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ABSTRACT

After an incipient fault mode has been detected a logical ques-
tion to ask is: How long can the system continue to be op-
erated before the incipient fault mode degrades to a failure
condition? In many cases answering this question is compli-
cated by the fact that further fault growth will depend on how
the system is intended to be used in the future. The prob-
lem is then complicated even further when we consider that
the future operation of a system may itself be conditioned
on estimates of a system’s current health and on predictions
of future fault evolution. This paper introduces a notation-
ally convenient formulation of this problem as a Markov de-
cision process. Prognostics-based fault management policies
are then shown to be identified using standard Markov deci-
sion process optimization techniques. A case study example
is analyzed, in which a discrete random walk is used to repre-
sent time-varying system loading demands. A comparison of
fault management policies computed with and without future
uncertainty is used to illustrate the limiting effects of model
uncertainty on prognostics-informed fault management poli-
cies.

1. INTRODUCTION

Diagnostic routines give an operator or supervisory controller
an indication of component malfunction so that fault manage-
ment (FM) actions can be taken prior to more serious failures.
Because it is in many cases not possible or cost effective to
replace components at the first sign of malfunction, additional
prognostic models are desired to estimate how long degraded
components may continue to be used before failures occur.
After detecting a fault or other anomalous system behavior,
it may first be necessary to determine whether or not system
stability and performance can be maintained. A survey of
various methods used to maintain high performance in the
presence of incipient faults or failures is found in (Zhang &
Jiang, 2008). If the system can continue to operate in the

presence of a fault, then we can consider the prediction of
fault growth and eventual system failure with continued use.
It generally holds that higher system performance will result
in higher loads on system components, and high loads will
increase the risk of further component degradation. This sets
the stage for FM policy that seeks to trade off reduced system
performance for a reduced risk of component degradation and
failure.
The prognostics-informed FM problem may be generally de-
scribed in terms of the following parts:

1. A space of available FM actions that may be taken at
present or future decision making epochs

2. Potentially uncertain models used to evaluate the cost
and risk of available FM actions

3. A searching technique to seek a balance between the cost
and risk of available FM actions

The cost and risk terms above are used to distinguish between
the upfront operational cost of an FM action, and the esti-
mated effect on mission safety respectively. The contribution
of this paper is to present and examine a novel Markov de-
cision process (MDP) formulation for prognostics-informed
FM. The action space considered here is a range of accept-
able, although potentially undesirable, deviations from the
nominal tracking performance of a system. The FM formu-
lation presented here incorporates explicit stochastic models
for future system output demands, and component degrada-
tion as a function of applied load. Dynamic programming is
shown to solve for an optimal finite horizon FM policy, after
formulating the FM problem as an MDP. Finally, a multivari-
ate stochastic system example, originally introduced in (Bole
et al., 2012b), is used to demonstrate the formulation and so-
lution of the FM problem as an MDP.
The FM action space discussed here is similar to that de-
scribed in (Gokdere et al., 2006), which considered the
prognostics-based adaptation of weighting factors in a lin-
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ear quadratic regulator. The control optimization ap-
proach described here builds on our previous work regarding
prognostics-informed component load allocation (Bole et al.,
2011). A generalized Markov process formulation of compo-
nent fault growth dynamics, originally described in (Bole et
al., 2012a), is also adapted for use here.
The MDP formulation that is presented here is significant,
because MDP optimization tools are widely used to solve
cost and risk balancing problems, but there are currently few
examples of their use in the area of prognostics-informed
FM. Some examples of MDP for FM have been published in
the areas of scheduled maintenance (Smilowitz & Madanat,
1994), health care (Sonnenberg & Beck, 1993), and au-
tonomous mission replanning (Balaban & Alonso, 2013;
Agha-mohammadi et al., 2014). A formal description of
fault growth modeling and remaining useful life estimation
in terms of Markov process models can be found in (Banjevic
& Jardine, 2006). Established usage of MDP optimization
methods for sequential decision making in the presence of
stochastic modeling information is currently found in areas
such as economics (Hauriea & Moresino, 2006), supply chain
management (Parlara et al., 1995), and robotics (Cassandra et
al., 1996).
This paper is organized as follows. Section 2 introduces a
generalized representation of component degradation dynam-
ics in terms of a multivariate Markov process. Section 3
describes an MDP formulation of the tracking performance
planning FM problem, and the use of dynamic programming
to identify optimal finite horizon FM policies. Section 4 in-
troduces a case study example, in which uncertainty in fault
growth physics models is represented by a uniformly dis-
tributed random process, and uncertainty in future exogenous
loading demand models is represented by a discrete random
walk. Concluding remarks are given in Section 5.

2. BUILDING A MARKOV PROCESS MODEL FOR FAULT
GROWTH DYNAMICS

The eventual failure of individual components within a multi-
component system is represented here in terms of compo-
nent fault modes that will grow in severity until they cross
a threshold, after which they are considered no longer viable.
Fault magnitudes are assumed to be represented by a positive
real number, corresponding to a measurable physical property
such as crack length, spall width, or pitting depth; although,
in many cases, faults cannot be directly measured in situ and
diagnostic routines are needed to approximate current fault
magnitudes based on the secondary effects observed in avail-
able sensor measurements (Feldman et al., 2010).
A generic function is introduced here to represent the dynam-
ics of a particular component failure mode in discrete-time;

sq (k + 1) = f (sq (k) , uq, ξ) (1)

Here, sq (k) represents a fault magnitude for the qth compo-

nent in a system at time-index k, uq represents a load applied
to component q, and ξ is a random variable representing un-
certainty in this fault growth model.
The component load terminology is used here as a stand-in
for pressure, force, torque, or a wide variety of other stressors
that drive component deterioration. Component loads are as-
sumed to be dictated partly by the dynamics of the system’s
operating environment, and partly by available supervisory
FM actions that may be taken in response to online estimates
of environmental states and component fault magnitudes.
The stochastic component degradation process given in Eq.
(1) is formulated in terms of a discrete Markov process as:

pqi,j(u
q)=p(sq (k+1)=sj |sq (k)=si, u

q)

=
∑
ξ∈Ξ

p (ξ (k) = ξ) · p (f (si, u
q, ξ) = sj |uq, ξ) ,

si, sj ∈Sq, uq (k)∈Uq (k) , k∈N, i, j∈{0, 1, ..., n} (2)

n∑
j=0

pqi,j = 1, ∀ i ∈ {0, 1, ..., n} (3)

Here, pqi,j(uq) represents the probability of transitioning from
damage state si to damage state sj , given a particular compo-
nent loading, uq . The f (si, u

q, ξ) term, represents the fault
growth model introduced in Eq. (1). The Sq , Uq , and Ξ
terms, represent quantized state spaces for sq , uq , and ξ re-
spectively. Equation (3) specifies that the sum of all transi-
tion probabilities defined at each system state must always be
equal to one.
A mandate of monotonically increasing component fault
modes is subsequently incorporated into the Markov process
notation given in Eq. (2) as:

pqi,j = 0, if j < i (4)

This constraint will be problematic for other fault growth
modeling techniques that represent process uncertainty with
an analytical distribution that lacks an explicit lower bound.
For example, in the case of Kalman filtering or Gaussian pro-
cess models of fault growth, an assumption of unbounded
Gaussian uncertainty would introduce some probability that
the fault mode will be smaller in the future than it was known
to be in the past. It would be necessary, in such cases, to
assure that the probability attributed to non-realizable out-
comes, (p (sq (τ) < sq (t)) for τ > t), will be acceptably
small.
Sensor noise and feature mapping uncertainties will often re-
sult in significant uncertainty in estimates of present fault
magnitudes. It is common practice for such diagnostic es-
timates to be reported in terms of a probability distribution
over the potential fault magnitudes that could correspond to
a given set of observations. The incorporation of uncertain
beliefs about the present state of a system at fixed decision
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making epochs can be found in publications on partially ob-
servable Markov decision processes; see the survey paper by
Lovejoy for more information (Lovejoy, 1991). The addi-
tional notation necessary to include state estimation uncer-
tainty in the FM problem is omitted from this paper in order
to promote clarity in this initial work.
The Markov process notation given here may be used to de-
scribe stochastic fault growth process models in which the
following assumptions are satisfied:
• Assumption 1: The fault growth dynamics are taken to be

memoryless; i.e., the conditional probability distribution
for future states depends only on the present state of the
process, and not the past. This assumption is commonly
referred to as the Markov assumption.

Should it be the case that a fault growth process of interest
is not completely memoryless, but future states only depend
on a finite number, m, of previous states, then the Markov
process notation given here could be extended to satisfy the
Markov assumption by defining the state space of the process
to be the ordered m-tuple of the current state and the m pre-
viously visited states (Wang & Chang, 1996).
• Assumption 2: State transition probabilities are consid-

ered to be time invariant; although, it may be the case
that fault growth models are not precisely known a pri-
ori and must be adapted online using techniques such as
particle filtering (Orchard et al., 2008) or Bayesian learn-
ing (Saha et al., 2009).

• Assumption 3: At all discrete time-steps, the state space,
the action space, and the space of environmental and
other exogenous inputs to the system are adequately rep-
resented by a finite quantization of these spaces.

In the event that fault growth must be modeled as a contin-
uous time process, a representation of fault growth model-
ing similar to that given here may be expressed in terms of a
continuous time Markov process (Serfozo, 1979) or a semi-
Markov process (Dong & He, 2007).
If all assumptions are satisfied, then the state transition prob-
abilities defined in Eq. (2), are directly derivable from Eq.
(1), given a model for the statistics of the random variable, ξ.
The notation given in Eq. (2) does not explain however how
component loads, represented by uq , will be expected to vary
in the system of interest.
If component loads are assumed to be directly controllable,
then the prognostics-based control problem may be viewed
as a component load allocation problem. Practical applica-
tions of control in terms of instantaneous component load al-
locations are currently found for aircraft (Boikovic & Mehra,
2002), spacecraft (Shertzer et al., 2002), and automobiles
(Hattori et al., 2002). Two previous publications demon-
strated the consideration of fault diagnostic updates and un-
certain prognostic estimates to optimize component load al-
location in an electro-mechanical actuator (Bole et al., 2010)
and an unmanned ground vehicle (Bole et al., 2011). This

paper takes a new approach to the optimization of component
load in response to diagnostic and prognostic updates. Here,
the FM problem is formulated in terms of the component load
reduction resulting from the degradation of a system’s nomi-
nal tracking performance.

2.1. Fault Prediction in Terms of Performance Allocation
The FM problem is considered here in the context of a trade-
off between competing desires to reduce loads on degraded
system components, while also minimizing deviation from a
system’s nominal tracking performance. This section intro-
duces a novel notation for describing the FM action space
in terms of its effect on a system’s nominal tracking perfor-
mance. This new notation will be shown to beneficially sim-
plify the FM optimization description, which will be intro-
duced in the following section.
First, the loads that would be exerted by a nominal control
policy on system components are represented by the follow-
ing generic function:

u = g (w) (5)

where w represents a vector of environmental or other ex-
ogenous disturbances to a system, u represents a component
loading vector, and g (w) represents the loading response of
a nominal control policy.
Evaluation of system tracking performance is represented as:

JT =

N̂

0

h (u (t) ,w (t)) dt (6)

where JT represents a tracking performance score and
h (u,w) represents a deterministic function used to evaluate
system tracking performance as a function of u and w.
Next, the tracking performance of a system under nominal
control is defined as JN , and the tracking performance of a
system after an FM action is taken is defined as:

JT = JN · ρ (7)

where ρ represents an induced reduction in the tracking per-
formance of a nominally controlled system. Here, ρ = 1, in-
dicates no change from the nominal control policy, and ρ < 1
represents FM actions that degrade a system’s nominal track-
ing performance.
This paper does not address the real-world implementation of
FM actions that would effect the u and ρ parameters. The
discussion in this paper proceeds under the assumption that
available FM actions, whatever they may be, can be expressed
in abstracted form presented here.
A modification of Eq. (5) is introduced next to represent com-
ponent loads for control polices with tracking performance

3



INTERNATIONAL JOURNAL OF PROGNOSTICS AND HEALTH MANAGEMENT

JN · ρ.
u = ĝ (w, ρ) (8)

Substituting Eq. (8) into the state transition model in Eq. (2)
gives:

pqi,j(ρ (k))=p(sq (k+1)=sj |sq (k)=si, ρ=ρ (k))

=
∑

w∈W

∑
ξ∈Ξ

p (w (k) = w) · p (ξ (k) = ξ) ·

p (f (si, ĝ (w, ρ)
q
, ξ) = sj |w, ξ, ρ) , (9)

where si, sj ∈ S

This notation is now only missing a representation of the dy-
namics for the random variables, ξ and w that were used
to denote process uncertainty and future demand uncertainty
respectively. If the random variables, w or ξ, are indepen-
dent and identically distributed (i.i.d.), then a single prob-
ability mass function (pmf) will describe p (w (k) = w) or
p (ξ (k) = ξ). However, if the random variables are not i.i.d.,
then additional dependencies may need to be included to
identify the variable’s pmf at time-index k. The work pre-
sented here will make the assumption that ξ is i.i.d., while
w will be allowed to be non-i.i.d. The additional notation
needed to incorporate a Markov process representation for w
into Eq. (9) is covered in the next section.

2.2. Allowing Non-i.i.d. Exogenous Input Modeling
The exogenous input term, w, is considered in only one di-
mension at this point in order to simplify the stochastic pro-
cess notation. This notation could be extended later to handle
multiple exogenous input sources as need arises. A generic
Markov process representation for w is:

pl,m (w) = p (w (k) = wm|w (k − 1) = wl)

wl, wm ∈W (10)

where p (w (k) = wm|w (k − 1) = wl) represents the proba-
bility of w transitioning to state wm at time-index k, given
that it was in state wl at time-index k − 1.
The Markov process model of the degrading system can now
be expressed as a four dimensional matrix that incorporates
the Markov process model for w.

pq(i,j),(l,m) (ρ) = pl,m (w) ·
∑
ξ∈Ξ

p (ξ (k) = ξ) ·

p (f (si, ĝ (wm, ρ)
q
, ξ) = sj |wm, ξ, ρ) , (11)

where si, sj ∈ S, wl, wm ∈W
where, pq(i,j),(l,m) (ρ) represents the probability of component
q transitioning from fault state si and exogenous loading de-
mand wl to fault state sj and exogenous loading demand wm.

3. FAULT MANAGEMENT AS A FINITE HORIZON MDP
Next, the Markov process model developed in Eq. (11) is
used to formulate the FM problem as a Markov Decision Pro-
cess (MDP). This requires formalizing the space of all control
actions that may be selected by a FM routine when the system
is in any particular state.
At a given time-index the system will be in some state, s, and
the FM system may select any control action that is defined to
be available in state s. At the next time-index the system will
move to state s′, and a new control action will be selected.
The combination of the FM action and resulting state transi-
tion is assigned a cost within the MDP that is referred to as
the state transition cost.
Over the past several decades much has been published on
the theory of encoding various forms of risk aversion into
the specification of MDP state transition costs (Hernandez
& Marcus, 1996; Ruszczyriski, 2010). This task is similar
in nature to the expected utility maximization problems that
have come into popular use in the practice of decision theory
(Schoemaker, 1982).
An FM policy is considered here to be mapping of all system
states to corresponding actions, with the objective of mini-
mizing the accumulation of state transition costs incurred. If
an FM policy is evaluated over an infinite horizon, then the
optimal mapping of system states to control actions will not
vary based on the time-index. This is referred to as a station-
ary control policy. However, if FM policies are evaluated over
a finite horizon, then the optimal mapping will change based
on the time-index. This is referred to as a non-stationary con-
trol policy.
This paper focuses on a finite horizon formulation of the FM
problem. This type of optimization may be applicable to FM
problems in which a machine will be taken out of service af-
ter fixed time-intervals for maintenance. The time-varying
nature of optimal finite horizon MDP policies is highlighted
with an example in the following section.
The space of available FM actions is supposed here to be rep-
resented by a domain of ρ values available at all system states.
Where, ρ as defined in Section 2.1, represents the system’s
tracking performance. Possible FM policies are denoted:
π = {µ0 (s (0) , w (0)) , ..., µN−1 (s (N − 1) , w (N − 1))}.
Where, FM actions are assumed to be taken at each time-
index in the interval k = [0, N − 1], and µk represents a
function used at time-index k to map observations of s and
w into a FM action;

ρ (k) = µk (s (k) , w (k)) (12)

The expected cost of enacting a particular FM policy, given
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initial values for s and w at time-index 0, is denoted:

Jπ (s (0) , w (0)) =

E

cN (s (N)) +

N−1∑
k=tp

ck (s′, w′, s, w, ρ)

 (13)

Here, ck (s′, w′, s, w, ρ) denotes a state transition cost as-
signed to possibility of transitioning from one component
fault state vector and one exogenous loading demand, (s, w),
to another, (s′, w′), given a supervisory control action, ρ. A
terminating cost, denoted by cN (s (N)), penalizes the total
component degradation over a simulated time window. Cost
discounting and average cost formulations, used in the for-
mulation of infinite horizon MDPs, are not considered here.
An optimal FM policy is defined as a one that minimizes Jπ;

Jπ∗ (s (0) , w (0)) = min
π∈Π

Jπ (s (0) , w (0)) (14)

where π∗ represents an optimal FM policy, and Π represents
the space of all possible FM policies.
After stating the FM problem as an MDP, optimized poli-
cies may be identified using well studied techniques such as
backwards induction for finite horizon polices, and linear pro-
gramming, value iteration, and policy iteration for discounted
and average-reward infinite horizon policies.
The well known dynamic programming algorithm uses back-
wards induction to identify an optimal FM policy over the
time window k ∈ {N − 2, N − 1}, and then for k ∈
{N − 3, N − 2, N − 1}, and so on until the optimal policy
is found over the entire time-window of interest. A detailed
description of backwards induction algorithms can be found
in standard texts, such as (Bertsekas, 1995).
The computational burden of this solution method is:
O
(
mn2N

)
. Here, N represents the time horizon to be opti-

mized over. The variables m and n represent the cardinalities
of the discrete action space for ρ and the state space of (s, w)
respectively.
While this is a great improvement over the computational bur-
den of an exhaustive search, which is O

(
mnN

)
, the reader

should note that the cardinalities of the state space and ac-
tion space used in the MDP will grow exponentially with the
dimensionalities of s, w, and ρ. Therefore, the dynamic pro-
gramming method quickly becomes computationally infeasi-
ble for higher dimensional problems. Approximate dynamic
programming algorithms must then be used to search for
near-optimal solutions in higher dimensional systems, where
it would be infeasible to identify optimal solutions with dy-
namic programming (Powell, 2007).
Note that while the discovery of an optimizing MDP policy
through finite horizon dynamic programming may be compu-
tationally challenging, the optimal policy is computed offline,

and requires no online optimization as long as the Markov
process model used to generate the policy is still applicable.
If online updates to the Markov process modeling of environ-
mental loading and fault growth dynamics were considered,
then the optimizing policy would need to be recomputed.

4. CONSIDERATION OF A MULTIVARIATE STOCHASTIC
SYSTEM CASE STUDY

The following discrete time component damage accumulation
model is considered here:

s (k + 1) = f (s(k), u (k) , ξ (k))

=

{
s(k)− λ · |u (k)| · ξ (k) , s > 0

0 else
(15)

where s ∈ [0%, 100%] represents system health as a percent-
age between 100%, indicating perfect health, to 0%, indicat-
ing failure. Component load is represented by u, and pro-
cess uncertainty in component health deterioration modeling
is represented by ξ. This model defines the rate of damage
accumulation to be proportional to the magnitude of applied
load, u. Where, process uncertainty, ξ, and a constant pro-
portional factor, λ, are included as multiplicative terms in the
relationship.
Equation (8) introduced the function u = ĝ (w, ρ) to describe
component loads as a function of a stochastic vector, w, rep-
resenting exogenous demands on the system, and a variable,
ρ, representing induced deviation from a nominal tracking
performance. Here, ĝ (w, ρ) is assumed to take the form,

ĝ (w, ρ) = w · ρ (16)

Substitution of Eq. (16) into Eq. (15) yields:

s (k + 1) = f (s(k), ρ (k) · w (k) , ξ (k))

=

{
s(k)− λ · |ρ (k) · w (k)| · ξ (k) , s > 0

0 else
(17)

Process uncertainty, ξ (k), in the example fault growth model
is taken to be represented by a uniform distribution over the
set {.7, .8, .9, 1.1, 1.2, 1.3};

p(ξ (k) = ξ) =

{
1
6 ξ ∈ {.7, .8, .9, 1.1, 1.2, 1.3}
0 else

(18)

The following discrete random walk process, is considered
for the modeling of future exogenous inputs:

pl,m (w) =

{
1
3 wm−wl∈{−1, 0, 1}
0 else

, wl, wm∈N (19)

Figure 1 shows box plots for the parameters |w|, ξ, and |w| · ξ
that were generated from 100 simulations of the stochastic
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Figure 1. Box plots of the w (a), ξ (b), and w · ξ (c) parameters over 100 simulations of the stochastic system
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Figure 2. Box plots for 100 simulations of the example fault growth process with ρ = 0.2 (left), and with ρ = 1 (right).

system. The box plots shown in Figure 1 provide a convenient
means of representing the statistics of the stochastic variables
as observed over repeated simulations. The top and bottom
of the boxes plotted in Figure 1 represent the first and third
quantiles of the simulation data at a given time-index. The
notch in each box represents the median of the data points.
The dashed line represents the mean value observed at each
time-index. Finally, the whiskers in the box plots extend to
the most extreme points falling within the range,

q1 − 1.5 · (q3 − q1) < di < q3 + 1.5 · (q3 − q1) (20)

where q1 and q3 are the first and third quantiles of the data
respectively, and di represents a datapoint. Points falling out-
side of this range are considered outliers and are denoted in
the plots with red crosses.
Figure 2 shows the results of 100 repeated simulations of Eq.
(17) using λ = 1

30 and two sample values of ρ: ρ = .2 and
ρ = 1. Setting ρ = .2 over the 100 time-index simulation cor-
responds to an 80% reduction of the system’s nominal track-
ing performance. Setting ρ = 1 corresponds to no deviation
from a system’s nominal tracking performance.
It can be observed from the sample results shown in Figure 2
that enacting the 80% reduction in nominal tracking perfor-
mance over the time-window shown would result in very lit-
tle risk of the component’s health deteriorating beyond 40%.
This control policy is perceived to be very ‘safe’, but likely
overly conservative for many cases. On the other hand, en-
acting no deviation from the nominal tracking performance

would likely be unacceptably ‘risky’, as it is seen to result in
component failure in many of the simulation runs.

4.1. Optimal FM With and Without Future Uncertainty
The Markov process representation of this example system is
expressed as a single dimensional version of Eq. (11).

p(i,j),(l,m) (ρ) = pl,m (w) ·
∑
ξ∈Ξ

p (ξ (k) = ξ) ·

p (f (si, ĝ (wm, ρ) , ξ) = sj |wm, ξ, ρ) , (21)

State transition costs are designated as:

ck (s′, w′, s, w, ρ) = 1− ρ (22)

Recall from Section 2.1, that ρ = 1 corresponds to no devi-
ation from a system’s nominal tracking performance. Corre-
spondingly, we see in Eq. (22) that ρ = 1 is assigned a state
transition cost of zero.
The terminating cost for this example is designated to be in-
versely proportional to the square of component health per-
centage at time-index N .

cN (s (N)) = (100− s (N))
2 (23)

The domain of feasible FM policies is considered here to al-
low the choice of nominal performance reductions from 0%
to 80% at each simulated time-index. The domain of allow-
able ρ values that may be enacted at each simulated time-
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tain modeling
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(b) Health degradation for optimal FM computed with future knowledge
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Figure 3. Plots of component health percentage (top) and ρ (bottom) over 100 simulations of the optimal FM policy computed
using a stochastic model of the system (left) and computed using future knowledge of the particular evolution of random
variables observed in each simulation of the simulated system (right).

Table 1. Data Units, Sources, and Dates

µ (
∑
k ck) σ (

∑
k ck) µ (cN ) σ (cN ) µ (Jπ) σ (Jπ)

Sample FM policy: ρ = 1 0 0 81.6 26.7 81.6 26.7

Sample FM policy: ρ = .2 78.4 0 9.9 10.5 88.3 10.5

Optimal FM policy computed using stochastic modeling 55.1 18.2 16.8 7 71.8 23

FM policies computed using perfect future knowledge 40.7 20.1 20.4 7.3 61.1 25.7

index is defined here as ρ ∈ {.2, .3, .., 1}.
As described in Section 3, optimal finite-horizon MDP poli-
cies may be found using dynamic programming. The optimal
FM action at time-index k will be dependent upon the cur-
rent component health state, the exogenous input state, and
the future variation that is estimated for the random variables
included in the system model. The effect that model uncer-
tainty has on the optimization of FM is quantified here by
comparing the optimal FM actions identified using stochastic
models for w and ξ, with the optimal FM actions identified
using deterministic knowledge of the values taken by w and ξ
over each simulation run. The optimal FM policy computed
using deterministic knowledge of the profiles taken by w and
ξ over a simulation run represents the typically unrealizable
case of policy optimization with perfect future knowledge.

The difference in total cost for FM policies computed with
and without future knowledge is referred to as regret (Jacquet
& Szpankowski, 2004).
Figures 3a and 3c show the distributions of component health
percentage and ρ values observed over 100 repeated simula-
tions of the optimal FM policy calculated using the stochastic
models for w and ξ described earlier. Figures 3b and 3d show
the distributions of component health percentage and ρ values
observed over repeated simulations of an optimal FM policy
that is computed using prior knowledge of the profiles to be
taken by w and ξ in each simulation run.
Table 1 shows the sample mean and standard deviation of the
state transition costs (

∑
k ck), the terminating cost (cN ), and

the total control cost (Jπ = cN +
∑
k ck) for the four control

policies discussed in this paper. Comparison of the control
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costs given in Table 1 show that the two optimal FM policies
computed with and without future knowledge clearly score
lower control costs than the two sample FM polices that were
used to generate Figure 2. The optimal FM policy computed
with future knowledge is also clearly seen to outperform the
optimal FM policy computed using stochastic modeling in-
formation.
A visual comparison of the health deterioration plots given
in Figure 3, shows a somewhat slower degradation of com-
ponent health early in the mission for the FM policy lacking
prefect future knowledge. The slower degradation of compo-
nent health for the FM policy lacking future knowledge cor-
responds to more conservative FM actions, resulting in larger
induced reductions to nominal tracking performance. Com-
parison of the ρ plots given in Figure 3, shows that the opti-
mal control computed with uncertain modeling starts by com-
manding maximum degradation of nominal system tracking
performance (ρ = 0.2), while the optimal control computed
with future knowledge starts by commanding no degradation
of the nominal system performance (ρ = 1).
Higher conservatism at the beginning of a mission is expected
for the control policy lacking future knowledge, given that
prognostic uncertainty and assessed risk will be highest early
in the mission. The mean ρ command (represented by the
dashed lines in Figure 3) is seen to converge to approximately
ρ = 0.5 for both control policies as the end of the mission
draws near. The similarity of the optimal policies computed
with and without future uncertainty towards the end of the
simulated mission is also expected, given that future uncer-
tainty is decreasing as the end of the mission approaches.
The results shown here are highly dependent on the control
costs, defined in Eq. (22) and Eq. (23). Different definitions
for Eq. (22) and Eq. (23) would effect the optimal FM poli-
cies identified, and would thus be likely to result in a different
set of observed behaviors. The design of control cost defini-
tions to best reflect performance and safety assurance goals
is outside of the scope of this paper, although this would be
essential for practical applications of this control approach.
The primary objective of the analysis presented here was to
demonstrate the incorporation of stochastic models for com-
ponent degradation and exogenous demands into an optimal
FM policy. The demonstration of the optimal FM policies
identified with and without future uncertainty was presented
to illustrate the effect of uncertainty on optimal control solu-
tions.

5. CONCLUSIONS

A generalized Markov process representation of fault dynam-
ics was developed for the case that available modeling of fault
growth physics and available modeling of future environmen-
tal stresses may be represented by two independent Markov
process models. A metric was introduced to represent the
magnitude of nominal tracking performance reduction to be

caused by a given set of fault management (FM) actions.
A Markov decision process (MDP) formulation of the FM
problem was provided for a system with multiple degrading
effectors. Dynamic programming was shown to solve for the
optimal MDP policy over a finite time-window. A multivari-
ate stochastic process example was considered to illustrate
the effects of compounding uncertainties in physics of failure
and exogenous demand modeling.
Problems still to be tackled using the notational tools de-
scribed in this paper include: multi-component system appli-
cations, comparative analysis to evaluate the effect of using
various prognostic horizon lengths in the formulation of su-
pervisory FM, and the utilization of discounting and average
reward cost functions for infinite horizon optimizations.
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