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ABSTRACT 

Although Ensemble empirical mode decomposition (EEMD) 

method has been successfully applied to various applications, 

features extracted using EEMD could not detect anomalies 

for roller bearings, especially when anomalies includes small 

defects. In this study a novel feature extraction method is 

proposed to detect the state of roller bearings. Performance 

improved EEMD, which is a reliable adaptive method to 

calculate an appropriate noise amplitude is applied to 

decompose the acceleration signals into zero-mean 

components called intrinsic mode functions (IMFs). Then, 

three dimensional feature vectors are created by applying the 

Teager-Kaiser energy operator (TKEO) to the first three 

IMFs.  The novel features obtained from the healthy bearing 

signals are utilized to construct the separating hyperplane 

using one-class support vector machine (SVM). In order to 

validate the method proposed, a number of operating 

conditions (shaft speed and load) are considered to generate 

the data (vibration signals) by means of an assembled test rig. 

It is shown that the proposed method can successfully 

identify the states of the new samples (healthy and faulty). 

The   uncertainty of the model prediction is investigated 

computing Margin and the number of support vectors.  It 

create less complex (less fraction of support vectors) and 

more reliable (higher Margin) hyperplane than the EEMD 

method. 

1. INTRODUCTION 

Since roller bearings constitute one the most important 

elements of rotating machines, early fault diagnosis of roller 

bearings is extremely important, especially for high speed, 

automatic and precise machines. Thus, many research efforts 

have been focused on fault diagnosis and detection of roller 

bearings. 

Several signal processing techniques exist to decompose a 

signal and extract informative features for roller bearings. 

Randall and Antoni (2011) have broadly treated the 

background of some powerful diagnostic methods for roller 

bearings in a very useful tutorial paper. Empirical mode 

decomposition (EMD) is another recent technique, a so-

called self-adaptive data driven technique, for analyzing 

multi-component nonlinear and non-stationary signals and 

brake down them into some elementary modes called 

Intrinsic mode functions (IMFs). (Huang et al., 1998). 

However, this technique still holds some drawbacks such as 

mode mixing problem. Ensemble empirical mode 

decomposition (EEMD) is a more recent developed method 

aimed to solve mode mixing problem (Wu & Huang, 2009). 

Although the EEMD has been successfully applied to damage 

detection of roller bearings (Lei et al., 2013), it is shown that 

there are still some cases for which it is not able to recognize 

introduced novelties. 

In this study a new feature extraction method is proposed for 

novelty detection, which is based on performance improved 

EEMD and Teager-Kaiser energy operator (TKEO). In 

traditional EEMD the amplitude of noise added to the original 

signal is considered as a predefined constant value. Whereas, 

in   performance improved EEMD (PIEEMD) proposed by 

the authors (Tabrizi et al., 2015A), amplitude of added noise 

is adaptively computed for each data point explained in 

section 2.1. 

Teager-Kaiser energy operator (TKEO) technique is a non-

linear operator able to track the energy and to identify the 

instantaneous frequencies and instantaneous amplitudes of 

signals. Teager (1980) proposed TKEO first for modelling 

nonlinear speech production. Kaiser (1990) applied it to 

single time varying signals, for simultaneous modulation of 

amplitude and frequency. As it detects a sudden change of the 

energy stream without a priori assumption of the data 

structure, it can be utilized for vibration based condition 

monitoring (non-stationary signals). Junsheng et al. (2007) 

applied the TKEO to each IMFs decomposed by the EMD to 

extract the instantaneous amplitudes and frequencies. Then 
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envelope spectra were obtained using the spectrum analysis 

to look for characteristic frequencies of damaged roller 

bearings. Li, Fu & Zhang (2009) applied the TKEO to the 

original vibration signals and characteristic frequencies were 

extracted from envelope spectra. Li, Zhang & Tang (2009) 

implemented a novel method to recognize faults of roller 

bearing based on Teager-Huang transform (THT) introduced 

by Cexus & Boudraa (2006). In all those studies, it was 

investigated how to identify a big damage size (1mm in 

depth, 1.5mm width of the groove). Feng et al. (2011) utilized 

the Fourier spectrum of Teager energy to identify the 

characteristic frequency of faulty bearings (very big defect 

sizes: 2mm diameter and 1mm depth). Liu et al. (2013) 

presented an approach to bearing fault diagnosis based on the 

TKEO and the Elman neural network. The wavelet packet 

was used to reduce noise existing in the Teager energy signal, 

and then feature vectors were extracted from the Teager 

spectrum. Rodriguez et al. (2013) transformed the vibration 

signal to the Teager-Kaiser domain and featured it with 

statistical and energy-based measures. The diagnosis was 

performed with the neural network and the least square 

support vector machine (LS-SVM). Kwak et al. (2014) 

applied the TKEO in a combination with minimum entropy 

deconvolution (MED) to detect a defective roller bearing in 

terms of Kurtosis. 

There are various pattern recognition methods such as 

Artificial neural network (ANN) and Support vector machine 

(SVM) which was introduced by Vapnik (1995). The SVM is 

a relatively new computational learning method based on 

statistical learning theory which has been applied 

successfully to numerous applications (Widodo & Yang, 

2007). It can solve the learning problem with a smaller 

number of samples. Thus, taking into account the fact that 

acquiring sufficient faulty samples is not applicable in 

practice, the SVM has been used in a number of fault 

diagnosis problems successfully. As in many diagnostic 

applications, this is the case of a single type of data (the 

healthy one), one-Class SVM proposed by Scholkopf et al. 

(2000) can be adopted for anomaly detection.  

In this study a new feature extraction method is proposed to 

detect the state of roller bearings. The signal is decomposed 

using performance improved EEMD. Then, the three 

dimensional feature vectors are created by applying TKEO to 

the first three IMFs of the healthy bearing signals are utilized 

as input for one-class SVM to construct the separating 

hyperplane. It is shown that the method proposed can 

successfully identify the states of the new samples (healthy 

and anomaly ones). A number of healthy and faulty 

acceleration signals are analyzed to verify the feature 

extraction proposed in this study. 

The methodology is introduced in two parts, feature 

extraction in section 2 and pattern recognition in section 3.  

In feature extraction section, the performance improved 

EEMD method and Teager-Kaiser energy operator are 

introduced in section 2.1 and 2.2, respectively. One-class 

SVM is introduced as the pattern recognition method used in 

this study in section 3. The procedure of the novel feature 

extraction method is explained in section 4. The experimental 

setup and the data-acquisition process are presented in 

section 5. The application of the new approach to the acquired 

data and the results are discussed in section 6. Finally, the 

paper concludes after some discussion in section 7. 

2. FEATURE EXTRACTION METHODS 

The In this study informative features introduced, which are 

extracted by applying Teager-Kaiser energy operator to IMFs 

obtained using performance improved EEMD. These 

methods are explained in the next sections. 

2.1. Performance improved Ensemble empirical mode 

decomposition (EEMD) 

The EEMD repeatedly decomposes the original signal with 

added white noise into a series of IMFs by applying the 

original EMD process, and treats the means of the 

corresponding IMFs during the repetitive process as the final 

EEMD decomposition result. The decomposition steps by the 

EEMD can be summarized as follows: 

1. To add a random white noise signal to the acquired original 

signal: 

𝑥𝑗(𝑡) = 𝑥(𝑡) + 𝐴𝑚𝑝 ∙ 𝑛𝑗(𝑡) (1) 

where 𝑗 = 1,2, … , 𝑀 and 𝐴𝑚𝑝 is the amplitude of added 

white noise and M  is the pre-determined number of trial. 

2. To decompose the obtained signal (𝑥𝑗(𝑡)) into IMFs using 

EMD: 

𝑥𝑗(𝑡) = ∑ 𝑐𝑖𝑗

𝑁𝑗

𝑖=1

+ 𝑟𝑁𝑗
 

(2) 

where 𝑐𝑖𝑗  represents the i-th IMF of the j-th trial, 𝑟𝑁𝑗
 

represents the residue of j-th trial and 𝑁𝑗 is the IMFs number 

of the j-th trial. 

3. To repeat steps a and b until the predefined ensemble trial 

number (M) (add different random noise signal each time). 

4. To calculate the ensemble means of the corresponding 

IMFs of the decompositions as the final result (𝑐𝑖): 

𝑐𝑖(𝑡) = (∑ 𝑐𝑖𝑗

𝑀

𝑗=1

) 𝑀⁄  

      (3) 

where 𝑖 = 1,2, … , 𝐼 and I is the minimum number of IMFs 

among all the trials. 
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Adding the noise aims to affect the extrema of the original 

signal so that the intermittency of the components will be 

removed. Rather than adding a predefined constant amplitude 

value (such as 0.2 of standard deviation of the signal in the 

traditional EEMD method), which might not effectively 

change some extrema, the adaptive method is used to 

improve the performance of the EEMD (Tabrizi et al., 

2015A). After adding a random white noise, by applying the 

SNR definition (Eq. (4)), the Amplitude value for each data 

point of a sample is obtained using Eq. (5). Considering an 

appropriate value for SNR, the extrema of the original signal 

are influenced adequately. 

𝑆𝑁𝑅(𝑡) = 20 log(𝑥(𝑡) (𝐴𝑚𝑝𝑗(𝑡) ∙  𝑛𝑗(𝑡))⁄ ) 

(4) 

𝐴𝑚𝑝𝑗(𝑡) = 10−(𝑆𝑁𝑅(𝑡) 20⁄ )  ∙ (𝑥(𝑡) 𝑛𝑗(𝑡))⁄  

(5) 

where  𝑗 = 1, … , 𝑀 (𝑗 is the is the ensemble trial number). 

Tabrizi et al., (2015A) showed that the performance 

improved EEMD achieves better damage detection results. A 

simulated signal and its decomposition results using the 

EEMD and the performance improved EEMD methods are 

shown in Figures 1 and 2, respectively. Obviously, the IMF 

obtained using the performance improved EEMD (PIEEMD) 

is more similar to the high frequency component. 

 

Figure 1. The simulated signal and its high and low 

frequency components 

 

 

Figure 2. The high frequency component and the IMF 

obtained sing the EEMD and the performance improved 

EEMD (PIEEMD) 

 

2.2. Teager-Kaiser energy operator (TKEO) 

The energy of a signal is the sum of squared absolute value 

of the signal over a time, which is not the instantaneous 

summed energy. Kaiser (1990) observed that a second order 

differential equation is the energy required to generate a 

simple sinusoidal signal varies with both amplitude and 

frequency. In order to estimate the instantaneous energy of a 

signal x(t), Teager-Kaiser Energy Operator (TKEO) is used 

as an energy tracking operator as follows (Maragos, 1993A):  

 

𝛹[𝑥(𝑡)] = 𝐴2 = �̇�2(𝑡) − 𝑥(𝑡) �̈�(𝑡)  (6) 

  

where )t(x and )t(x are the first and the second time 

derivatives of x(t), respectively. 

For a discrete time signal x(n) (where n is the discrete time 

index), using difference to approximate differential, the 

TKEO can be proposed as: 

Ψ[𝑥(𝑛)] = [𝑥(𝑛)]2 − 𝑥(𝑛 − 1)𝑥(𝑛 + 1)  (7) 

As at any instant, only three consecutive samples are needed 

to estimate the instantaneous TKEO, it is adaptive to the 

instantaneous changes in signals to resolve transient events. 

It has some merits such as low computational cost, high 

resolution of time and frequency and adaptability to 

instantaneous feature. 

The instantaneous frequency and instantaneous amplitude at 

any time instant of the signal 𝑥(𝑛) are defined as follows 

(Maragos, 1993B): 
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𝑓(𝑛) =
1

2𝜋
 √

Ψ[�̇�(𝑡)]

Ψ[𝑥(𝑡)]
 

  (8) 

|𝑎(𝑛)| =
Ψ[𝑥(𝑡)]

√Ψ[𝑥(𝑡)]
 

  (9) 

They can be represented as follows: 

𝑓(𝑛) =
1

2
 𝑎𝑟𝑐𝑐𝑜𝑠 (1 −

Ψ[𝑥(𝑛 + 1) − 𝑥(𝑛 − 1)]

2Ψ[𝑥(𝑛)]
) 

(10) 

|𝑎(𝑛)| =
2Ψ[𝑥(𝑛)]

√Ψ[𝑥(𝑛 + 1) − 𝑥(𝑛 − 1)]
 

  (11) 

3. PATTERN RECOGNITION (ONE-CLASS SUPPORT VECTOR 

MACHINE) 

In order to construct a pattern recognition model for novelty 

detection, only one class of data (features extracted from 

healthy bearing signals) is used to create one-class SVM 

model. It constructs a hyperplane around the data, such that 

its distance to the origin is maximal among all possible 

hyperplanes and classifies new samples belong to other 

possible classes as anomaly (Scholkopf et al., 2000).  

The Margin is defined as: 

𝑀𝑎𝑟𝑔𝑖𝑛 = 𝜌 ‖𝑤‖⁄  (12) 

In real problems, an exact line dividing the data is not 

obtainable and we might have a curved decision boundary. 

Ignoring few outlier data points will create smooth boundary 

(using slack variables). To separate the data set from the 

origin, the following quadratic program must be solved 

(Scholkopf et al., 2000): 

min (
1

2
‖𝒘‖2 +

1

𝜐𝑙
∑ 𝜉𝑖

𝑙

𝑖=1

− 𝜌) 

(13) 

subject to  {
𝑦𝑖(𝒘 ∙ 𝜙(𝒙𝑖)) ≥ 𝜌 − 𝜉𝑖

𝜉𝑖 ≥ 0
    𝑖 = 1, … , 𝑙 

 

where 𝒘  and 𝜌  are the weight vector and the offset 

parameterizing the hyperplane.  𝜉𝑖 is the slack variable, 𝜐 is 

the regularization parameter and represents an upper bound 

on the fraction of outliers (training errors) and a lower bound 

on the fraction of support vectors (SVs) with respect to the 

number of training samples. It is a variable taking values 

between 0 and 1 that monitors the effect of outliers (hardness 

and softness of the boundary around data). The decision 

function used to label new samples whether they are healthy 

or outliers (anomaly) is as follows: 

𝑓(𝑥) = 𝑠𝑖𝑔𝑛(〈𝑤. 𝑥𝑖〉 − 𝜌) (14) 

The SVM could also be applied in a case of non-linear 

classification by mapping the data onto a high dimensional 

feature space, where the linear classification is hence 

possible. A non-linear vector function such as 𝚽(𝒙) =

(𝜑1(𝒙), … , 𝜑𝑙(𝒙)) is used to map the n-dimensional input 

vector x onto l dimensional feature space, so that the decision 

function becomes as follows: 

𝑓(𝑥) = 𝑠𝑖𝑔𝑛(〈𝑤. 𝛷(𝑥𝑖)〉 − 𝜌) (15) 

By applying the Kernel function as the inner product of 

mapping functions, it is not necessary to explicitly evaluate 

mapping in the feature space. 

𝐾(𝑥𝑖 , 𝑥𝑗) = (Φ(𝑥𝑖) ∙ Φ(𝑥𝑗)) (16) 

Various kernel functions could be used such as: 

 Linear   𝐾(𝑥𝑖 , 𝑥𝑗) = (𝑥𝑖 ∙ 𝑥𝑗)
𝑑

 

 

 Polynomial 𝐾(𝑥𝑖 , 𝑥𝑗) = (𝑥𝑖 ∙ 𝑥𝑗 + 1)
𝑑

 

 

 Gaussian radial basis function (RBF) 

𝐾(𝑥𝑖 , 𝑥𝑗) = 𝑒𝑥𝑝 (−𝛾‖𝑥𝑖 − 𝑥𝑗‖
2

) 

 Hyperbolic tangent 

 𝐾(𝑥𝑖 , 𝑥𝑗) = 𝑡𝑎𝑛ℎ(𝑘𝑥𝑖 ∙ 𝑥𝑗 + 𝑐) 

As the kernel function defines the feature space in which the 

training set is classified, the selection of the appropriate 

kernel function is very important. 

Introducing Lagrange multipliers we obtain the dual problem 

as: 

𝑚𝑖𝑛 
1

2
∑ 𝛼𝑖𝛼𝑗

𝑙

𝑖,𝑗=1

𝑲(𝒙𝑖 , 𝒙𝑗) 

      (17) 

Subject to  {
0 ≤ 𝛼𝑖 ≤

1

𝜐𝑙

∑ 𝛼𝑖
𝑁
𝑖=1 = 1

 

If 𝜐  approaches 0, the upper boundaries on the Lagrange 

multipliers tend to infinity, so the second inequality 

constraint in Eq. (17) becomes void. As the penalization of 

errors becomes infinite, it returns to the corresponding hard 

margin algorithm. 

For the positive, non-zero multipliers (support vectors 𝑥𝑖)) 

we will have: 

http://en.wikipedia.org/wiki/Hyperbolic_function
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𝜌 = 𝑤 ∙ 𝜙(𝑥𝑖) = ∑ 𝛼𝑗

𝑙

𝑗=1

𝐾(𝑥𝑗 , 𝑥𝑖) 

     (18) 

Accordingly the non-linear decision function for labelling 

new samples is represented as follows ( 𝑥𝑖  represents the 

positive, non-zero multipliers called support vectors): 

𝑓(𝑥) = 𝑠𝑖𝑔𝑛 (∑ 𝛼𝑖

𝑙

𝑖=1

𝐾(𝑥𝑖 , 𝑥) − 𝜌) 

 (19) 

4. METHODOLOGY 

The goal of this study is to evaluate performance of the 

proposed feature extraction algorithm in condition detection 

of a roller bearing.  

The fault diagnosis method for the traditional EEMD 

technique is given as the following (Tabrizi et al., 2014): 

1. To collect the acceleration signals of the healthy and 

defective bearings at three different external loads and two 

shaft speeds.  

2. To apply the EEMD method to decompose the vibration 

signals into some IMFs.  The first m IMFs including the most 

dominant fault information are chosen to extract the feature. 

3. To calculate the total energy iE of the first m IMFs: 

𝐸𝑖 = ∫ |𝑐𝑖(𝑡)|2 𝑑𝑡

+∞

−∞

 

(20) 

4. To create a feature vector with the energies of the m 

selected IMFs: 

𝐹𝑉 = [𝐸1, 𝐸2, … , 𝐸𝑚] (21) 

 

5. To normalize the feature function: 

𝐹𝑉𝑛 = [𝐸1 𝐸⁄ , 𝐸2 𝐸⁄ , … , 𝐸𝑚 𝐸⁄ ] (22) 

 

where  𝐸 = (∑ |𝐸𝑖|2𝑚
𝑖=1 )1/2 . 

Whereas the proposed feature extraction is implemented as 

the following steps: 

1. To decompose the signal using the performance improved 

EEMD (PIEEMD) with SNR=10 dB (Tabrizi et al., 2015A)  

2. To apply the TKEO to the first m IMFs of each signal. 

3. To calculate the sum of each TKEO. 

𝑇𝐾𝐸𝑂𝑖 = ∑ 𝜓(𝐼𝑀𝐹𝑖)

𝑚

𝑖=1

 

      (23) 

4. To create a feature vector with the sum of the calculated 

TKEO: 

𝑇𝐾𝐸 = [𝑇𝐾𝐸𝑂1 , 𝑇𝐾𝐸𝑂2, … , 𝑇𝐾𝐸𝑂𝑚]  (24) 

  

5. To normalize the feature: 

 

𝑇𝐾𝐸𝑛 = [𝑇𝐾𝐸𝑂1/𝑇𝐾𝐸𝑂𝑡𝑜𝑡 , 𝑇𝐾𝐸𝑂2/𝑇𝐾𝐸𝑂𝑡𝑜𝑡 , … , 𝑇𝐾𝐸𝑂𝑚/
𝑇𝐾𝐸𝑂𝑡𝑜𝑡]     

      (25) 

where  𝑇𝐾𝐸𝑂𝑡𝑜𝑡 = (∑ 𝑇𝐾𝐸𝑂𝑖
𝑚
𝑖=1 ) . 

 

Finally, the training procedure of one-class SVM is carried 

out by utilizing the normalized feature vectors so far 

obtained. The 80% of healthy samples are used for training 

and the rest (remaining healthy samples and all faulty data) 

are taken as the test samples. Once the training procedure is 

successfully performed, the parameters are hold to test 

samples to identify the different work conditions and fault 

patterns. Cross validation is used to optimize the parameters 

of pattern recognition method. 

5. EXPERIMENTS 

The bearing data set (acceleration signals) were collected 

under various operating conditions using the test rig (Figure 

3) developed and assembled by the Dynamics & 

Identification Research Group (DIRG) at the Department of 

Mechanical and Aerospace Engineering of Politecnico di 

Torino. The Kistler triaxial accelerometers (model 

8763A500) were used to acquire signals at 102.4 kHz 

sampling frequency for both healthy and defective roller 

bearings. The small artificial defects severity over one roller 

was 150 and 450 microns in diameter. Two different shaft 

speeds (200 and 300 Hz) and three different external radial 

loads (1.0, 1.4 and 1.8 kN) were considered to acquire the 

signals in different operating conditions (as a common 

industrial set up) in laboratory supervised conditions, 

allowing speed, load and oil temperature monitoring. The 

original acquired healthy signals were divided into 30 

segments (20 segments for defective bearing) including 

10000 data points each, to extract required informative 

feature vectors. Thus, each healthy signal includes 30 

segments which create 30 feature vectors (20 feature vectors 

for defective bearing) as inputs for the one-class SVM. 

Selecting samples as the training ones includes all the 

possible random selections to obtain the maximum 

classification accuracy rate for training. 
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(a) 

 

 

 

 

 

(b) 

Figure 3. DIRG test rig (a) the damaged roller used in the 

tests (b) 

6. RESULTS AND DISCUSSIONS 

An acquired acceleration signal, its three first IMFs 

(decomposed using EEMD) and the TKEO of those IMFs are 

shown in Figure 4. Implementing the methodology to the 

signals, the normalized energy of IMFs (𝐹𝑉𝑛) for the EEMD 

method (using only first three elements of the feature vectors 

(Tabrizi et al., 2014)) and the normalized 𝑇𝐾𝐸𝑛  for the 

proposed method. 0.3 of standard deviation of each original 

signal is used as the appropriate amplitude of added noise in 

the traditional EEMD method (Tabrizi et al., 2015B). As it 

can be seen in Figure 5, there is a confusion among healthy 

and faulty samples for the lighter defect size (150 microns) 

obtained by the EEMD method. In view of this, the novel 

feature proposed along this study is applied to check whether 

it can improve the performances of detection. As it can be 

seen in Figure 6, the healthy and faulty samples are perfectly 

separable. Thus, it is expected to achieve higher success rate 

in labelling of new samples. 

In Table 1 and Table 2, the results of classification are shown 

(for shaft speed = 200 and 300 Hz) using one-class SVM. The 

results are highly dependent on the classification parameters. 

The optimal values of the classification parameters (  and

) obtained by cross validation are presented for each methods. 

The success rates obtained using the proposed feature 

extraction, are higher so that in some cases there exist 

considerable differences. For example, with the condition 

300 Hz speed and 1.8 kN load, the proposed double steps 

technique improves the test success rate 23.1%.  

 

(a) 

 

(b)  

 

(c) 

Figure 4. A collected acceleration signal (a), first three IMFs 

(b) and TKEO of the IMFs (c) 
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Figure 5. The normalized energy 𝐹𝑉𝑛 of three first IMFs using EEMD for the 150 microns defect size (Speed = 300 Hz and 

load = 1.8 kN) 

 

Figure 6. The normalized 𝑇𝐾𝐸𝑛  of three first IMFs using performance improved EEMD (PIEEMD) for the 150 microns 

defect size (Speed = 300 Hz and load = 1.8 kN) 
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 Load 

              

Method 
1.0 kN      1.4 kN 1.8 kN 


   training test 

   training test    


   training Test 

EEMD 0.3 0.1 100 96.2 0.1 0.3 100 100 0.3 0.05 100 92.3 

New feature extraction 0.1 0.3 100 100 0.1 0.3 100 100 0.1 0.3 100 100 

Table 1. The classification results for both methods (Shaft speed = 200Hz) 

 

 Load 

              

Method 
1.0 kN       1.4 kN 1.8 kN 


   training test    


   training test    


   training Test 

EEMD 0.1 0.3 95.8 96.2 0.1 0.1 95.8 92.3 0.05 0.3 100 73.1 

New feature extraction 0. 05 0.35 100 100 0.05 0.2 100 92.3 0.1 0.2 100 96.2 

Table 2. The classification results for both methods (Shaft speed = 300Hz) 

 

As the model might predict incorrectly the state of the new 

unseen samples introduced, in addition to the classification 

rate index, Margin (Eq. 10) and the number of support vectors 

are computed to test the reliability and uncertainty of the 

model. The complexity of the constructed hyperplane and the 

Margin are compare for traditional EEMD and the new 

feature extraction method (Tables 3 and Table 4). The 

bearing condition can be perfectly recognized (using EEMD) 

for a single working condition (Speed = 200 Hz and load = 

1.4 kN). In this condition, the fraction of SVs is 8/24, whereas 

applying the new method the complexity of the hyperplane 

decreases because it is defined by a lower SVs fraction (5/24). 

Furthermore, the Margin created by the EEMD is 0.999305, 

while using the proposed method the Margin is improved to 

1.146190. It means that the proposed feature extraction 

generates a less complex and more reliable hyperplane. Thus, 

the uncertainty of the model in identifying the state of new 

samples would be less than using the traditional EEMD.  

In all operating conditions, adopting the proposed method to 

construct the hyperplane, higher Margins are obtained, which 

indicates more reliable classification.   

It achieves the perfect success rates in the most cases, except 

for two operating conditions (Speed = 300Hz, load = 1.4 and 

1.8 kN). Even in these conditions, the success rates are higher 

than the EEMD.  In the load = 1.8 kN condition, there exist 

only one misclassified sample, which is a healthy sample 

labelled as a faulty bearing (false alarm). In fault diagnosis, 

it is more important not to classify a faulty sample as a 

healthy one than having a faulty alarm. 

When the  parameter approaches zero, the problem then 

resembles the corresponding hard margin algorithm, since the 

penalization of errors becomes infinite (Eq. (17)). As it can 

be seen in tables 1 to 4, in some cases, the constructed 

hyperplane based on EEMD, seems to be hard-margin 

because of very low  and very small number of SVs. For 

example, the condition corresponding to the speed of 200 Hz 

and the applied load of 1.8 kN, the parameter value is 0.05 

and the achieved number of SVs is only 2. It indicates a hard-

margin condition that only a few outlier can determine the 

boundary and makes the classifier significantly sensitive to 

noise in the data. By increasing the  parameter to create a 

soft-margin model, the training accuracy will be reduced 

considerably. In contrast, all the constructed models based on 

the proposed feature extraction method are soft-margin SVM 

and more reliable. 

In order to detect the larger defect size (450 microns), the 

proposed feature extraction method is applied and the perfect 

success rates of classification are achieved for all operating 

conditions. As it can be seen in Figure 7, the healthy and 

faulty samples are perfectly separable, even for the condition 

where the states of the bearing were not detected perfectly for 

the smaller defect size (Speed = 300 Hz and load = 1.4 kN). 

7. CONCLUSIONS 

Applying the EEMD does not lead to a perfect anomaly 

detection in the case of small size defect (150 microns). 

However, it is shown that the proposed feature extraction 

method (based on performance improved EEMD and the 

normalized TKE) is a powerful method for detecting even the 

smallest damage level (150 microns) so that it can classify 

the samples perfectly in various operating conditions. It 

create less complex (less fraction of SVs) and more reliable 

(higher Margin) hyperplane than EEMD method. For the 

larger defect size (450 microns), utilizing the proposed 

technique, the healthy and faulty samples are completely 
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separable and the success rates of labelling the new samples 

are exact in all operating condition. 

 Load 

              

Method 
1.0 kN          1.4 kN 1.8 kN 

Fraction of 

SVs 
Margin 

Fraction of  

               SVs 
Margin 

Fraction of  

           SVs 
Margin 

EEMD 3/24 0.999722 8/24 0.999954 2/24 0.999305 

New feature extraction 8/24 1.13989 8/24 1.16538 8/24 1.26256 

Table 3. The fraction of SVs and calculated Margin (Shaft speed = 200Hz) 

 

 Load 

              

Method 
1.0 kN          1.4 kN 1.8 kN 

Fraction of 

SVs 
Margin 

Fraction of  

               SVs 
Margin 

Fraction of  

           SVs 
Margin 

EEMD 8/24 1.000010 3/24 0.999994 8/24 1.000030 

New feature extraction 8/24 1.098540 5/24 1.094330 5/24 1.146190 

Table 4. The fraction of SVs and calculated Margin (Shaft speed = 300Hz) 

 

 

 

 

Figure 7. The normalized 𝑇𝐾𝐸𝑛  of three first IMFs based on performance improved EEMD for the 450 microns defect size 

(Speed = 300 Hz and load = 1.4 kN) 
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