF respectively. More details 

about the PDF construction are available in (Sankararaman 

& Mahadevan, 2013).  

2.4. Modeling failure dependencies between components 

Bayesian networks, as stated in Section 1, are used in this 

paper for dependence modeling of failures between several 

components. A BN is a probabilistic graphical model that 

represents a joint probability distribution of several random 

variables as a directed acyclic graph where nodes represent 

random variables and arcs represent their conditional 

dependencies. The random variables in a BN can be both 

discrete and continuous. For discrete variables, conditional 

or marginal probability tables are defined whereas for 

continuous variables, conditional or marginal probability 

distributions are defined.  

 

Figure 2. Bayesian network for modeling failure 

dependence relations 

Consider the BN shown in Figure 2. Let the failure rate for 

component 𝐶3 be dependent on two components - 𝐶1 and 𝐶2. 

Let the health of a component be modeled as a discrete 

variable with two values 0 and 1, representing working and 
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failed conditions respectively. The MTTF values of 𝐶3 

conditioned on the states of components 𝐶1  and 𝐶2  can be 

represented as shown in Table 1.  

 𝐶1, 𝐶2 

= (0,0) 

𝐶1, 𝐶2 

= (0,1) 

𝐶1, 𝐶2 

= (1,0) 

𝐶1, 𝐶2 = (1,1) 

MTTF 

of 𝐶3 
2000 

[1925, 

1975] 

[1940, 

1960] 

1900, 1906, 

1913, 1920, 

[1920, 1925] 

Table 1. MTTF values of 𝐶3 dependent on 𝐶1 and 𝐶2 

Table 1 indicates that the MTTF values decreases with 

failure of 𝐶1  and 𝐶2 . When both 𝐶1  and 𝐶2  are in working 

state, the MTTF value for 𝐶3 is 2000 and when 𝐶2 fails, the 

MTTF is a uniform distribution between 1925 and 1975. 

Similar observations can be made when only 𝐶1 fails, and 

when both 𝐶1  and 𝐶2 fail, some point and interval data 

might be available on the MTTF value of 𝐶3. Note that the 

MTTF values in Table 1 are arbitrarily chosen with no units, 

for the sake of illustration.  

3. PROPOSED METHODOLOGY 

Assumptions: This paper considers only mechanical 

systems where all the components are assumed to be in the 

second phase of their bathtub curves, i.e., the failures are 

random and represented using exponential distributions. 

When a component fails, it is assumed to remain in the 

failed state until the end of the mission. In addition, the 

mean time to failure (MTTF) information are assumed to be 

available for all the components. 

3.1. Extraction of reliability block diagram  

System Modeling: The system performing the mission is 

modeled using a domain-specific modeling language 

(DSML). The procedure for modeling is not discussed and 

out of the scope of this paper as the aim is to extract the 

mission-specific reliability block diagram from the system 

model for reliability prediction. The proposed methodology 

is independent of the language used for modeling. During 

modeling, each component in the model is associated with a 

list of functions that require this component and with its 

corresponding MTTF value. As stated above, the MTTF 

values for all the components are assumed to be available.  

 Functional Decomposition: From the mission description, 

the function-time diagram can be obtained which provides 

information about the list of high-level functions required 

and the time when they are required during the mission. 

Consider Figure 5. Assume a hypothetical mission 

description that requires the car to move from A to D. To 

accomplish the mission, the car which initially is along the 

line AB should turn at A, move forward from A to C, take a 

right turn at C, move forward from C to D. Suppose the car 

takes ‘tleft’ min to turn and ‘tAC’ min to move from A to C. 

Therefore, from time t = 0 to t = tleft, the high-level function 

required is to turn left. From t = tleft to t = tleft + tAC, the high-

level function of moving forward is required. Thus, 

function-time information can be obtained from mission 

description. This information when represented by a 

diagram as shown in Figure 7 becomes a function-time 

diagram.  

For each of the high-level functions, functional 

decomposition is carried out to obtain the leaf-level 

functions. A definition for functional decomposition is 

provided in the appendix. The high-level function can be 

hierarchically represented in terms of lower level functions 

and leaf functions using a tree-structure, as shown in Figure 

8.  A leaf level function is a function that cannot be further 

decomposed. From the tree-structure, a Boolean expression 

for the high-level function can be obtained in terms of the 

leaf-level functions that can then be converted to a 

reliability block diagram. The symbol ‘∧’ represents a series 

connection (i.e., both components are needed) and ‘ ∨ ’ 

represents a parallel connection (i.e., one of the components 

is needed). For example, consider a high-level function 𝐹 

that is expressed in terms of leaf-level functions as  𝐹1 ∧
(𝐹2 ∨ 𝐹3) ∧ 𝐹4. The reliability block diagram corresponding 

to the Boolean expression is shown in Figure 3. 

 

Figure 3. Reliability block diagram from functional 

decomposition 

Function-Component association:  Each of the leaf-level 

functions is associated with a component or a component 

assembly in the system that is undertaking the mission. A 

definition for function-component association is provided in 

the appendix.  The components associated with each 

function depend on the system that is undertaking the 

mission. The components providing the same function may 

be different in different systems. (For example, the power 

generation function can be accomplished through a battery 

or an internal combustion engine). A component may be 

associated with more than one leaf-level function. For each 

leaf-level function, the corresponding set of components can 

be obtained from the system model because in the modeling 

stage, the association of each component to the list of 

functions has been made. The function-component 

associations can be expressed using Boolean expressions 

similar to the functional decomposition of high-level 

functions.  

In some cases, there are additional constraints called 

implication constraints (Mahadevan, Dubey, 

Balasubramanian & Karsai, 2013) that arise from the system 

model. For example, consider the function of power 
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generation in an automobile, which requires an internal 

combustion engine. However, additional components like 

chassis are required to hold the combustion engine for it to 

be working. If the chassis breaks down, even though the 

engine is in working state, the function becomes 

unavailable. This is an additional implication constraint 

coming from the system model. 

Reliability Assessment: Each leaf-level function has a set 

of components associated with it and a reliability block 

diagram can be obtained from the connections of the 

associated components. The reliability block diagrams of all 

the leaf-level functions are used to obtain a reliability block 

diagram of the high-level function. Similarly, reliability 

block diagrams can be obtained for all the high-level 

functions. The reliability block diagrams of all the high-

level functions can be combined to obtain the reliability 

block diagram of the entire mission. Sometimes a 

component may be required for several function in the 

mission, therefore the component appears several times in 

the Boolean expression. The PyEDA package available in 

Python environment is used here to simplify the Boolean 

expression and from the simplified Boolean expression, a 

simplified reliability block diagram can be obtained.  

From the mission description, we can obtain the required 

functions and the time each function is required for. Using 

this function-time information, we can calculate the time for 

which each of the components is required. Using the time 

information, MTTF values and the reliability block diagram, 

the reliability of the mission can be calculated using series 

and parallel connection rules given in Eqs (3) and (4). 

Figure 4 shows the proposed methodology for reliability 

assessment.  

 

 

 

Figure 4. Methodology for reliability assessment 
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In Figure 4, the mission is described using high level 

function 𝐹1, 𝐹2, 𝐹3, 𝐹4.Then, using functional decomposition, 

the high level functions are decomposed to leaf-level 

functions, 𝐹𝑘 (k = 5 to 14), and each leaf-level function is 

associated with its component assembly. The function-

component association also represents the reliability block 

diagram of the leaf-level function. The reliability block 

diagrams of the leaf-level functions are combined to obtain 

the reliability block diagram of the high-level functions. The 

reliability block diagrams of all the high-level functions are 

combined to obtain the reliability block diagram of the 

mission. 

Capability for automation: A key advantage of the above 

framework for reliability prediction is that it can be 

automated. The mission description is provided by the client 

and an analyst obtains the function-time diagram from the 

mission description. As mentioned earlier, information 

about the functional decomposition of high-level functions 

and the association of component(s) to each leaf-level 

function can be represented in the system model. Therefore, 

the Boolean expression (which can be converted to a 

reliability block diagram) can be obtained from the 

function-time diagram using functional decomposition and 

function-component association. Note that the reliability 

information (MTTF values) can be provided for all 

components in the system model. Therefore, the mission 

reliability can be programmatically computed using the 

reliability block diagram and reliability information of the 

components. In this work, the reliability of all the individual 

components are assumed to be modeled through exponential 

distributions (constant failure rates) but it should be noted 

that the same procedure can be adopted when Weibull 

distributions (increasing failure rates) are used or a 

combination of Weibull and exponential distributions for 

reliability modeling. 

3.2. Uncertainty in failure rates and operational times 

As stated in Section 2.3, probability distributions using the 

Bayesian framework are used to represent the uncertainty in 

failure rates and operational times. When all the parameters 

are known deterministically, the reliability estimate is a 

deterministic value. However, when some parameters are 

uncertain, the uncertainty in them results in uncertainty in 

the reliability estimate. Sampling techniques such as Monte 

Carlo simulation can be used to quantify the uncertainty in 

the reliability estimate. Each realization of the uncertain 

parameters provides a sample of the reliability estimate. 

Several realizations of the uncertain parameters provide 

several samples of the reliability estimate. These samples 

can then be used to obtain the PDF of the reliability 

estimate. 

3.3. Dependence between failures of components 

During the course of the mission, the failure of one 

component may affect the failure rate of other connected 

components and this dependence is modeled using a 

Bayesian network (BN) as discussed in Section 2.4. The 

failure rate dependence modeling can be divided into two 

tasks – (1) determine the list of components that affect the 

failure rate of a component, and (2) estimate the conditional 

failure rates, i.e., failure rates of the component when 

conditioned on the health of the components that influence 

it. The above two tasks can be accomplished through 

aggregation of information from historical records, tests, 

model-based simulation and expert opinion. Details 

regarding the construction of the BN are outside the scope 

of this paper and a BN is assumed available for reliability 

analysis. Note that the failure rate that initially is a fixed 

value can become uncertain after the failure of certain 

components as shown in the illustration example in Section 

2.4. Depending upon the health of the parent nodes in the 

BN, the corresponding failure rate of the child node can be 

used for reliability prediction.  

3.4. Real-time reliability prediction and decision making 

During the course of the mission, the health of all the 

components can be monitored (failed or working). If a 

component is in failed state, all the functions that the 

component is associated with will not be available. From the 

health of the components, availability or unavailability of 

the functions can be inferred. At any time, real-time 

reliability prediction of the system can be carried out using 

the approach in Section 3.1. Using the results of real-time 

reliability prediction, decisions on continuing the mission, 

aborting the mission or carrying out a simpler mission (a 

mission with reduced outcomes than originally intended) 

can be made. In addition, decisions regarding alternate paths 

to maximize the reliability of the mission can be made. 

When a component becomes unavailable, the initial Boolean 

expression for the reliability block diagram can be updated 

to include the component unavailability. The updated 

Boolean expression can then be used for further reliability 

assessment of the mission. If the failure rates of all the 

components are fixed values, then the reliability estimate is 

also a fixed value and decision-making can be made using 

the fixed value. However, when the failure rates of some 

parameters are uncertain, the reliability estimate is not a 

fixed value but a PDF as mentioned in Section 3.2. Given 

the PDF of the reliability estimate, decision-making can be 

based on the maximum a posteriori (MAP) of the reliability 

estimate, mean value, 95th percentile or the 5th percentile 

depending on the analyst preferences and mission 

requirements.  

The current framework can be extended to handle partial 

failures and component degradations. For any 

component 𝑀, we can define the MTTF as a function of 
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component degradation factor 𝑑𝑀 (0 <  𝑑𝑀< 1), where ‘𝑑𝑀= 

0’ represents working state and ‘𝑑𝑀= 1’ represents failed 

state. In the presence of dependence between failures of 

components, the MTTF value of the child component (𝐶3 in 

Figure 2) should also be defined as a function of its 

degradation and component degradations of parent 

components (𝐶1, 𝐶2 in Figure 2). The amount of degradation 

(𝑑𝑀) in each component can be quantified through real-time 

component health monitoring. Thus, the real-time health 

monitoring data can also be included in predicting the 

mission reliability. 

4. EXAMPLE: RADIO-CONTROLLED CAR 

Mission Description: The RC Car, which initially is at point 

A has to move to point B and perform surveillance at point 

B using a camera mounted on it. The car is amphibious and 

can move from A to B either on land or in water as shown in 

Figure 5. Along with the land powertrain, a propeller system 

is also built-in to the RC Car to move in water. The width of 

the water body is assumed to be 1.5 miles. The total distance 

to be covered when moving on land from A to B is 2.5 

miles. The speeds when moving on land and in water are 

assumed to be 7.5 mph and 3 mph respectively.   

Figure 6 shows the RC Car modeled using a DSML in 

GME. As mentioned in Section 3.1, the creation of the 

DSML is out of the scope of this paper. Following the 

DSML, the RC Car (components and their connections) is 

modeled. The blocks represent the components and 

connections represent the physical connections between the 

components. Each component is also associated with a list 

of functions that it is needed for. A simple model of the RC 

Car is used for illustration; therefore has limited capabilities 

in terms of functions that can be carried out. The RC Car 

can move forward, backward, turn left and turn right. To 

stop the car, thrust is to be exerted in the opposite direction 

of motion i.e., if the car is moving forward then thrust is to 

be exerted in the reverse direction to stop the car. This 

forms the primary braking system and a secondary 

emergency braking system is also assumed available.   

 

Figure 5. Mission description 

From the mission description, the function-time plot can be 

constructed as shown in Figure 7. The function-time plot 

has time and functions to be carried out on the X and Y-

axes. The plot shows two possible paths to complete the 

mission – one on land (shown in red and black) and other on 

water (blue and green). It can be seen from the plot that the 

times taken to complete the mission through land and water 

are 30 and 36 min respectively. If the mission is undertaken 

on water, then the function “Move forward in water” is 

required for 30 min, then either the primary or the secondary 

brake is required for 1 min, and “Move Camera” is required 

for the next 5 min. Similar interpretation can be made if the 

mission is carried out on land. A variation of 5% and 2% are 

assumed around the remaining travel time in water and on 

land respectively; these variations are modeled through 

uniform distributions. For example, the function ‘Move 

forward in water’ in Figure 7 is required for 30 min; a 

uniform distribution is assumed with lower and upper 

bounds as 28.5 min and 31.5 min respectively (5% of 30). 

Note that Figure 7 provides the mean value of required time 

for each function. 

The mission can be divided into two high-level functions – 

1) A function 𝐹𝐴𝐵 that represents the movement of the RC 

Car from A to B, and 2) a function 𝐹𝑆 that represents the 

surveillance activity at point B.  To complete function  𝐹𝐴𝐵 , 

the RC Car can choose between two alternate paths – to 

move on land, represented by 𝐹𝐴𝐵𝐿
 or in water, represented 

by 𝐹𝐴𝐵𝑊
. The function 𝐹𝐴𝐵𝐿

 is decomposed into three sub-

functions - 1) Moving from A to C, represented by 𝐹𝐴𝐵𝐿
. 𝐹𝐴𝐶  

2) Moving from C to D, represented by 𝐹𝐴𝐵𝐿
. 𝐹𝐶𝐷 , 3) 

Moving from D to B, represented by  𝐹𝐴𝐵𝐿
. 𝐹𝐷𝐵 . The 

locations of points C and D are shown in Figure 5. The 

successful completion of all these three sub-functions results 

in the successful completion of function 𝐹𝐴𝐵𝐿
. Each of the 

sub-functions is further decomposed into a number of 

smaller leaf-level functions and successful completion of all 

the leaf-level function results in the completion of a sub-

function. Table 2 shows the sub-functions of 𝐹𝐴𝐵𝐿
and their 

associated leaf-level functions.   

In the case of function 𝐹𝐴𝐵𝑊
, the function itself is a leaf-

level function and therefore cannot be decomposed further. 

Using hierarchical decomposition, the function 𝐹𝐴𝐵  can be 

expressed in terms of leaf-level functions (Figure 8) as  

𝐹𝐴𝐵 = ((𝐹1 ⋀𝐹2⋀ 𝐹3 ⋀ 𝐹4 ⋀ 𝐹5 ⋀ 𝐹6 ⋀𝐹7 ⋀ 𝐹8) 

⋁(𝐹8⋀𝐹9)) 
(7) 
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Figure 6. Modeling of the RC Car 

 

Figure 7. Function-time diagram for the mission 
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Table 2. Sub-functions of 𝐹𝐴𝐵𝐿
and their leaf-level functions 

The next step after obtaining the hierarchical decomposition 

is to associate component assemblies to carry out each of 

the atomic-level functions.  Table 3 shows the list of 

component assemblies available in the RC Car system along 

with their assumed MTTF values. The MTTF values for 

Camera and Propeller are assumed unknown but some point 

and interval data are assumed available, given in Table 3. 

Table 4 shows the association between leaf-level functions 

and component assemblies. To demonstrate the 

methodology, MTTF values for the components are 

assumed. After obtaining the functional decomposition 

(hierarchical decomposition) and associations between 

functions and components, the reliability of the overall 

mission is computed from reliability information of 

component assemblies through a reliability block diagram. 

The construction of a reliability block diagram can be 

carried out in two steps – (1) the leaf-level functions are 

substituted with their associated component assemblies from 

Table 4, (2) all the components connected with ′ ∧ ′  are 

written in series, whereas components connected with ′ ∨ ′ 
are written in parallel. 

 

Figure 8. Hierarchical decomposition of the function of moving from A to B (𝑭𝑨𝑩)  

Component Assembly Notation MTTF* (min) 

Front Wheel System WF 2000 

Front Hub System HF 2000 

Front Axle System AF 2000 

Front Differential DF 1000 

Transmission T 2500 

DC Motor DCM 1000 

Battery B 2500 

Receiver R 2500 

Servo S 1000 

Steering St 2000 

Servo for Camera SC 1000 

Camera C 998,1000, 1002 

1005,1008, [995, 

1010] 

Rear Differential DR 1000 

Rear Axle System AR 2000 

                                                           
*  MTTF values used here are assumed values, for illustration 

purposes only. 

Rear Hub System HR 2000 

Rear Wheel System WR 2000 

Propeller P 500, 503, 497, 

505, [495, 500] 

Chassis Ch 2500 

Secondary Brake  System EB 500 

Table 3. Components in the RC Car and their MTTF values 

Function Component Assembly 

F1, F3, F5, F7 R ∧ B ∧ S ∧ St ∧ HF ∧ WF ∧ 𝐶ℎ 

F2, F4, F6 R ∧ B ∧ DCM ∧ T ∧ DF ∧ DR ∧ AF

∧  AR  ∧ HF ∧ HR  ∧ WF ∧ WR ∧ 𝐶ℎ 

F8 (R ∧ B ∧ DCM ∧ T ∧ DF ∧ DR ∧ AF

∧  AR  ∧ HF ∧ HR  ∧ WF ∧ WR ∧ 𝐶ℎ)
∨ (EB ∧ 𝐶ℎ) 

𝐹9 R ∧ B ∧ DCM ∧ T ∧ P ∧ 𝐶ℎ 

FS R ∧ B ∧ SC ∧ C ∧ 𝐶ℎ 

Table 4. Leaf-level functions and their components  

Sub-Function Leaf-Level Function Notation 

𝐹𝐴𝐵𝐿
. 𝐹𝐴𝐶  

Turn Left at A 𝐹1 

Move Forward from A to C 𝐹2 

Turn right at C 𝐹3 

𝐹𝐴𝐵𝐿
. 𝐹𝐶𝐷 

Move forward from C to D 𝐹4 

Turn right at D 𝐹5 

𝐹𝐴𝐵𝐿
. 𝐹𝐷𝐵 

Move forward from D to B 𝐹6 

Turn left at B 𝐹7 

Brake and stop at B 𝐹8 
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Using the available point and interval data on MTTF values 

for ‘Propeller’ and ‘Camera’ components, non-parametric 

distributions are constructed using spline-based 

interpolation as discussed in Section 2.3. The reliability 

block is constructed using the functional decomposition and 

function-component association. Using the available MTTF 

values, the reliability of the mission can be computed. Since 

the MTTF values of some variables and operational times of 

each function are uncertain, the reliability estimate is 

reported as a PDF given in Figure 9.  

Case 1: Real-time reliability assessment 

Assume that the mission was being undertaken by moving 

in water to reach from A to B.  Table 5 show the functions 

required to complete the mission at the beginning of mission 

(point A) and midway between A and B. 

Function Mean duration required (min) 

 Beginning, at 

point A 

Midway, 

between A and B 

Moving in water (𝐹9)  30 15 

Brake at point B (𝐹8) 1 1 

Surveillance (𝐹𝑆) 5 5 

Table 5. Functions required at the beginning and at midway 

between A and B 

The third column in Table 5 can be interpreted as follows – 

When the RC Car is at the midpoint between points A and 

B, for successful completion of the mission, 𝐹9 is required 

for a mean duration of 15 more minutes, Braking and 

surveillance are required for mean durations of 1 and 5 

minutes respectively. 

 

Figure 9. Reliability estimate at the beginning of mission 

Moreover, all these three functions are required in 

succession, as shown in the function-time diagram (Figure 

7). The reliability block diagram for the mission is 

constructed and using the MTTF values, the reliability of 

the remaining portion of mission can be computed as shown 

in Figure 10. 

 

Figure 10. Reliability estimate at midway for the remaining 

mission 

Case 2: Component failure 

Assume that at the midway between A and B, the secondary 

brake fails and becomes unavailable (due to some unknown 

reason). Since the braking function has redundancy (primary 

and secondary), the reliability of the braking function 

decreases. In a hypothetical case, assume that the failure of 

the secondary brake component causes the failure rate of the 

transmission component to increase i.e., MTTF value 

decreases. The dependence of the MTTF value of the 

transmission on the health of secondary brake component 

can be represented using a BN as shown in Figure 11. In 

Figure 11, EB and T represent the secondary brake 

component and the transmission component respectively. 

The MTTF values of T conditioned on the health state of EB 

are provided in Table 6.  

 

Figure 11. Bayesian network showing the dependence 

between secondary brake and transmission components 

 

 𝐸𝐵 = 0 

(working) 

𝐸𝐵 = 1 

(failed) 

MTTF of T 1000 [600, 650] 

Table 6. MTTF values of transmission component 

conditioned on the health of secondary brake component 

The reliability of the remaining mission given that the 

secondary brake failed is computed and shown in Figure 12. 

Note that the mean value for the reliability estimate 

decreased from 0.912 to 0.895 after the failure of secondary 

brake component. 
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Figure 12. Reliability estimate after the failure of secondary 

brake component 

Case 3: Decision-making under uncertainty 

The expected value of the mission reliability estimate at 

midway in the mission is 0.895 (Case 2). Let us assume that 

the mission reliability requirement is 0.9. Therefore, we 

have at least a couple of options here – (1) Abort the 

mission, and (2) Perform a mission with a reduced outcome 

than initially desired. Note that the primary objective of the 

mission is to have surveillance for 5 min. The reliability 

estimate is less than the threshold (0.9); therefore, the time 

for surveillance need to reduced. The surveillance time for 

which the reliability estimate is greater than the threshold 

can be estimated through Monte Carlo sampling to be equal 

to 3.2 min. Note that in this case, we consider the expected 

value of the PDF of reliability estimate to be greater than the 

threshold value. As mentioned in Section 3.4, we can also 

consider 5th percentile or 95th percentile or any other 

criterion depending on the analysis requirements.  

Discussion: In this work, we developed a basic conceptual 

framework for mission-level reliability prediction in 

component-based systems and demonstrated using an RC 

Car for surveillance mission. The same framework can also 

be used for complex missions such as spacecraft and 

military missions.  Consider a spacecraft mission such as the 

OSIRIS-Rex† to asteroid Bennu. Reliability and sustenance 

are key elements in such critical missions. The ideal 

scenario would be that no component(s) fail during the 

mission. However, any amounts of testing and analysis 

cannot guarantee 100% reliability of every component, 

failure of component(s) do occur. Redundancy is often 

provided in such complex systems and in the event of a 

component(s) failure, it is desired to re-configure the system 

in such a way that the reliability of completing the mission 

is maximum. Multiple plausible re-configurations could be 

available, the proposed framework can be used to assess the 

                                                           
† http://nssdc.gsfc.nasa.gov/nmc/spacecraftDisplay.do?id=OSIRISREX 

reliability of completing the mission in every plausible re-

configuration, and consequently the best re-configuration 

can be deployed. Note that in this discussion, we consider 

only component-based failures and not consider random 

unexpected failures from external sources such as space 

radiation.  We also assume that the MTTF values of the 

components are comparable to the mission time and 

therefore choosing the right re-configuration is necessary to 

increase the probability of mission success. 

5. CONCLUSION 

This paper proposed a framework to extract a mission-

specific reliability block diagram for reliability assessment 

in component-based systems. The system undergoing the 

mission is modeled using a domain-specific modeling 

language in Generic Modeling Environment (GME). In the 

system model, each component is associated with the list of 

functions for which it is required. From the mission 

description, functional decomposition is performed for each 

high-level function and is represented using a hierarchical 

tree-structure. Each of the leaf-level functions is then 

associated with the set of components or component 

assemblies from the GME model (also called function 

component association) and a reliability block diagram is 

obtained using the Boolean expressions. Using the 

reliability information of the components and operational 

times of system components from the mission description, 

the reliability prediction can be carried out.  

When the reliability analysis variables such as failure rates 

and operational times are uncertain, the uncertainty is 

quantified by constructing probability distributions using the 

Bayesian framework. The presence of uncertainty in the 

failure rates and operational times results in an uncertainty 

in the reliability estimate that is quantified using Monte 

Carlo simulations. In systems where the failure rate of a 

component is dependent on the health of other connected 

components, a Bayesian network is constructed to model 

such dependencies. The failure rate of the component is 

updated depending on the current state of health of the other 

connected components and used in reliability prediction.  

This procedure can also be used for real-time decision-

making during the mission. The reliability of the system in 

carrying the mission can be calculated as a function of time 

during the mission. Using the reliability estimates, real time 

decisions can be taken such as to continue the mission, abort 

the mission, perform a simpler mission, or choose a 

particular path that maximizes the reliability of the mission 

when there is redundancy available in carrying out functions 

in a mission. The proposed methodology is demonstrated 

using a radio-controlled car in carrying out a simple 

surveillance mission.  

This work proposed a framework for the extraction of 

mission-specific reliability block diagram for reliability 

prediction in systems that consist of only hardware 
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components. Future work should address reliability 

prediction in cyber-physical systems that consist of 

interconnected software and hardware components.  In this 

work, the automation capability of the proposed 

methodology is briefly discussed. Future work should 

develop a more formal automated approach in which 

algorithms should be developed to extract necessary 

information from the DSML model for real-time reliability 

prediction and decision-making. 
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APPENDIX 

Functional Decomposition: Functional decomposition is 

the process of decomposing a high-level function into a set 

of leaf-level functions (Kurtoglu & Tumer, 2008). A leaf-

level function is a function that cannot be decomposed any 

further. All the leaf-level functions are required for the 

successful completion of the high-level function. Functional 

decomposition of a high-level function can be represented 

using a hierarchical tree-structure. The dependence 

relationships can be written using the Boolean relationships: 

and, or, r-out-of-n. The number of branches in the tree 

depends on the fidelity of the analysis required. At any 

instant of time, one or more high-level functions can be 

happening; therefore, one or more dependence trees are 

active. A leaf-level function might be required for several 

high-level functions and therefore might appear in several 

trees. 

Function-Component association: Boolean relationships 

(and, or, r-out-of-n) are used to associate each leaf-level 

function to its component or a component assembly 

(Kurtoglu, Tumer & Jensen, 2010). A component can 

provide multiple leaf-level functions but a leaf-level 

function cannot be associated with more than one 

component unless the components are the same.   

Component availability: Component availability refers to 

the availability of a component for usage at any time instant 

during the mission.  

Function availability: Function availability refers to the 

availability of a function for a future use during a mission. 

For a function to be available, all the components required 

for the implementation of this function should be available. 

Mission Feasibility: Mission feasibility refers to the 

possibility of completion of the mission given the current 

state of the components. At any instant of time, if all the 

components are available to carry out all the functions 

required later in the mission, then it can be concluded that 

the mission is feasible given the current state of the 

components. If any of the components becomes unavailable 

and the component is required later, then the corresponding 

function cannot be carried out. If there are no alternate 

possibilities available to carry out this function, then these 

results in the mission being infeasible. 

Redundancy: If a function can be carried out even when a 

component becomes unavailable, then it can be concluded 

that there is redundancy in the function with respect to that 

component. 

 

 

 


