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ABSTRACT

This paper focuses on how to treat uncertainty in health mon-
itoring of hybrid systems by using a model-based method.
The Hybrid Particle Petri Nets (HPPN) formalism is defined
in the context of health monitoring to model hybrid systems
and to generate diagnosers of such systems. The main advan-
tage of this formalism is that it takes into account knowledge-
based uncertainty and uncertainty in diagnosis process. The
HPPN-based diagnoser deals with occurrences of unobserv-
able discrete events (such as faults) and is robust to false ob-
servations. It also estimates the continuous state of the sys-
tem by using particle filtering. Finally, HPPN can represent
the system degradation that is often dealt with using proba-
bilistic tools. A hybrid technique is thus used to group all this
knowledge and to deduce the diagnosis results. The approach
is demonstrated on a three-tank system. Experimental results
are given, illustrating how different kinds of uncertainty are
taken into account when using HPPN.

1. INTRODUCTION

Real systems have become so complex that it is often im-
possible for humans to capture and explain their behaviors as
a whole, especially when they are exposed to failures. It is
therefore necessary to develop tools that can support operator
tasks but that also reduce the global costs due to unavailability
and repair actions. An efficient health monitoring technique
has to be adopted to detect, isolate (diagnosis) and predict
faults (prognosis) leading to failures.

Recent industrial systems exhibit an increasing complexity
of dynamics that are both continuous and discrete. It has
become difficult to ignore the fact that most systems are hy-
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brid (Henzinger, 1996). In (Chanthery & Ribot, 2013), we ex-
tended the diagnosis approach proposed in (Bayoudh, Travé-
Massuyes, & Olive, 2008) in order to integrate diagnosis and
prognosis for hybrid systems. The approach uses hybrid au-
tomata and stochastic models for the system degradation. Di-
agnosis is performed using a Discrete Event System (DES)
approach.

The main drawback of this approach is that the DES-oriented
diagnosis framework explodes in number of states and it does
not seem to be the most suited for the incorporation of the
prognosis task. Prognosis is indeed a probabilistic predic-
tion process and is highly subject to uncertainty. The health
monitoring task usually has to take into account the differ-
ent sources of uncertainty, such as model approximation, par-
tial observability of the system and measurement noise. Di-
agnosis should help the decision making process. In case
of ambiguity in diagnosis results, the traditional diagnoser
fails at providing relevant information. By taking all uncer-
tainty sources into account, the method we propose succeeds
in quantifying each diagnosis result.

Our previous works introduced a two-level framework called
Hybrid Particle Petri Nets (HPPN). (Gaudel, Chanthery, Ri-
bot, & Le Corronc, 2014) proposed to use the behavioral level
of the HPPN (HPPN-BL) to both specify the system behav-
ior, which is hybrid but also uncertain, and track the system
current health state with a diagnoser representation. (Gaudel,
Chanthery, & Ribot, 2014) extended this work by introduc-
ing the hybrid level of the HPPN (HPPN-HL). The purpose of
the hybrid level is to represent system hybrid characteristics,
such as degradation, which can depend on both the discrete
and continuous parts of the system. Getting some information
about the degradation of the system is a significant advantage
for elaborating a more precise diagnosis and to perform prog-
nosis. This paper recalls these two contributions and illus-
trates all the concepts step by step with a running example
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consisting in a three-tank system. The main contribution of
the paper is to expose simulation results of the implemented
HPPN-based health monitoring method. Experimental results
are given, illustrating how different kinds of uncertainty are
taken into account when using HPPN.

The paper is organized as follows. Section 2 presents related
work on health monitoring based on Petri net formalism in the
case of hybrid systems under uncertainty. Section 3 recalls
the HPPN-BL formalism. Section 4 presents how HPPN-BL
is applied to health monitoring and explains the generation
of a behavioral diagnoser using the HPPN formalism. Sec-
tion 5 presents the HPPN-HL formalism. Section 6 explains
how HPPN-HL is applied to health monitoring and enrich the
diagnosis results. Section 7 provides the results obtained by
testing the HPPN-based health monitoring method on a three-
tank system, focusing on the uncertainty management. Some
conclusions and future work are discussed in the final section.

2. RELATED WORK

The diagnoser approach was introduced by (Sampath, Sen-
gupta, Lafortune, Sinnamohideen, & Teneketzis, 1995). The
diagnoser is basically a monitor that is able to process any
possible observable event on the system. It consists in record-
ing these observations and providing the set of possible faults
whose occurrence is consistent with the observations. How-
ever, this approach is restricted to DES and does not manage
uncertainty.
Some approaches, such as (Boubour, Jard, Aghasaryan, Fabre,
& Benveniste, 1997)(Genc & Lafortune, 2007)(Soldani, Com-
bacau, Subias, & Thomas, 2007)(Cabasino, Giua, & Seatzu,
2014), extend the diagnoser to DES modelled by Petri nets.
(Genc & Lafortune, 2007) proposes a distributed version of
the diagnoser in “Petri net diagnosers”. In (Cabasino et al.,
2014), the authors study the diagnosability of a system, in-
spired by the diagnosability approach for finite state automata
proposed by (Sampath et al., 1995). They used the Modified
Basis Reachability Graph in order to build the reachability
diagnoser that is represented as a graph. However, none of
these approaches take into account continuous aspects, nor
do they consider uncertainties in the system. (Soldani et al.,
2007) proposes an approach for the localization of intermit-
tent faults. This article proposes some clues for dealing with
partial observability in the discrete event framework. It pro-
poses a method based on Petri net modeling the normal func-
tioning of the system observable behavior. The detection step
consists in comparing the flow of observable events emitted
by the monitored system to the flow predicted by the model.
A localization mechanism, based on the diagnoser approach,
points out the set of events potentially responsible for the
faults.
Some works (Koutsoukos, Kurien, & Zhao, 2002), (Ru &
Hadjicostis, 2009), (Basile, Chiacchio, & Tommasi, 2009),
(Jianxiong et al., 2013) try to take into account uncertainty.

(Koutsoukos et al., 2002) uses a particle filtering technique
to estimate the state of a hybrid system modeled as a hybrid
automaton. Uncertainty related to discrete events is not taken
into account and the system degradation is not considered.
(Ru & Hadjicostis, 2009) uses partially observed Petri nets.
Partially observed Petri nets are transformed into an equiv-
alent labelled Petri net and an online monitor is built to di-
agnose faults and provide beliefs (degrees of confidence) re-
garding the occurrences of faults. However, this approach is
limited because it only takes into account the uncertainties in
the diagnosis results, not about the model or the event obser-
vations. (Basile et al., 2009) proposes to reduce the explosion
of the state space by introducing generalized markings (neg-
ative tokens) to take into account uncertainty about the fir-
ing of transitions. (Jianxiong et al., 2013) uses the stochastic
Petri nets to build a formal model of each component of inte-
grated modular avionics architecture. However, for all these
approaches, no continuous aspect in the model is taken into
account.

To get a more compact representation and to capture all un-
certainties related to the system, the observations and the di-
agnosis results, we propose to consider the Modified Parti-
cle Petri Nets (MPPN) formalism defined in (Zouaghi, Alex-
opoulos, Wagner, & Badreddin, 2011a).
MPPN are an extension of particle Petri nets (Lesire & Tessier,
2005) that combine a discrete event model (Petri net) with
a continuous model (differential equations). The main ad-
vantage of MPPN is that uncertainties and hybrid dynam-
ics are taken into account. A particle filter is used to in-
tegrate probabilities in the continuous state estimation pro-
cess. In (Zouaghi et al., 2011a), the application is based on
the mission monitoring. It does not consider different health
states for the system. There is no matching with the diag-
noser approach and the problem of ambiguous state track-
ing is not considered. In (Zouaghi, Alexopoulos, Wagner, &
Badreddin, 2011b), the authors propose a design approach for
the specification and the realization of dynamic system mon-
itoring. They present the integration of system design and
monitoring into a unified framework for the reuse of com-
ponent descriptions and the automatic monitoring component
generation. They automatically convert MPPN into an XML
description and the monitoring parameters are added to the
file. However, this observer is not formally defined, and no
equivalence with a diagnoser is given. In addition, there is no
mention of the health state notion for the system. This paper
proposes to use HPPN for health monitoring. The HPPN-
BL is based on the MPPN formalism and takes into account
the hybrid dynamics and the inherent uncertainty of real sys-
tems. Then the work formally specifies a diagnoser object for
computing online diagnosis. This paper also introduces the
HPPN-HL that captures the system hybrid characteristics.
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3. BEHAVIORAL LEVEL OF HYBRID PARTICLE PETRI
NETS

This section recalls the behavioral level of the Hybrid Particle
Petri Nets formalism (HPPN-BL). This formalism is directly
inspired from (Zouaghi et al., 2011a) and adapted to fit diag-
nosis requirements. First the model structure is detailed, then
its online use is presented.

Throughout the paper, a running example of the three-tank
system, described in Figure 1, is used to illustrate the defini-
tions and concepts, and the proposed extensions to diagnosis.

Figure 1. Three-tank system description.

The tanks are configured in a series circuit. The water comes
from Pump 1 into tank T1. FlowQ1(t) delivered by the pump
is supposed to be constant. The tank T2 empties with flow
Q20(t). The available measurements at time t are the wa-
ter level in tank T1 denoted h1(t) and the total mass of wa-
ter in the three-tank system denoted W (t). Valves v13 and
v32 allow the flow to transfer between tanks. They are con-
trolled by discrete control inputs openv13 , closev13 , openv32
and closev32 . Fault events f1, f2 and f3 model leaks that may
occur in tanks T1, T2 and T3. The leak f1 is three times larger
than f2 and f3. f4 and f5 are fault events that may occur
on the valves. The valve v13 (respectively v32) may become
stuck closed f4 (respectively f5). The goal of the system is to
maintain the water level in tank T2 greater than a minimum
value h2min

. The leak in tank T1 is considered too large and
therefore leads to system failure when f1 occurs because the
system is not able to achieve the goal anymore. Leaks in tanks
T2 and T3 are separately not large enough to prevent the goal
achievement, but the occurrences of the two leaks lead to sys-
tem failure. Both f4 and f5 prevent the water delivered by the
pump to reach the tank T2 and then lead to system failures. It
is then supposed that the system is in a failure mode either if
f1 or f4 or f5 occurs, or if f2 and f3 occur.

3.1. Definition

The HPPN formalism is an extension of Petri nets. A Petri
net is a directed bipartite graph, in which a node can be either

a place or a transition. The directed arcs cannot link two
places or two transitions. Places may contain tokens. The
distribution of tokens over the places is called the marking of
the net. A transition may be fired if it is enabled (ie. there is
enough tokens in its input places). The firing of a transition
consumes the required tokens in its input places and creates
tokens in its output places.

The HPPN-BL is defined as a tuple< P, T, Pre, Post,X,C,
γ,Ω,M0 > where:

• P is the set of places, partitioned into numerical places
PN and symbolic places PS .

• T is the set of transitions (numerical TN , symbolic TS

and mixed TM ).
• Pre and Post are the incidence matrices of the net, of

dimension |P | × |T |.
• X ⊂ <n is the state space of the numerical state vector.
• C is the set of dynamic equation sets of the system as-

sociated with numerical places, representing continuous
state evolution.

• γ(pS) is the application that associates tokens with each
symbolic place pS ∈ PS .

• Ω is the set of conditions (numerical ΩN and symbolic
ΩS) associated with transitions.

• M0 is the initial marking of the net.

The marking of the net is composed of tokens, that can be
numerical tokens (particles) or symbolic tokens (configura-
tions).

A numerical place pN ∈ PN is associated with a set of dy-
namic equations representing the continuous behavior of the
system. Numerical places thus model system continuous dy-
namics. Numerical places are marked by a set of particles
πik = [xik,w

i
k] with i ∈ {1, ..., |MN

k |} where MN
k is the set

of all the particles in the net at time k. Particles are defined by
their corresponding numerical state vector xik ∈ X and their
weight wik ∈ [0, 1] at time k. The set of particles represents a
distribution over the value of the numerical state vector.

Symbolic places model the discrete states of the system. A
symbolic place pS ∈ PS is marked by configurations δjk with
j ∈ {1, ..., |MS

k |} where MS
k is the set of configurations in

the net at time k. The set of configurations represents all the
possible current modes of the system.

The marking Mk of the HPPN-BL at time k consists of both
kinds of tokens:

Mk = {MS
k ,M

N
k }. (1)

Example 1 For the three-tank system, there exist 4 nomi-
nal discrete states, denoted nom1, nom2, nom3, nom4, rep-
resenting the conditions on the valves defined in Table 1. A
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fault event fj , 1 ≤ j ≤ 5 may occur in any nominal mode
and leads to anticipated fault mode 1fj , 2fj , 3fj , 4fj , respec-
tively, so that 16 one-fault modes exist. For example, if f2
occurs in nominal mode nom3, the system evolves in mode
3f2. Multiple faults are considered and faults are assumed
to be independent, that is to say that xfifj is the same mode
as xfjfi. For the three-tank system, 20 two-fault modes are
determined. Each discrete state is represented by a symbolic
place. For example the set PSnom = {nom1, nom2, nom3,
nom4} represents the nominal discrete states of the system.
Each nominal discrete state is associated with a set of dy-
namic equations representing the different continuous behav-
iors of the system. For some cases, two or more discrete
states have the same dynamic equations, so it is not necessary
to define different continuous behaviors for all these discrete
states. Each identified continuous dynamic is represented by
a numerical place, for example the set of nominal behaviors
PNnom = {D1, D2, D3, D4} where D1, D2, D3, D4 are the
system dynamics defined in Table 1, with S1, S2, S3 the tank
sections and Kij real coefficients. All continuous dynamics
of the three-tank system are provided in the appendix.

3.2. Firing Rules

A transition models a change in the continuous dynamics
and/or a change of system mode. A symbolic transition is
conditioned by an observable discrete event. A numerical
transition is conditioned by a set of constraints on continu-
ous observable variables. Finally, a mixed transition is condi-
tioned by an observable discrete event and a set of constraints
on continuous observable variables.

Let Pre(tj) be the set of input places of a transition tj ∈ T :

Pre(tj) = {pi|Pre(i, j) 6= 0, i ∈ {1, ..., |P |}}. (2)

Post(tj) is the set of its output places:

Post(tj) = {pi|Post(i, j) 6= 0, i ∈ {1, ..., |P |}}. (3)

∀pi ∈ P , Mk(pi) is the set of tokens in pi at time k and
mk(pi) = |Mk(pi)| is the number of tokens in pi at time k.

Definition 1 A numerical or a symbolic transition tj is fire-
enabled at time k if:

∀pi ∈ Pre(tj),mk(pi) ≥ Pre(i, j). (4)

A numerical transition tNj ∈ TN is associated with numeri-
cal conditions ΩN (tNj ), where ΩN (tNj )(π) = 1 if the parti-
cle satisfies the conditions. For example, if π = [x,w] fol-
lows the constraint equation c and b is a trigger value, numer-
ical conditions can be defined as ΩN (tNj )(π) = (c(x) > b).
ΩS(tSj ) = (occ(e)) are the symbolic conditions assigned to a
symbolic transition tSj ∈ TS . occ(e) is a boolean indicator of
the occurrence of the discrete event e: occ(e) = 1 if e occurs.
Then, a configuration δ satisfies symbolic conditions ΩS(tSj )

when ΩS(tSj )(δ) = 1, i.e. when the event e occurs.

Firing rules of a transition tj ∈ T use the following set of
variables over their domains of definition. It is assumed that:
pN ∈ (Pre(tj) ∩ PN ), p′N ∈ (Post(tj) ∩ PN ),
pS ∈ (Pre(tj) ∩ PS), p′S ∈ (Post(tj) ∩ PS).

If tj ∈ (TN ∪ TM ), let SNk (pN ) be the set of particles in pN

that satisfy the conditions ΩN (tj) at time k:
SNk (pN ) ⊆ MN

k (pN ) with π ∈ SNk (pN ) if ΩN (tj)(π) = 1
at time k.

The numerical firing uses the concept of classical firing with
the particles satisfying the numerical conditions and the con-
cept of pseudo-firing (ie. duplication) for the configurations.
The duplication of configurations represents uncertainty about
the occurrence of an unobservable discrete event.

Definition 2 The firing of a fire-enabled numerical transi-
tion tNj ∈ TN at time k is defined by:{

MN
k+1(pN ) = MN

k (pN )\SNk (pN )

MN
k+1(p′N ) = MN

k (p′N ) ∪ SNk (pN ),
(5)

{
MS
k+1(pS) = MS

k (pS)

MS
k+1(p′S) = MS

k (p′S) ∪MS
k (pS).

(6)

An example of a numerical firing at time k is illustrated in
Figure 2(a) adapted from (Zouaghi et al., 2011a).

pS1

pS2

pS5

pS6

pS9

pS10

pS1

pS2

pS5

pS6

pS9

pS10

pN3

pN4

pN7

pN8

pN11

pN12

pN3

pN4

pN7

pN8

pN11

pN12

ΩN (tN1 ) ΩS(tS2 ) ΩS(tM3 ) ΩN (tM3 )

ΩN (tN1 ) ΩS(tS2 ) ΩS(tM3 ) ΩN (tM3 )

π1
π2

π3

π1

π2

π3

π4
π5

π6

π4
π5

π6

π4
π5

π6

π7
π8

π9

π7

π8

π9

k

k + 1

(a) (b) (c)

Figure 2. Illustration of firing rules of numerical (a), sym-
bolic (b) and mixed (c) fire-enabled transitions.

In this example, tN1 has only numerical conditions because it
is a numerical transition. Particle π3 satisfies the numerical
conditions ΩN (tN1 ) and thus is moved to pN4 . The configura-
tion in place pS1 is duplicated in pS2 .

The symbolic firing uses the concept of pseudo-firing for par-
ticles and configurations. The pseudo-firing of all the tokens
models uncertainty about the non-occurrence of a discrete
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Table 1. Three-tank system example: state equations for nominal discrete states.

Valve state State equations

nom1
v13 = open

v32 = open
D1


ḣ1(t) = 1

S1
(Q1(t)−K13

√
|h1(t)− h3(t)|)

ḣ2(t) = 1
S2

(K32

√
|h3(t)− h2(t)| −Q20(t))

ḣ3(t) = 1
S3

(K13

√
|h1(t)− h3(t)| −K32

√
|h3(t)− h2(t)|)

nom2
v13 = closed

v32 = open
D2


ḣ1(t) = 1

S1
Q1(t)

ḣ2(t) = 1
S2

(K32

√
|h3(t)− h2(t)| −Q20(t))

ḣ3(t) = −K32

S3

√
|h3(t)− h2(t)|

nom3
v13 = closed

v32 = closed
D3


ḣ1(t) = 1

S1
Q1(t)

ḣ2(t) = −Q20(t)
S2

ḣ3(t) = K13

S3

√
|h1(t)− h3(t)|

nom4
v13 = open

v32 = closed
D4


ḣ1(t) = 1

S1
(Q1(t)−K13

√
|h1(t)− h3(t)|)

ḣ2(t) = Q20(t)
S2

ḣ3(t) = K13

S3

√
|h1(t)− h3(t)|

event.

Definition 3 The firing of a fire-enabled symbolic transition
tSj ∈ TS at time k is defined by:{

MN
k+1(pN ) = MN

k (pN )

MN
k+1(p′N ) = MN

k (p′N ) ∪MN
k (pN ),

(7)

{
MS
k+1(pS) = MS

k (pS)

MS
k+1(p′S) = MS

k (p′S) ∪MS
k (pS).

(8)

Figure 2(b) illustrates an example of a symbolic firing. The
symbolic transition tS2 has only symbolic conditions and is
fire-enabled. No configuration satisfies the symbolic condi-
tions ΩS(tS2 ), however, all the tokens are duplicated.

Mixed transitions (also called hybrid transitions in (Zouaghi
et al., 2011a)) model the interactions between discrete events
and system continuous dynamics. A mixed transition merges
a symbolic transition with a numerical transition to consider
the correlation between discrete observations and continuous
observations. A mixed transition tMj ∈ TM is then associ-
ated with both numerical conditions ΩN (tMj ) and symbolic
conditions ΩS(tMj ).

Definition 4 A mixed transition tMj ∈ TM is fire-enabled
at time k if ∀pi ∈ Pre(tMj ):{

mk(pSi ) ≥ Pre(i, j), if pSi ∈ Pre(tMj ) ∩ PS
mk(pNi ) ≥ 0, if pNi ∈ Pre(tMj ) ∩ PN .

(9)

The mixed firing uses the concept of classical firing with the
particles satisfying the numerical conditions and the concept
of pseudo-firing with the configurations. The pseudo-firing
of configurations models uncertainty about the occurrence of

an observable discrete event that is supported by a change of
continuous dynamics.

Definition 5 The firing of a mixed transition tMj ∈ TM at
time k is defined by:{

MN
k+1(pN ) = MN

k (pN )\SNk (pN )

MN
k+1(p′N ) = MN

k (p′N ) ∪ SNk (pN ),
(10)

{
MS
k+1(pS) = MS

k (pS)

MS
k+1(p′S) = MS

k (p′S) ∪MS
k (pS).

(11)

An example of a mixed firing is illustrated in Figure 2(c).
tM3 is a mixed transition therefore it has symbolic conditions
and numerical conditions. The configuration in place pS9 is
duplicated. Regarding the numerical part, particles π8 and π9

satisfy ΩN (tM3 ) so they are moved to pN12. Furthermore, π7

stays in place pN11 because it does not satisfy ΩN (tM3 ).

3.3. State Estimation

HPPN-BL hybrid estimation is based on the marking evolu-
tion and on the particle filtering: a prediction step and a cor-
rection step are performed on the tokens.

For the sake of clarity, in this paper, it is assumed that a hybrid
state is represented by a couple (pSi , p

N
j ). The initial mark-

ing of the HPPN-BL is M0 = {MS
0 ,M

N
0 } and the estimated

marking at time k is M̂k = {M̂S
k , M̂

N
k } where M̂k = M̂k|k.

The observations start at time k = 1, O1 = (OS1 , O
N
1 ) where

OS and ON respectively represent the observations corre-
sponding to the symbolic part and the numerical part.

(1) The prediction step is based on the evolution of the mark-
ing of the HPPN-BL and on the estimation of the parti-
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cle values. It aims at determining all possible next states
of the system M̂k+1|k = {M̂S

k+1|k, M̂
N
k+1|k}. Noise is

added during the particle values update to take into ac-
count uncertainty about the dynamic equations and thus
about the continuous system model.

(2) The correction step is based on the update of the predic-
tion according to new observations on the system.

(a) A numerical correction, based on the particle filter
algorithm, produces a probability distribution PrDN
of the particles M̂N

k+1|k+1 over the numerical places.
At this step, particle weights are updated using a
probability distribution function depending on ran-
dom noise that models uncertainty about continuous
observations ONk+1.

(b) A symbolic correction then computes a probabil-
ity distribution PrDS over the symbolic states of the
system, depending on discrete observations OSk+1

and on PrDN making the process hybrid.

Finally, in order to update the complete predicted marking
M̂k+1|k, a decision making method is required. The result of
the whole state estimation process is the estimated marking at
time k + 1, M̂k+1|k+1 = {M̂S

k+1|k+1, M̂
N
k+1|k+1}.

The main advantage provided by HPPN is the way they man-
age uncertainty. This article focuses on a way to use them in
a context of health monitoring.

4. APPLICATION TO BEHAVIORAL MONITORING

Diagnosis is used to identify the possible causes of failures by
reasoning on system observations. Diagnosis reasoning con-
sists in detecting and isolating faults that may cause a system
failure. Results of the diagnosis function lead to the current
health state of the system. We are interested in representing
changes in the system dynamics when one or several antic-
ipated faults occur. We defined a health mode as a discrete
health state coupled to a continuous dynamics (Gaudel, Chan-
thery, Ribot, & Le Corronc, 2014). As long as the system
does not encounter any fault, it is in a nominal mode. Tracked
faults are assumed to be permanent, i.e. once a fault happens,
the system moves from a nominal mode to a degraded mode
or faulty mode. Without repair, the system evolution is uni-
directional as illustrated in Figure 3 and the system ends in a
failure mode in which it is not operational anymore.

Example 2 The evolution of the three-tank system is illus-
trated in Figure 4. There are 8 degraded modes defined by
the occurrence of fault events f2 or f3 and 28 failure modes
defined either by the occurrence of f1 or f4 or f5 or by the
occurrence of f2 and f3. 16 one-fault modes and the 20 two-
fault modes are identified.

Figure 3. Unidirectional system evolution without mainte-
nance or repair action.

Figure 4. Unidirectional evolution of the three-tank system.

4.1. Behavior Modeling

With the definition of the HPPN-BL, it is possible to model a
hybrid system behavior in a health monitoring context. Nu-
merical places can represent the system continuous dynam-
ics, and symbolic places can represent the different discrete
health states of the system. Thus, a hybrid state (pSi , p

N
j ) will

represent a health mode of the system. Let Q = {qm} denote
the set of health modes of the system:

qm = (pSi , p
N
j ) ∈ Q if ∃tl ∈ T, (pSi , pNj ) ∈ (Post(tl))

2.
(12)

Symbolic conditions are used to model the occurrence of ob-
servable discrete events belonging to Σo and unobservable
discrete events belonging to Σuo (faults, mission events, in-
teraction with the environment, ...). Σ = Σo ∪Σuo is defined
as the set of discrete events of the system. Numerical con-
ditions model an observable change of continuous dynamics.
System continuous dynamics are represented by differential
equations.

A generic example of a system behavioral model is described
in Figure 5. In this example, the system has three continuous
behaviors represented by pN5 , pN6 , pN7 and four health states
pS1 , pS2 , pS3 and pS4 . Using Equation (12), five health modes
are distinguishable.
Health modes q1 = (pS1 , p

N
5 ) and q2 = (pS1 , p

N
6 ) are two

nominal modes switching from one to the other when sym-

6
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bolic conditions ΩS(tS1 ) = (occ(e1)) or symbolic conditions
ΩS(tS2 ) = (occ(e2)) are satisfied. Symbolic transitions tS1
and tS2 represent the occurrence of observable events e1 ∈ Σo
and e2 ∈ Σo supporting a change of continuous dynam-
ics between pN5 and pN6 , respectively. Health modes q3 =
(pS2 , p

N
6 ) and q4 = (pS3 , p

N
6 ) are two degraded modes reach-

able from health mode q1 by satisfying the symbolic con-
ditions ΩS(tS3 ) = (occ(f1)) and ΩS(tS4 ) = (occ(f2)), re-
spectively. Symbolic transitions tS3 and tS4 represent the oc-
currence of two unobservable fault events f1 ∈ Σuo and
f2 ∈ Σuo, respectively. Finally, q5 = (pS4 , p

N
7 ) is a fail-

ure mode in which both events f1 and f2 occurred and that is
reachable from the two degraded modes. ΩN (tS5 ) = (occ(f1))
represent the occurrence of f1 and ΩS(tS6 ) = (occ(f2)) rep-
resent the occurrence of f2.

pS1

pS2

pS3

pS4

pN5

pN6

pN7

ΩS(tS1 )

ΩS(tS2 )

ΩS(tS3 )

ΩS(tS5 )

ΩS(tS4 )

ΩS(tS6 )

Figure 5. Example of system behavioral model using the
HPPN-BL.

Example 3 The behavioral model of the three-tank system
is limited to only two nominal modes and three failure modes
for illustration purposes in Figure 6. Four dynamic equa-
tion sets are associated with D1, D2, D1f1 and D2f1 and five
discrete health states are represented by nom1, nom2, 12f4,
1f1 and 2f1. Five health modes are defined. Health modes
q1 = (nom1, D1) and q2 = (nom2, D2) are nominal modes
in which the system switches from one to the other when the
condition occ(closev13) or occ(openv13) is satisfied. Nota-
tions are simplified in the illustration with only the discrete
event shown for the sake of readability. Three failure modes
q3 = (12f4, D2), q4 = (1f1, D1f1), q5 = (2f1, D2f1) can be
reached from nominal modes q1 or q2 by satisfying conditions
occ(f1) or occ(f4) (simplified in f1 and f4 for illustration

purposes).

Figure 6. Three-tank partial behavioral model using the
HPPN-BL.

The next section presents the methodology to build a state
tracker object called a diagnoser from the behavioral system
model.

4.2. Behavioral Diagnosis

In health monitoring context, diagnosis aims at tracking the
system current health state. A common way in DES frame-
work is to generate a diagnoser of the system from its model
(Sampath et al., 1995). A diagnoser is basically a monitor that
is able to process any possible observable event on the sys-
tem. It consists in recording these observations and providing
the set of possible faults whose occurrence is consistent with
these observations.
Concerning hybrid systems, one approach is to build a hy-
brid diagnoser (Bayoudh et al., 2008) from a hybrid automa-
ton. The idea is to abstract the continuous part of the system
to work with a discrete view of the system. This abstrac-
tion is done by using consistency tests, which take the form
of a set of residuals. The diagnoser method is then directly
applied to the resulting discrete event system. In previous
work (Chanthery & Ribot, 2013), we extended this approach
in order to integrate diagnosis and prognosis for hybrid sys-
tems. The main drawback of this approach is that the DES
oriented diagnosis framework is not the most suited to in-
corporate the highly probabilistic prognosis task. Using the
HPPN-BL, we succeeded in capturing knowledge-based and
observation-based uncertainty. Consequently, we proposed a
new diagnoser built from a HPPN-BL (Gaudel, Chanthery,
Ribot, & Le Corronc, 2014). The classical diagnoser is a fi-

7
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nite state machine. Although this theoretical object is very
interesting for studying properties of a system, such as di-
agnosability or controllability, it is absolutely not suited to
embedded systems, because the diagnoser state number ex-
plodes for large models. Consequently, we choose to build
a diagnoser based on a HPPN-BL model for the following
reasons:

• it is not necessary to transform the specification of the
system behavior another formalism,

• the HPPN model captures uncertainty, so the integration
with prognosis becomes more natural,

• this representation is more compact than a hybrid au-
tomaton description, so the problem of embeddability of
the diagnoser is reduced.

The diagnoser takes as inputs the HPPN-BL specifying the
system behavior and the set of online observations on the
system. The output of the diagnoser is an estimation of the
system health state that takes the form of a marking of the
diagnoser ∆k = M̂k = {M̂S

k , M̂
N
k }.

4.2.1. Diagnoser Generation Based on HPPN-BL

Let us suppose that the system behavioral model is a HPPN-
BL given by a tuple < P, T, Pre, Post,X, F, γ,Ω,M0 > as
defined in Section 3.1.

The set of places of the diagnoser remains the same as the one
of the system behavioral model. Concerning the transitions,
two aspects have to be taken into account.

First, it is necessary to follow the system continuous dynam-
ics with information resulting from the observed variables.
Two sources of information can be taken into account:

• It is possible to generate a set of residuals from the set
of differential equations C of the model. The residual
generation has been widely studied in diagnosis stud-
ies. Fundamental results can be found in (Maquin et al.,
1997). In the case where the system equations are linear,
residuals can be generated by computing a set of analyt-
ical redundancy relations (ARR) with the parity space
approach (Staroswiecki & Comtet-Varga, 2001). The
parity space approach has been extended to multi-mode
systems in (Cocquempot, El Mezyani, & Staroswiecki,
2004). In our case, we consider that it is possible to
generate a residual ri (or to simply have one by expert
knowledge) for some numerical places pNi . Then, nu-
merical conditions ΩN (tl) are associated with a transi-
tion tl linking two numerical places pNj and pNi and carry
a satisfaction test ri, with (i, j) ∈ {1, ..., |PN |}2 and
l ∈ {1, ..., |T |}. However, for some other places, only
discrete information is available. The HPPN framework
encompasses these characteristics and the diagnoser gen-
eration is adapted. If a residual ri is available, this means
that ΩN (tl)(π) is satisfied when ri is satisfied for π.

Residuals allow for checking the consistency of obser-
vations with the model constraints. Since residuals are
computed from observable continuous variables, they can
be evaluated online with the incoming observations given
by the sensors.

• The numerical correction process is used to update the
prediction, by comparing the predicted particle values to
observations of some continuous variables. This second
way to check the consistency of the observed system be-
havior with the predicted one is implicit and does not
appear in the diagnoser.

Secondly, because the diagnoser only captures the observable
behavior of the system, a condition representing the occur-
rence of an unobservable discrete events would never be satis-
fied. The management of unobservable discrete event is done
following these rules:

R1. For any mixed transition tMj ∈ TM with symbolic con-
ditions ΩS(tMj ) covering the occurrence of some unob-
servable events and some observable events, remove the
symbolic part covering the occurrence of unobservable
events, because these conditions would never be satis-
fied. The mixed transition tMj remains a mixed transi-
tion.

R2. For any mixed transition tMj ∈ TM with symbolic condi-
tions ΩS(tMj ) covering only the occurrence of unobserv-
able events, remove the symbolic part of the transition.
The mixed transition tMj is transformed in a numerical
transitions tNj ∈ TN .

R3. For any symbolic transition tSj ∈ TS with symbolic con-
ditions ΩS(tSj ) covering the occurrence of some unob-
servable events and some observable events, remove the
symbolic part covering the occurrence of unobservable
events. The transition tSj remains a symbolic transition.

R4. For any symbolic transition tSj ∈ TS with symbolic con-
ditions ΩS(tSj ) covering only the occurrence of some
unobservable events, replace symbolic conditions with
a test function always satisfied (true() function). The
transition tSj remains a symbolic transition.

Concerning the observable discrete part of the system, occur-
rences of observable discrete events will be used as symbolic
conditions.

Once the system behavioral model is defined and all numeri-
cal conditions are computed from the residual generation, the
corresponding diagnoser can be generated with the following
steps:

Step 1: Add the available numerical conditions ΩN (tSj ) to
symbolic transition tSj ∈ TS , with j ∈ {1, ..., |T |}, if they
exist. As a result, the symbolic transition tSj will be upgraded
into a mixed transition tMj ∈ TM .

8
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Step 2: Manage the unobservable events with rules R1 to
R4.

Ambiguity: The challenge of diagnosis is to have the abil-
ity to diagnose anticipated but unobservable faults in the sys-
tem. In this context, modeling unobservable events can lead
to ambiguity in the diagnoser. The occurrence of faults that
cannot be distinguishable from the system observations will
lead to ambiguous health states for the diagnoser. Therefore,
a third step is needed during the diagnoser generation to track
ambiguity. To do so, it is necessary to define a rule to merge
two transitions of the same type. Two numerical transitions
are mergeable if they are conditioned by the same change of
dynamics and if they share the same symbolic places in their
sets of inputs places.

Definition 6 (Mergeable numerical transitions)
Two numerical transitions (tNi , t

N
j ) ∈ (TN )2, with (i, j) ∈

{1, ..., |TN |}2 and i 6= j are mergeable if:

(Pre(tNi ) = Pre(tNj )) ∧ (Post(tNi )∩PN∩Post(tNj ) 6= ∅).
(13)

Note that condition (13) implies that the two transitions share
the same numerical condition: ΩN (tNi ) = ΩN (tNj ).

Definition 7 (Mergeable symbolic transitions)
Two symbolic transitions (tSi , t

S
j ) ∈ (TS)2, with (i, j) ∈

{1, ..., |TS |}2 and i 6= j are mergeable if:

(Pre(tSi ) = Pre(tSj )) ∧ (Post(tSi )∩PS ∩Post(tSj ) 6= ∅).
(14)

Step 3: Merge all mergeable transitions while there are at
least two mergeable transitions using the following defini-
tions.

Definition 8 (Merging of two numerical transitions)
The merging of two mergeable numerical transitions
(tNi , t

N
j ) ∈ (TN )2, with (i, j) ∈ {1, ..., |TN |}2 and i 6= j

is defined by two steps as follows:

(1) Creation of a new transition tNij characterized by:
Pre(tNij ) = Pre(tNi )
Post(tNij ) = Post(tNi ) ∪ Post(tNj )
ΩN (tNij ) = ΩN (tNi ),

(15)

(2) Addition of tNij and deletion of tNi and tNj in T :

T = (T\{tNi , tNj }) ∪ {tNij}. (16)

Definition 9 (Merging of two symbolic transitions)
The merging of two mergeable symbolic transitions (tSi , t

S
j ) ∈

(TS)2, with (i, j) ∈ {1, ..., |TS |}2 and i 6= j is defined by
two steps as follows:

(1) Creation of a new transition tSij characterized by:
Pre(tSij) = Pre(tSi )
Post(tSij) = Post(tSi ) ∪ Post(tSj )
ΩS(tSij) = ΩS(tSi ),

(17)

(2) Addition of tSij and deletion of tSi and tSj in T :

T = (T\{tSi , tSj }) ∪ {tSij}. (18)

The resulting diagnoser of the model given in Figure 5 is pre-
sented in Figure 7.

pS1

pS2

pS3

pS4

pN5

pN6

pN7

ΩS(tM1 ) ΩN (tM1 )

ΩS(tM2 ) ΩN (tM2 )

ΩN (tN3 )

ΩN (tN5 ) ΩN (tN6 )

Figure 7. Example of system diagnoser using the HPPN-BL.

In Figure 7, Step 1 generates numerical conditions ΩN to
every transitions. All transitions are indeed supported by a
change of dynamics that can be observed with the genera-
tion of residuals. All transitions are then upgraded into mixed
transitions. As there are unobservable events, symbolic con-
ditions associated with the occurrence of f1 and f2 are re-
moved from the diagnoser model during Step 2, transforming
t3, t4, t5 and t6 into numerical transitions. Finally, because
transitions t3 and t4 are generating a change of dynamics
from pN1 to pN2 , they are merged into one single numerical
transition tN3 .

Example 4 For the three-tank system example illustrated in
Figure 8, transitions with the symbolic conditions closev13
and openv13 remain symbolic. Symbolic conditions f1 and
f4 are deleted, as they are unobservable.

9
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Figure 8. Three-tank system example diagnoser using the
HPPN-BL.

4.2.2. Behavioral Diagnosis Result

The diagnosis result is given at each clock tick from the diag-
noser state. By using the HPPN-BL and the state estimation
process based on particle filtering described in Section 3.3,
the diagnosis ∆k at time k is the distribution of health mode
beliefs, which depends on particle values and weights and is
deduced from the marking of the diagnoser at time k:

∆k = M̂k = {M̂S
k , M̂

N
k }. (19)

The marking M̂k indicates the belief on the fault occurrences.
It gives the same information as a classical diagnoser in terms
of fault occurrences, with the same ambiguity. The difference
is that in a classical diagnoser, every possible diagnosis has
the same belief degree. With a HPPN-BL-based diagnoser,
the ambiguity is valued by particle weights.

As a consequence, using diagnosis for health management
becomes easier. In the case of classical diagnoser, it is indeed
very difficult to “choose” a system belief state in case of de-
cision making. In the case of a HPPN-BL-based diagnoser,
each possible state of the system is valued, so it is easy to
evaluate the most probable state at each clock tick.
Another advantage is that several types of uncertainty are
taken into account.

1. Configuration pseudo-firing during numerical transition
firing may represent uncertainty about the occurrence of
an unobservable discrete event, especially a fault event.

2. Configuration and particle pseudo-firing during symbolic
transition firing may represent uncertainty about the non-
occurrence of an observed discrete event, i.e. a false ob-

servation.
3. Configuration pseudo-firing during mixed transition fir-

ing may represent uncertainty about the occurrence of an
unobservable discrete event, supported by a change of
continuous dynamics.

4. The noise added on particle values during the prediction
step models uncertainty about system dynamic equations
and continuous observations.

5. HYBRID LEVEL OF HYBRID PARTICLE PETRI NETS

The previous part describes a way to use the HPPN-BL to
monitor the system health state based on its behavioral model.
It could be interesting to look at a higher level of representa-
tion to illustrate a different level of dynamics, or to have a
more aggregate view of the system. For instance, in health
monitoring context, it is interesting to take into account the
degradation dynamics. Getting some information about the
degradation of the system is a significant advantage for elab-
orating a more precise diagnosis and to perform prognosis.

The next sections describe the hybrid level of Hybrid Particle
Petri Nets formalism (HPPN-HL). The purpose of HPPN-HL
is to represent some hybrid state characteristics, and not just
either continuous dynamics or discrete states. For example, it
will be possible to study properties such as stability or diag-
nosability of hybrid systems, or to monitor degradation and
build a prognosis process. As stated before, this paper fo-
cuses on the degradation laws for system health monitoring,
which depend on health modes. A set of dynamic equations
is used to monitor the hybrid information we focus on. The
update of the degradation value at each clock tick defines a
degradation diagnosis function.

5.1. Hybrid Level

The HPPN-HL is defined as a tuple < PH , TH , H,F ,ΩH >
where:

• PH is the set of hybrid places.
• TH is the set of hybrid transitions.
• H ⊂ <n is the state space of the hybrid state vector.
• F is the set of dynamic equations of the system associ-

ated with hybrid places, representing hybrid state evolu-
tion.

• ΩH is the set of conditions associated with the hybrid
transitions.

A complete HPPN combines a behavioral level with a hybrid
level and is thus defined as a tuple < P, T, Pre, Post,X,C,
H,F , γ,Ω,M0 >.

Hybrid places are used to compose the HPPN-HL and repre-
sent possible hybrid states. A hybrid state is a couple (pSi , p

N
j ).

For the sake of clarity, pHl = (pSi , p
N
j ) denotes that a hybrid

10
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place pHl represents the hybrid state (pSi , p
N
j ). Because hy-

brid states are combinations of symbolic places and numeri-
cal places, the hybrid state set of a given behavioral model is
always finite. However, only couples that are part of the set of
output places of the same transition are considered as hybrid
states:

pHl = (pSi , p
N
j ) ∈ PH if ∃tm ∈ T, (pSi , pNj ) ∈ (Post(tm))2.

(20)
Hybrid states that do not satisfy Equation (20) are considered
as intermediate states. This means there is no information in
the model about them.

A hybrid place is marked by hybrid tokens hik = [sik, d
i
k]

with i ∈ {1, ..., |MH
k |} where MH

k is the set of all the hybrid
tokens in the net at time k. A hybrid token is defined by a
couple sik = (δjk, π

l
k) of tokens running in the HPPN-BL and

its corresponding hybrid state vector dik ∈ H . The whole
marking at time k of the HPPN is Mk = {MS

k ,M
N
k ,M

H
k }.

Hybrid tokens are created and deleted as follows.

Creation: Because of their dependency on configurations
and particles, hybrid tokens are created at the same time as
the creation of a configuration or a particle. If a hybrid token
h depends on a particle π that is duplicated during the pre-
diction step of the state estimation process in a new particle
π′, then h is also duplicated in h′ but h′ depends on the new
particle π′.

Deletion: A hybrid token h depending on a configuration δ
and a particle π is deleted when δ or π is deleted during the
online process of the HPPN-BL.

Considering the two rules above, the HPPN-HL online pro-
cess totally depends on the HPPN-BL online process but both
processes are simultaneous.

Any hybrid place is linked with all the other hybrid places
through a hybrid transition tHj ∈ TH .

∀pi ∈ P , Mk(pi) is the set of tokens in pi at time k and
mk(pi) = |Mk(pi)| is the number of tokens in pi at time k.

Definition 10 A hybrid transition tHj ∈ TH is fire-enabled
at time k if:

∃pHi ∈ Pre(tHj ), mk(pHi ) ≥ Pre(i, j) (21)

A hybrid place is associated with a set of dynamic equations
representing a hybrid state characteristics. The idea is to let
a hybrid token hi = [si, di] evolve in the HPPN-HL in ac-
cordance to symbolic and numerical places in which its as-
sociated configuration δjk and its associated particle πlk, with
si = (δj , πl), are evolving.

To formally define the firing of hybrid transitions, we need to

define the following notations: P (δj) = pSj and P (πl) = pNl
denote the projections of δj and πl on the set of places P ,
P (si) = (pSj , p

N
l ) denotes the hybrid place of a couple si =

(δj , πl).

Each hybrid transition carries a set of hybrid conditions
ΩH(tHj ) that are satisfied if ΩH(tHj )(hi) = 1. Hybrid tokens
hi are moved to another hybrid place p′H if P (si) = p′H :

∀hi = [si, di], ΩH(tHj )(hi) =

{
1 if P (si) = p′H

0 otherwise.
(22)

SHk (pH) is the set of hybrid tokens in pH satisfying the con-
ditions ΩH(tHj ) at time k.

Definition 11 The firing of a fire-enabled hybrid transition
tHj ∈ TH at time k is defined by:{

MH
k+1(pH) = MH

k (pH)\SHk (pH)

MH
k+1(p′H) = MH

k (p′H) ∪ SHk (pH).
(23)

An example of hybrid transition firing in a HPPN-HL is shown
in Figure 9. There are two hybrid places pH1 = (pS1 , p

N
1 ) and

pH2 = (pS2 , p
N
2 ). At time k, the two hybrid tokens h1k =

[s1k, d
1
k] and h2k = [s2k, d

2
k] are following the characteristics

of the hybrid state represented by pH1 , so hybrid transitions
tH1 and tH2 are fire-enabled. P (s1k) = (pS1 , p

N
1 ) but P (s2k) =

(pS2 , p
N
2 ) so ΩH(tH2 )(h2) is satisfied and h2 is moved to pH2 .

h2 thus follows at time k+ 1 the characteristics of the hybrid
state pH2 = (pS2 , p

N
2 ).

pH1

pH2

ΩH(tH1 )

ΩH(tH2 )

k

k + 1

pH1

pH2

ΩH(tH1 )

ΩH(tH2 )

h1
h2

h1

h2

Figure 9. Illustration of firing rules of fire-enabled hybrid
transitions.

Hybrid tokens evolve according to laws defined for hybrid
places. HPPN-BL tokens are changing places during the pre-
diction step of the state estimation process (see Section 3.3),
and then hybrid tokens are simultaneously changing places
and their values are updated as follows:

∀hik+1|k ∈ M̂
H
k+1|k(pHj ), dik+1 = F jk+1(dik), (24)
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where F jk ∈ F is the set of dynamic equations associated
with the hybrid place pHj . Because dik+1 depends on dik, the
continuity of the value di can be ensured.

Figure 10 illustrates the evolution of the value d2 of hybrid
token h2 of Figure 9. It shows that d2k+1 is computed with
dynamic equations F 2

k+1. F 2
k+1 is associated with pH2 and

depends on d2k, the value of d2 at time k. This ensures the
continuity between F 1

k and F 2
k+1 at time k + 1.

Figure 10. Illustration of the continuities of hybrid token
values.

If F is not empty, the values dik can be taken into account
in the decision making process at time k that determines the
marking at time k + 1 of the HPPN-BL.

6. APPLICATION TO DEGRADATION MONITORING

This section introduces a way to represent uncertainty about
degradation for each system health mode using probability
measures.

6.1. Degradation Modeling

In the context of health monitoring, the HPPN-HL formal-
ism is used to include degradation laws in the system model.
We propose to consider health modes as hybrid states of a
HPPN. The system description is enriched with a set of degra-
dation laws modeling the degradation depending on health
mode stress levels. The set of degradation laws is supposed
to be accurately known. F = {F pHl , pHl ∈ PH} is the set of
degradation laws associated with hybrid places of the system.
F p

H
l is a vector of degradation laws for each anticipated fault

in the hybrid place pHl = (pSi , p
N
j ):

F p
H
l (t) =


f
pHl
1 (t)

f
pHl
2 (t)

...

f
pHl
nf (t)

 , (25)

where fp
H
l
j represents the probability distribution of the fault

fj at any time in the hybrid place pHl and nf is the number of
anticipated faults.

Example 5 The right side of Figure 11 represents the HPPN-
HL of the three-tank system model illustrated by Figure 6.
This partial model has five health modes (see Section 4.1),
thus the corresponding HPPN-HL has five hybrid places pH1 =
(nom1, D1), pH2 = (nom2, D2), pH3 = (12f4, D2), pH4 =
(1f1, D1f1), and pH5 = (2f1, D2f1). Five hybrid transitions
tH1 . . . tH5 deliver accesses to the five hybrid places when as-
sociated hybrid conditions are satisfied (Equation (22)). Not
all transitions are represented in Figure 11 for the sake of
readability. Fault probability distributionsF j associated with
each hybrid place pHj are represented with the 2-parameter
Weibull model. By setting β = 1, the Weibull model describes
random failures and is similar to the exponential law. The
second parameter η of the Weibull model depends on the sys-
tem stress level in each health mode associated with a hybrid
place:

f
pHl
j (t) = W (t, ηj(p

H
l )) =

∫ t

t0

1

ηj(pHl )
exp

(
− t

ηj(pHl )

)
dt.

(26)
Fault probability distributions for leak faults f1, f2 and f3
are defined with three different value for parameter η (ηa =
100000, ηb = 80000, ηc = 60000) representing three dif-
ferent stress levels defined for the system health modes. Fault
probability distributions associated with each hybrid place of
Figure 11 are given in Table 2. All degradation laws of the
three-tank system are provided in the appendix.

Fault probability distributions for f4 and f5 mainly evolve
with the number of closings/openings. Thus, the parameter
η13 for the valve v13 (resp. η32 for the valve v32) depends
on a cycle coefficient α13 (resp. α32) that increases after
each occurrence of discrete events openv13 or closev13 (resp.
openv32 or closev32) :

f
pHl
4 (t) = W (t, η13(α13)),

f
pHl
5 (t) = W (t, η32(α32)).

(27)

At first, the system is supposed to be in health mode (nom1,
D1) and α13 = α32 = 1, η13 = η32 = 20000.

6.2. Diagnosis Based on HPPN

The diagnoser extended with the HPPN-HL is called a HPPN-
based diagnoser. The HPPN-based diagnoser generation step
does not modify the degradation model defined in Section 6.1.
It is a HPPN that monitors both the behavior and the degra-
dation of the system.

Using a HPPN-based diagnoser, the diagnosis ∆k of the sys-
tem at time k is the complete marking of the diagnoser. Equa-
tion (28) represents the distribution of health mode beliefs
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Figure 11. Three-tank system example HPPN-based partial diagnoser.

and the system degradation for each mode:

∆k = M̂k = {M̂S
k , M̂

N
k , M̂

H
k }. (28)

Example 6 Figure 11 shows a part of the HPPN-based di-
agnoser for the three-tank system. It illustrates the interac-
tions between the HPPN-BL and the HPPN-HL of the diag-
noser. At time k, two configurations and three particles are
running in the HPPN-BL. One configuration is in the sym-
bolic place nom2 and the other one in the symbolic place
12f4. Three particles π1, π2 and π3 are in numerical place
D2. Three hybrid tokens are running in the HPPN-HL. h1

and h2 are in the hybrid place pH2 because they are linked to
the configuration in nom2 and respectively π1 and π2. These
two hybrid tokens follow degradation laws F p

H
2 . h3 is in the

hybrid place pH4 because it is linked to the configuration in
12f4 and π3. This hybrid token follows degradation laws
F p

H
3 . For this example, the result of diagnosis can be written

as follows:

∆k = {(nom2, D2, h
1), (nom2, D2, h

2), (12f4, D2, h
3)},
(29)

where the degradation vectors of hybrid tokens h1, h2 and h3

at time k are respectively d1k = F p
H
2 (d1k−1), d2k =F p

H
2 (d2k−1)

and d3k = F p
H
3 (d3k−1).

To sum up, the main steps of the proposed method are re-

minded in Algorithms 1 and 2.

Algorithm 1 Offline process

1: model← CreateHPPNModel()
2: diagnoser ← GenerateHPPNDiagnoser(model)

Algorithm 2 Online process

Input: diagnoser,M0
1: for all Ok do
2: M̂k ← StateEstimation(diagnoser, M̂k−1, Ok)

3: ∆k ← M̂k
4: end for

The first offline step (Algorithm 1, line 1) is to model the sys-
tem considered using the HPPN framework (see Sections 4.1
and 6.1). The second offline step (Algorithm 1, line 2) is to
generate the HPPN-based diagnoser from the system model
(see Sections 4.2 and 6.2). Then the online process (Algo-
rithm 2) uses consecutive observations to update the diag-
noser marking and compute diagnosis (see Sections 3.3, 4.2
and 6.2).

From the HPPN-based diagnoser are provided two estima-
tions:

• The belief on the system health modes takes the form of
a marking {M̂S

k , M̂
N
k } of the HPPN-BL,
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Table 2. Three-tank system example: health modes degradation laws.

Health mode Valve state Degradation laws

pH1 = (nom1, D1)
v13 = open

v32 = open
F p

H
1


f
pHl
1 (t) = W (t, ηa)

f
pHl
2 (t) = W (t, ηa)

f
pHl
3 (t) = W (t, ηa)

pH2 = (nom2, D2)
v13 = closed

v32 = open
F p

H
2


f
pH2
1 (t) = W (t, ηc)

f
pH2
2 (t) = W (t, ηa)

f
pH2
3 (t) = W (t, ηa)

pH3 = (12f4, D2)
v13 = closed

v32 = open
F p

H
3


f
pH3
1 (t) = W (t, ηc)

f
pH3
2 (t) = W (t, ηa)

f
pH3
3 (t) = W (t, ηa)

pH4 = (1f1, D1f1)
v13 = open

v32 = open
F p

H
4


f
pH4
1 (t) = 1

f
pH4
2 (t) = W (t, ηa)

f
pH4
3 (t) = W (t, ηa)

pH5 = (2f1, D2f1)
v13 = closed

v32 = open
F p

H
5


f
pH5
1 (t) = 1

f
pH5
2 (t) = W (t, ηa)

f
pH5
3 (t) = W (t, ηa)

• The belief on the system degradation state takes the form
of a marking of the HPPN-based diagnoser ∆k = M̂k =
{M̂S

k , M̂
N
k , M̂

H
k }.

The marking value {M̂S
k , M̂

N
k } represents the belief on the

health modes through a probability distribution. The marking
value M̂H

k represents the degradation state through a degrada-
tion distribution over the health modes. Because each hybrid
token depends on a particle and a configuration, its degrada-
tion value is linked with the belief of its health mode. Con-
sequently, the health mode belief and the degradation values
can be considered in case of decision making in the context
of health management.

7. CASE STUDY

The HPPN-based diagnoser generation has been implemented
in Python 3.4. The tests described below were performed un-
der Linux 4.9.2(x8664− linux− gnu) on a 1.90 GHzi5−
3437U CPU. Simulations use one CPU and a maximum of
2GB of RAM.

7.1. Three-Tank System Diagnoser

The three-tank model has been loaded, including its behav-
ioral description and its degradation laws. The tank sections
are S1 = S2 = S3 = 0.0154m2 and the pipe section between
tanks is Sn = 5.10−5m. Noise is modeled as Gaussian noise.
Gaussian noise with a 0 mean value and a standard deviation
of 0.01m has been added to each state equation. The mea-

sure of h1 is subjected to Gaussian noise with a 0 mean and a
standard deviation of 0.01m. The measure of the water mass
is subjected to Gaussian noise with 0 mean and a standard de-
viation of 0.1kg. The initial state isH0 = [H10, H20, H30] =
[0.48, 0.55, 0.58] and valves v13 and v32 are open. The sim-
ulation sampling period is 60s because of the slow system
continuous dynamics. The complete three-tank model has
40 symbolic places, 28 numerical places and 120 transitions.
When using the merging rules in the diagnoser generation, the
HPPN-based diagnoser has only 40 transitions, which repre-
sents a transition number reduction of about 66%. It shows
that the diagnoser generation method is efficient and will be
able to manage models for real systems. The initial symbolic
and numerical places are respectively nom1 and D1 and the
initial hybrid places is pH1 = (nom1, D1).

7.2. Results

Three scenarios have been simulated. Scenario 1 illustrates
that the method is robust to occurrences of unobservable
events, such as fault events. f1 occurs at 660s and the system
ends in failure mode (1f1, D1f1). Figure 12 shows the mean
value of the diagnoser particles compared to the real water
levels. Areas around mean values represent particle value un-
certainty.

Figure 13 shows the diagnoser health mode belief degrees
compared to the real one at different times of the simulation.
The black dot indicates the real health mode of the system
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Figure 12. Scenario 1: monitoring of water levels.

at every clock tick. The white dot indicates the health mode
with the highest belief degree and the grey dots indicates the
other health mode belief degrees. Health mode belief degrees
are computed using a weighting function, which depends on
the distributions PrDN and PrDS calculated during the state
estimation process (see Section 3.3).

Figure 13. Scenario 1: health mode belief degrees.

Figure 13 shows that the health mode with the highest belief
degree is always the real one (nom1, D1) at 540s and then
(1f1, D1f1) at 1020s and 1560s. The leak in tank T1 was thus
well diagnosed. The diagnoser also considers other health
modes because of the similarity between continuous dynam-
ics. However, the discrete part of the system is used to restrain
the health mode distribution and exclude health modes that do
not match with observations and dynamic equations, such as
(1f1, D1f1) at 540s and (21f1, D2f1) during the whole sim-
ulation.

Scenario 2 illustrates that the proposed method is robust to oc-

currences of unobservable events where continuous dynam-
ics are ambiguous. closev13 occurs and is observed at 660s
and valve v13 is closed, leading the system to health mode
(nom2, D2). Then at 1920s, f4 occurs and the system ends
in failure mode (12f4, D2). Finally, openv13 occurs and is
observed at 3180s, but the health mode of the system does
not change.

Figure 14. Scenario 2: health mode belief degrees.

Figure 14 shows the diagnoser health mode belief degrees
compared to the real one at different times of the simula-
tion. At 240s, the health mode with the highest belief degree
is the real one (nom1, D1). At 1020s, both health modes
(12f4, D2) and (nom2, D2) have high belief degrees because
the diagnoser particles follow the same dynamic equations
D2 properly. The belief degree of (nom2, D2) is slightly
higher than the one of (12f4, D2) because configurations in
symbolic place nom2 entirely match with the discrete obser-
vations (closev13 at 660s). Still, the possibility that the ob-
servation of closev13 at 660s could have been a false obser-
vation is kept in the marking, and thus in the diagnosis and in
the computed belief degree distribution. At 2520s, the health
mode with the highest belief degree is still (nom2, D2) be-
cause the occurrence of f4 does not involve any change of
continuous dynamics. Once again, the diagnosis carries the
possibility that the system is in the real health mode (12f4,
D2) with a high belief degree. Considering that f4 is un-
observable and the continuous dynamics of the two health
modes are similar, it is the best diagnosis that can be pro-
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duced at this time. After openv13 is observed, configurations
in nom2 do not match with the observations as well as before
and then the belief degrees of the two health modes become
the same. Scenario 2 shows that the diagnoser is robust to
occurrences of fault events even in case of ambiguous contin-
uous dynamics.

Scenario 3 illustrates that the proposed method is robust to
knowledge-based uncertainty, such as faulty modeling of the
discrete behavior of the system or unreliable continuous dy-
namics, and observation uncertainty, such as occurrences of
unobserved observable events or false observations. In this
scenario, the standard deviations of state equation noise and
the noise associated with the measure of h1 have been quin-
tupled and the simulation sampling period has been doubled.
Events closev13 and openv13 occur respectively at 720s and
2040s but none of them are observed. At 3360s, f1 occurs,
leading the system to failure mode (1f1, D1f1).

Figure 15. Scenario 3: diagnosis.

Figure 15 shows the diagnosis of the system over time. The
diagnoser monitors the three-tank health mode properly even
if observable events are not observed and detects the fault f1
in only one sample period. It also shows that the amplifi-
cation of noise has consequences on the belief degree distri-
bution: at 480s and 2040s, the real health mode is not the
highest one but still remains in the diagnosis result. From
720s to 1920s, the diagnosis is ambiguous: (12f4, D2) and
(nom2, D2) have the same belief degree due to the non ob-
servation of closev13 . However, some information such as
f4 probability could be useful for decision making during
this period. Figure 16 shows fault f4 degradation monitor-
ing by hybrid tokens in hybrid place pH1 from 0s to 600s.
Degradation is monitored by estimating fault f4 occurrence
probability and is the mean of all hybrid token values. At
600s, f4 occurrence probability is around 0.006. This very
low probability could be taken into account in case of deci-
sion making at time 720s, and then disambiguate diagnosis
by preferring health mode (nom2, D2).

Faults are always detected in one sampling period because
HPPN consider all possibilities during the online process pre-

Figure 16. Scenario 3: degradation monitoring in mode
(nom1, D1).

Table 3. Diagnosis computation time for different scenarios.

Scenario computation time (s) |MS | |MN | |MH |

average 1.123 4 330 1848
1 minimum 0.581 2 200 400

maximum 2.595 9 696 6264

average 7.305 63 774 50427
2 minimum 1.802 8 600 4800

maximum 18.287 130 800 104000

average 8.495 118 524 66349
3 minimum 0.906 8 200 1600

maximum 118.509 2304 607 1398528

total average 6.274 65 610 44105

diction step and keep matching marking during the correction
step. Diagnosis computation times and token numbers are
given in Table 3. |MS |, |MN | and |MH | respectively rep-
resent the diagnoser configuration, particle and hybrid token
number at the time the diagnosis is performed.

Table 3 shows that the average diagnosis computation time
is around 6.5s and the average number of all the diagnoser
tokens at any time is 44780. These metrics point out that
the diagnosis computation time increases with the diagnoser
token number but remains acceptable compared to the system
time constraint.

Simulation results show that HPPN-based diagnosis is robust
to different types of uncertainty. In Scenario 1, the diagnoser
detects and identifies properly a leak fault in tank T1, but al-
ways considers possibilities of other modes having almost the
same dynamic equations. Scenario 2 illustrates how the di-
agnoser deals with undetectable fault occurrences. Finally,
Scenario 3 shows that the diagnoser is robust in case of noisy
knowledge and observations and introduces the need to con-
sider degradation monitoring in case of diagnosis ambiguity.

8. CONCLUSION AND FUTURE WORK

This article illustrates the HPPN approach to process health
monitoring of hybrid systems under uncertainty. The HPPN
approach takes into account knowledge-based and observation-
based uncertainty.
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A HPPN-based diagnoser has been defined to monitor both
discrete and continuous behaviors of the system. The HPPN-
BL-based diagnoser is enriched to consider a level represent-
ing a hybrid property depending on the hybrid state of the sys-
tem. The article focuses on the degradation property, in order
to introduce concepts that will be useful to perform prognosis
and health management of hybrid systems under uncertainty.
In addition, diagnosis results can be used as probability distri-
butions for decision making. Throughout the paper, concepts
are illustrated with a three-tank system example. The HPPN-
based diagnoser deals with event occurrence possibility and
knowledge imprecision. Three scenarios have been tested to
illustrate the proposed method advantage. The HPPN-based
diagnoser results are consistent with the expected ones.

In future work, the HPPN-based diagnoser will be tested on a
real three-tank system. The proposed method may be adapted
to meet real system constraints. We also aim at formalizing
and developing a prognosis process that will interleave diag-
nosis and prognosis methods to obtain more accurate results.

NOMENCLATURE

P the set of places of a HPPN
PN the set of numerical places of a HPPN
PS the set of symbolic places of a HPPN
PH the set of hybrid places of a HPPN
T the set of transitions of a HPPN
TN the set of numerical transitions of a HPPN
TS the set of symbolic transitions of a HPPN
TM the set of mixed transitions of a HPPN
TH the set of hybrid transitions of a HPPN
Pre(t) the set of input places of a transitions t ∈ T
Post(t) the set of output places of a transitions t ∈ T
X the state space of the numerical state vector
C the set of dynamic equation sets associated

with numerical places, representing continuous
state evolution of the system

H the state space of the hybrid state vector
F the set of dynamic equations associated with

hybrid places
Ω the set of conditions of a HPPN
ΩN the set of numerical conditions of a HPPN
ΩS the set of symbolicconditions of a HPPN
ΩH the set of hybrid conditions of a HPPN
Mk the marking of a HPPN at time k
MN
k the set of particles of a HPPN at time k

MS
k the set of configurations of a HPPN at time k

MH
k the set of hybrid tokens of a HPPN at time k

Mk(p) the marking of the place p at time k
mk(p) the numbers of tokens in the place p at time k
Sk(p) the tokens in p ∈ Pre(t) that satisfy the condi-

tions ΩN (t) at time k
πk a particle of MN

k in a HPPN at time k with a
value xk ∈ X and a weight wk ∈ [0, 1]

δk a configuration of MS
k in a HPPN at time k

hk a hybrid token of MH
k in a HPPN at time k with

a value dk ∈ H and associated with a couple of
tokens sk = (δk, πk)

P (sk) the hybrid place of a couple of token s = (δk, πk)
at time k

Σ the set of discrete events
Σo the set of observable discrete events
Σuo the set of unobservable discrete events
Ok the set of observations at time k
ONk the set of continuous observations at time k
OSk the set of discrete observations at time k
Q the set of health modes
∆k the diagnosis at time k
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APPENDIX

This section provides the three-tank system model. Tables 4
and 5 detail state equations and degradation laws associated
with the system health modes.
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Table 4. Three-tank system example: state equations and degradation laws.

Valve state State equations Degradation laws for leak faults

nom1
v13 = open

v32 = open
D1


ḣ1(t) = 1

S1
(Q1(t)−K13

√
|h1(t)− h3(t)|)

ḣ2(t) = 1
S2

(K32

√
|h3(t)− h2(t)| −Q20(t))

ḣ3(t) = 1
S3

(K13

√
|h1(t)− h3(t)| −K32

√
|h3(t)− h2(t)|)

f1(t) = W (t, ηa)

f2(t) = W (t, ηa)

f3(t) = W (t, ηa)

nom2

12f4

v13 = closed

v32 = open
D2


ḣ1(t) = 1

S1
Q1(t)

ḣ2(t) = 1
S2

(K32

√
|h3(t)− h2(t)| −Q20(t))

ḣ3(t) =
−K32

S3

√
|h3(t)− h2(t)|

f1(t) = W (t, ηc)

f2(t) = W (t, ηa)

f3(t) = W (t, ηa)

nom3

34f4

23f5

v13 = closed

v32 = closed
D3


ḣ1(t) = 1

S1
Q1(t)

ḣ2(t) =
−Q20(t)

S2

ḣ3(t) = 0

f1(t) = W (t, ηc)

f2(t) = W (t, ηa)

f3(t) = W (t, ηb)

nom4

14f5

v13 = open

v32 = closed
D4


ḣ1(t) = 1

S1
(Q1(t)−K13

√
|h1(t)− h3(t)|)

ḣ2(t) =
Q20(t)

S2
K32

ḣ3(t) =
K13
S3

√
|h1(t)− h3(t)|

f1(t) = W (t, ηa)

f2(t) = W (t, ηa)

f3(t) = W (t, ηc)

1f1
v13 = open

v32 = open
D1f1


ḣ1(t) = 1

S1
(Q1(t)−K13

√
|h1(t)− h3(t)| −K1

√
h1(t))

ḣ2(t) = 1
S2

(K32

√
|h3(t)− h2(t)| −Q20(t))

ḣ3(t) = 1
S3

(K13

√
|h1(t)− h3(t)| −K32

√
|h3(t)− h2(t)|)

f1(t) = W (t, ηa)

f2(t) = W (t, ηa)

f3(t) = W (t, ηa)

2f1
v13 = closed

v32 = open
D2f1


ḣ1(t) = 1

S1
Q1(t)−K1

√
h1(t)

ḣ2(t) = 1
S2

(K32

√
|h3(t)− h2(t)| −Q20(t))

ḣ3(t) =
−K32

S3

√
|h3(t)− h2(t)|

f1(t) = W (t, ηc)

f2(t) = W (t, ηa)

f3(t) = W (t, ηa)

3f1
v13 = closed

v32 = closed
D3f1


ḣ1(t) = 1

S1
Q1(t)−K1

√
h1(t)

ḣ2(t) =
−Q20(t)

S2

ḣ3(t) = 0

f1(t) = W (t, ηc)

f2(t) = W (t, ηa)

f3(t) = W (t, ηb)

4f1
v13 = open

v32 = closed
D4f1


ḣ1(t) = 1

S1
(Q1(t)−K13

√
|h1(t)− h3(t)|)−K1

√
h1(t)

ḣ2(t) =
Q20(t)

S2
K32

ḣ3(t) =
K13
S3

√
|h1(t)− h3(t)|

f1(t) = W (t, ηa)

f2(t) = W (t, ηa)

f3(t) = W (t, ηc)

1f2
v13 = open

v32 = open
D1f2


ḣ1(t) = 1

S1
(Q1(t)−K13

√
|h1(t)− h3(t)|)

ḣ2(t) = 1
S2

(K32

√
|h3(t)− h2(t)| −Q20(t)−K2

√
h2(t))

ḣ3(t) = 1
S3

(K13

√
|h1(t)− h3(t)| −K32

√
|h3(t)− h2(t)|)

f1(t) = W (t, ηa)

f2(t) = W (t, ηa)

f3(t) = W (t, ηa)

2f2

12f2f4

v13 = closed

v32 = open
D2f2


ḣ1(t) = 1

S1
Q1(t)

ḣ2(t) = 1
S2

(K32

√
|h3(t)− h2(t)| −Q20(t)−K2

√
h2(t))

ḣ3(t) =
−K32

S3

√
|h3(t)− h2(t)|

f1(t) = W (t, ηc)

f2(t) = W (t, ηa)

f3(t) = W (t, ηa)

3f2

34f2f4

23f3f5

v13 = closed

v32 = closed
D3f2


ḣ1(t) = 1

S1
(Q1(t)−K1

√
h1(t))

ḣ2(t) = 1
S2

(−Q20(t)−K2

√
h2(t))

ḣ3(t) = 0

f1(t) = W (t, ηc)

f2(t) = W (t, ηa)

f3(t) = W (t, ηb)

4f2

14f2f5

v13 = open

v32 = closed
D4f2


ḣ1(t) = 1

S1
(Q1(t)−K13

√
|h1(t)− h3(t)|)

ḣ2(t) = 1
S2

(Q20(t)−K2

√
h2(t))

ḣ3(t) =
K13
S3

√
|h1(t)− h3(t)|

f1(t) = W (t, ηa)

f2(t) = W (t, ηa)

f3(t) = W (t, ηc)

1f3
v13 = open

v32 = open
D1f3


ḣ1(t) = 1

S1
(Q1(t)−K13

√
|h1(t)− h3(t)|)

ḣ2(t) = 1
S2

(K32

√
|h3(t)− h2(t)| −Q20(t))

ḣ3(t) = 1
S3

(K13

√
|h1(t)− h3(t)| −K32

√
|h3(t)− h2(t)| −K3

√
h3(t))

f1(t) = W (t, ηa)

f2(t) = W (t, ηa)

f3(t) = W (t, ηa)

2f3

12f3f4

v13 = closed

v32 = open
D2f3


ḣ1(t) =

Q1(t)
S1

ḣ2(t) = 1
S2

(K32

√
|h3(t)− h2(t)| −Q20(t))

ḣ3(t) = 1
S3

(−K32

√
|h3(t)− h2(t)| −K3

√
h3(t))

f1(t) = W (t, ηc)

f2(t) = W (t, ηa)

f3(t) = W (t, ηa)

3f3

34f3f4

23f3f5

v13 = closed

v32 = closed
D3f3


ḣ1(t) =

Q1(t)
S1

ḣ2(t) =
−Q20(t)

S2

ḣ3(t) = 1
S3

(−K3

√
h3(t))

f1(t) = W (t, ηc)

f2(t) = W (t, ηa)

f3(t) = W (t, ηb)

4f3

14f3f5

v13 = open

v32 = closed
D4f3


ḣ1(t) = 1

S1
(Q1(t)−K13

√
|h1(t)− h3(t)|)

ḣ2(t) =
Q20(t)

S2

ḣ3(t) = 1
S3

(K13

√
|h1(t)− h3(t)| −K3

√
h3(t))

f1(t) = W (t, ηa)

f2(t) = W (t, ηa)

f3(t) = W (t, ηc)
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Table 5. Three-tank system example: state equations and degradation laws.

Valve state State equations Degradation laws for leak faults

1f1f2
v13 = open

v32 = open
D1f1f2


ḣ1(t) = 1

S1
(Q1(t)−K13

√
h1(t)− h3(t)−K1

√
h1(t))

ḣ2(t) = 1
S2

(K32

√
h3(t)− h2(t)−Q20(t)−K2

√
h2(t))

ḣ3(t) = 1
S3

(K13

√
h1(t)− h3(t)−K32

√
h3(t)− h2(t))

f1(t) = W (t, ηa)

f2(t) = W (t, ηa)

f3(t) = W (t, ηa)

2f1f2
v13 = closed

v32 = open
D2f1f2


ḣ1(t) = 1

S1
(Q1(t)−K1

√
h1(t))

ḣ2(t) = 1
S2

(K32

√
h3(t)− h2(t)−Q20(t)−K2

√
h2(t))

ḣ3(t) =
−K32

S3

√
h3(t)− h2(t)

f1(t) = W (t, ηc)

f2(t) = W (t, ηa)

f3(t) = W (t, ηa)

3f1f2
v13 = closed

v32 = closed
D3f1f2


ḣ1(t) = 1

S1
(Q1(t)−K1

√
h1(t))

ḣ2(t) = 1
S2

(−Q20(t)−K2

√
h2(t))

ḣ3(t) = 0

f1(t) = W (t, ηc)

f2(t) = W (t, ηa)

f3(t) = W (t, ηb)

4f1f2
v13 = open

v32 = closed
D4f1f2


ḣ1(t) = 1

S1
(Q1(t)−K13

√
h1(t)− h3(t)−K1

√
h1(t))

ḣ2(t) = 1
S2

(Q20(t)K32 −K2

√
h2(t))

ḣ3(t) =
K13
S3

√
h1(t)− h3(t)

f1(t) = W (t, ηa)

f2(t) = W (t, ηa)

f3(t) = W (t, ηc)

1f2f3
v13 = open

v32 = open
D1f2


ḣ1(t) = 1

S1
(Q1(t)−K13

√
h1(t)− h3(t))

ḣ2(t) = 1
S2

(K32

√
h3(t)− h2(t)−Q20(t)−K2

√
h2(t))

ḣ3(t) = 1
S3

(K13

√
h1(t)− h3(t)−K32

√
h3(t)− h2(t)−K3

√
h3(t))

f1(t) = W (t, ηa)

f2(t) = W (t, ηa)

f3(t) = W (t, ηa)

2f2f3
v13 = closed

v32 = open
D2f2


ḣ1(t) = 1

S1
Q1(t)

ḣ2(t) = 1
S2

(K32

√
h3(t)− h2(t)−Q20(t)−K2

√
h2(t))

ḣ3(t) = 1
S3

(−K32

√
h3(t)− h2(t)−K3

√
h3(t))

f1(t) = W (t, ηc)

f2(t) = W (t, ηa)

f3(t) = W (t, ηa)

3f2f3
v13 = closed

v32 = closed
D3f2


ḣ1(t) = 1

S1
Q1(t)

ḣ2(t) = 1
S2

(−Q20(t)−K2

√
h2(t))

ḣ3(t) = 1
S3

(K3

√
h3(t))

f1(t) = W (t, ηc)

f2(t) = W (t, ηa)

f3(t) = W (t, ηb)

4f2f3
v13 = open

v32 = closed
D4f2


ḣ1(t) = 1

S1
(Q1(t)−K13

√
h1(t)− h3(t))

ḣ2(t) = 1
S2

(Q20(t)−K2

√
h2(t))

ḣ3(t) = 1
S3

(K13

√
h1(t)− h3(t)−K3

√
h3(t))

f1(t) = W (t, ηa)

f2(t) = W (t, ηa)

f3(t) = W (t, ηc)

1f1f3
v13 = open

v32 = open
D1f1f3


ḣ1(t) = 1

S1
(Q1(t)−K13

√
h1(t)− h3(t)−K1

√
h3(t))

ḣ2(t) = 1
S2

(K32

√
h3(t)− h2(t)−Q20(t))

ḣ3(t) = 1
S3

(K13

√
h1(t)− h3(t)−K32

√
h3(t)− h2(t)−K3

√
h3(t))

f1(t) = W (t, ηa)

f2(t) = W (t, ηa)

f3(t) = W (t, ηa)

2f1f3
v13 = closed

v32 = open
D2f1f3


ḣ1(t) = 1

S1
(Q1(t)−K1

√
h1(t))

ḣ2(t) = 1
S2

(K32

√
h3(t)− h2(t)−Q20(t))

ḣ3(t) = 1
S3

(−K32

√
h3(t)− h2(t)−K3

√
h3(t))

f1(t) = W (t, ηc)

f2(t) = W (t, ηa)

f3(t) = W (t, ηa)

3f1f3
v13 = closed

v32 = closed
D3f1f3


ḣ1(t) = 1

S1
Q1(t)−K1

√
h1(t)

ḣ2(t) =
−Q20(t)

S2

ḣ3(t) = 1
S3

(−K3

√
h3(t))

f1(t) = W (t, ηc)

f2(t) = W (t, ηa)

f3(t) = W (t, ηb)

4f1f3
v13 = open

v32 = closed
D4f1f3


ḣ1(t) = 1

S1
(Q1(t)−K13

√
h1(t)− h3(t)−K1

√
h1(t))

ḣ2(t) =
Q20(t)

S2

ḣ3(t) = 1
S3

(K13

√
h1(t)− h3(t)−K3

√
h3(t))

f1(t) = W (t, ηa)

f2(t) = W (t, ηa)

f3(t) = W (t, ηc)
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