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ABSTRACT

Setting optimal alarm thresholds in vibration based condition
monitoring system is inherently difficult. There are no es-
tablished thresholds for many vibration based measurements.
Most of the time, the thresholds are set based on statistics
of the collected data available. Often times the underlying
probability distribution that describes the data is not known.
Choosing an incorrect distribution to describe the data and
then setting up thresholds based on the chosen distribution
could result in sub-optimal thresholds. Moreover, in wind
turbine applications the collected data available may not rep-
resent the whole operating conditions of a turbine, which re-
sults in uncertainty in the parameters of the fitted probabil-
ity distribution and the thresholds calculated. In this study,
Johnson, Normal, and Weibull distributions are investigated;
which distribution can best fit vibration data collected from a
period of time. False alarm rate resulted from using threshold
determined from each distribution is used as a measure to de-
termine which distribution is the most appropriate. This study
shows that using Johnson distribution can eliminate testing or
fitting various distributions to the data, and have more direct
approach to obtain optimal thresholds. To quantify uncer-
tainty in the thresholds due to limited data, implementations
with bootstrap method and Bayesian inference are investi-
gated.

1. INTRODUCTION

Wind turbines are generally subject to aleatory uncertainty
due to stochastic nature of the weather and the wind itself.
In addition to the stochastic nature that a turbine may expe-
rience under normal condition (not experiencing any faults),
the varying loads that a wind turbine experience makes mon-
itoring its condition inherently challenging. However, hav-
ing a condition monitoring system (CMS) dedicated to wind
turbines is vital for an effective maintenance program. Such
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program can help ensure maximum uptime of the machine
by minimizing downtime. An example of such system has
been demonstrated by (Andersson, Gutt, & Hastings, 2007).
Most CMS for wind turbine applications are based on vibra-
tion as described by (Tavner, 2012) and (Crabtree, 2011). A
case study of using vibration monitoring to detect and diag-
nose a fault in the generator bearing of a wind turbine in a real
industrial application has also been presented by(Marhadi &
Hilmisson, 2013).

As explained by (Marhadi & Hilmisson, 2013), primary com-
ponents monitored in wind turbines (for vibration based CMS)
are the generator, gearbox, main bearings, and tower. Usually
accelerometers are installed on these components, and there
could be up to 10 accelerometers installed in a wind turbine.
The data acquisition unit in a wind turbine usually collects
vibration data continuously from each sensor. Different vi-
bration measurements are considered in monitoring different
components of a wind turbine. To monitor generator bearings
for example, several measurements are used in different fre-
quency ranges. The overall vibration RMS level, ISO RMS
[10 - 1000 Hz], high frequency band pass (HFBP [1k - 10k
Hz]), high frequency crest factor (HFCF), and several har-
monics or orders of the running speed of the generator (e.g.
1X , 2X) are computed by the data acquisition unit continu-
ously from each sensor. Depending on different failure modes
or types of fault, there could be more measurements needed
and computed from a sensor. To detect gear related problems
in a gearbox for example, the tooth/gear mesh frequencies
and sideband levels are usually computed in addition to other
broad band measurements such as the ISO RMS.

It is widely practiced in the industry that each individual mea-
surement is trended over time to detect certain failure modes.
When the trend from a specific measurement (e.g. HFBP or
ISO RMS) crosses over a predefined threshold, it will trig-
ger an alarm or warning. Thus it is very important to set the
thresholds correctly in order to minimize the number of false
alarms. (Bechhoefer & Bernhard, 2007) explained that this
practice in reality may generate many false alarms. How-
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ever, the implementation of this practice in the industry is
very straight forward. Moreover, it is more intuitive and un-
derstandable for many vibration practitioners who normally
evaluate vibration data to look at each individual measure-
ment trend.

Since wind turbines are often located in remote locations or
offshore, whose access are often difficult, it is important to be
able to plan visits and maintenance of the turbines. (Marhadi,
2015) demonstrated that as a fault develops, having multiple
levels of severity assessments, where the urgency of mainte-
nance can be estimated at each severity level (lead time), can
help plan maintenance. This is mainly based on trending indi-
vidual measurement, where increasing trends of different vi-
bration measurements are used as indicators of various stages
of a fault development.

Given there could be up to 10 sensors installed in a turbine
and the number of measurements computed from an individ-
ual sensor could vary from 3 to more than 10, the number of
thresholds that needs to be set up is consequently large. It is
impractical to set them manually. Considering that each wind
turbine is unique like an individual, it is necessary to set the
thresholds uniquely to each turbine. It will be even very in-
efficient if there are thousands of turbines with CMS whose
thresholds need to be set manually. More importantly, setting
a threshold is often a trade off between missing real alarms
due to a fault development and having false alarms. Thus it is
important to be able to set the thresholds at the optimum lev-
els automatically with minimum number of adjustments over
time.

(Marhadi & Hilmisson, 2013) explained that some limits are
determined based on statistics. It is often based on the as-
sumption that the distribution of a vibration measurement fol-
lows the Normal (Gaussian) distribution. (Jablonski, Barszcz,
Bielecka, & Breuhaus, 2013) discussed a methodology for
automatic threshold calculation in a large monitoring system,
including a wind turbine application. (Jablonski et al., 2013)
showed that different data types or vibration measurements
could have significantly different probability distributions from
Gaussian. They investigated several distributions and their
comparison in fitting various data types for threshold calcu-
lation. (Bechhoefer & Bernhard, 2005) have also presented
a case where Gaussian distribution is not appropriate to de-
scribe the probability distribution of first order magnitude (1X)
of a helicopter shaft. They further explained that it is im-
portant that the underlying distribution of a measurement is
correct so that the threshold can be determined based on low
probability of false alarm.

Earlier work to determine alarm threshold has been presented
by (Cempel, 1990), where he investigated the thresholds esti-
mation based on Chebyshev’s inequality, Weibull and Pareto
distributions. The work also showed its possible applica-
tion in prognosis although it is more complicated, such as

what (Cempel, 1987) showed. Later (Bechhoefer & Bern-
hard, 2004) described a methodology to set alarm thresholds
that takes into account variance between aircraft and vari-
ous aircraft state parameters (e.g. operating conditions). The
work assumed that the underlying data for estimating thresh-
olds have approximately Normal distribution. (Bechhoefer &
Bernhard, 2005) further demonstrated that thresholds based
on Gaussian statistic could yield greater false alarms than
anticipated, and discussed using non-Gaussian distribution,
such as Rayleigh distribution for analysis of shaft compo-
nents.

Using a linear transformation to whiten different vibration
data types or condition indicators, (Bechhoefer, He, & Dempsey,
2011) presented a method to set a threshold of gear health,
also known as health indicator, based on probability of false
alarm. The algorithm to define health indicator as a function
of condition indicators was developed using three statistical
models, namely order statistic, sum of condition indicators,
and normalized energy. The models were developed with the
assumption that the condition indicators follow Gaussian dis-
tribution or Rayleigh distribution.

In the aforementioned work, a lot of investigations were done
to determine the most appropriate underlying distribution of
the vibration data before a threshold is set. It is often nec-
essary to fit several distributions to the data available, and to
choose the most appropriate one based on a goodness-of-fit
test, such as in (Jablonski et al., 2013). Rather than trying to
fit various distribution functions, it could be more practical to
choose a distribution function that can fit a family of distri-
butions, such as Pearson family of distributions and Johnson
family of distributions. Thus there are no needs to fit various
distribution functions or to compare different thresholds set
based on different distributions.

This paper focuses on using Johnson family distribution as
a unified approach to model a wide variety of distribution
functions that describe various vibration data in wind turbine
condition monitoring applications. The significance of this
work is that by using Johnson distribution there is no need
to test various distributions to find the most appropriate one
to describe vibration data. Optimum thresholds that mini-
mize false alarms can be set up based on only one distribu-
tion. This is later demonstrated in the paper. Considering the
number of vibration measurements from a wind turbine, the
number of wind turbines whose thresholds need to be set up,
and the stochastic nature of wind turbine operating conditions
that may necessitate classification of operating conditions as
later described in the paper, this approach is very practical.
Its implementation is simple without much computational ef-
forts, and it can be implemented quickly in large scale indus-
trial setting. For comparison purposes, other distributions are
investigated, namely Normal and Weibull distributions.

In condition monitoring system the data available are usually
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sufficient for statistical analysis, however it is not necessarily
true for wind turbine applications due to various seasons or
wind conditions that a wind turbine can experience in a year.
Ideally at least a whole year is necessary to collect data in or-
der to reflect the true underlying distribution. However it is
clearly impractical to collect a year data before CMS is ap-
plied with the correct thresholds. Although this condition is
widely known, there has not been much work or study in this
area. Another contribution of this paper is to present the ef-
fects of having limited data available (e.g. a few days, a few
weeks, or a few months) in wind turbine thresholds setting
and the possible false alarms generated. Bootstrap method
and Bayesian inference are investigated for uncertainty quan-
tification with possible industrial applications in mind.

2. JOHNSON FAMILY DISTRIBUTION

Johnson distribution is a family function that can fit different
distribution shapes. It is not necessary to test different distri-
butions that will give the best fit to a set of sample data be-
cause Johnson family distribution has the flexibility to fit data
with a large range of different distribution shapes. A brief
description of the Johnson distribution function is provided
here.

Fitting data with Johnson distribution involves transforming a
continuous random variable x,whose distribution is unknown,
into a standard Normal (z) with mean 0 and variance 1 ac-
cording to one of the four normalizing translations proposed
by (Johnson, 1949). The general form of the translation is

z = γ + δf

(
x− ξ
λ

)
(1)

where z ∼ N(0, 1), γ and δ are shape parameters, λ is a
scale parameter , and ξ is a location parameter. The transla-
tion functions that map different distributions to the standard
Normal distribution in the Johnson distribution function are
as follows:

f(y) =


ln(y) for lognormal family(SL),

ln
[
y +

√
y2 + 1

]
for unbounded family(SU ),

ln
[

y
1−y

]
for bounded family(SB),

y for normal family(SN ),
(2)

where y = x−ξ
λ . If equation 1 is an exact normalizing trans-

lation of x to a standard normal random variable, the cumu-
lative density function (CDF) of x is given by

F (x) = Φ(z) for all x ∈ H, (3)

where Φ(z) denotes CDF of standard Normal distribution,

and the spaceH of x is

H =


[ξ,+∞) for lognormal family(SL),

(−∞,+∞) for unbounded family(SU ),

[ξ, ξ + λ] for bounded family(SB),

(−∞,+∞) for normal family(SN ).

(4)

The probability density function (PDF) of x is then given by

p(x) =
δ

λ
√

2π
f ′(y)exp{−1

2
[γ + δf(y)]2}, (5)

where f ′(y) =
df

dy
. For more information one can refer to

(DeBrota, Dittus, Swain, Roberts, & Wilson, 1989).

There are four methods to estimate Johnson parameters (γ, δ,
ξ, λ) as described by (DeBrota et al., 1988), namely: moment
matching, percentile matching, least squares, and minimum
Lp norm estimation. The reader can refer to (DeBrota et al.,
1988) for detailed description of each method. In this work,
the moment matching method is used with implementation
based on (Hill, Hill, & Holder, 1976) due to its simplicity in
Scilab (Enterprises, 2012).

The moment matching method involves determining the fam-
ily distribution first by the location of skewness, β1 and kur-
tosis, β2 in Figure 1. This figure represents the original iden-
tification chart published by (Johnson, 1949), with positive
goes downward in the y-axis (β2). The number of parame-
ters to be estimated is then determined by solving a system
of non-linear equations between the sample moments and the
corresponding moments of the fitted distribution. A brief pro-
cedure of the method can be described as follows:

1. Calculate the moments of x : m2,m3 and m4.
2. Calculate the skewness and kurtosis of x : β1 ≡ m2

3/m
3
2

and β2 ≡ m4/m
2
2.

3. Use the chart in Figure 1 to determine the family or trans-
formation function used.

3. THRESHOLD SETTING

An alarm threshold can be set based on a predetermined prob-
ability of false alarm (pf ). This value is essentially a design
parameter that can be changed to suit the condition mon-
itoring needs. In this work, the predetermined probability
of false alarm is set at 10−4. Thus knowing the underlying
probability distribution of the data, it is the same as finding
the 99.99 percentile of the distribution or finding the inverse
CDF, see equation 6. The inverse CDF of Johnson distribu-
tion in this work is computed using Scilab CASCI library, see
(Enterprises, 2012).

threshold = F−1(1− pf). (6)

Setting an alarm threshold involves collecting vibration data
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Figure 1. Johnson distribution family identification chart.

over a period of time. Depending on how the data are col-
lected, some preprocessing may be needed, such as outliers
removal. Next, a probability distribution function is fitted to
the data collected and its parameters are estimated. Based on
the estimated parameters, a threshold is set following equa-
tion 6. Figure 2 illustrates the steps to determine an alarm
threshold. In regards to industrial application, the steps are
simple to implement.

Data collection

Fit a probability distribution func-
tion, p (estimate its parameters)

Compute threshold = F−1(1 − pf)
based on the estimated parameters

Threshold set

Figure 2. Block diagram of threshold setting.

4. DATA COLLECTION FROM A WIND TURBINE

Data used in this study were taken from Generator Non Drive
End of a 3 MW turbine. For a typical generator bearing moni-
toring performed by Brüel & Kjær Vibro (B&K Vibro), there
could be up to or more than 10 different vibration data or

measurements generated from a sensor. For simplicity of this
study, only ISO RMS and High Frequency Band Pass (HFBP)
data are used for analysis. HFBP is usually used as early in-
dicator of potential bearing related problems, and ISO RMS
is usually used as general indicator of faults developing into
a later stage. These two measurements or indicators can re-
flect the general conditions of generator bearings across all
turbine types. For more specific problems, such as looseness
or imbalance, other measurements or indicators are needed.

ISO RMS and HFBP are computed in the time domain (com-
puting the root mean squared of the signal) after applying the
appropriate filter settings. The sample length is set so that it
captures approximately 10 revolutions of the generator rota-
tion. The vibration is sampled at 25600 per second.

The data were collected for approximately two months while
the turbine was running during its normal operating condi-
tions and producing power at least above 100 kW. No known
mechanical faults existed during the data collection period.
The data were collected by the data acquisition unit on the
turbine and sent every 5 minutes to a remote surveillance cen-
ter. Data collection interval could actually vary in the real or
commercial condition monitoring systems. It often depends
on the choice of monitoring strategy of the machine.

As described by (Marhadi & Hilmisson, 2013), since a wind
turbine operates over a wide range of speeds and loads, it is
important to set thresholds within more or less the same op-
erating condition. Thus changes in measured vibration levels
are indeed due to developing faults, and not due to changing
operating conditions. Typical B&K Vibro monitoring strat-
egy for wind turbines is to divide the operating conditions of
a wind turbine into 5 different operating power classes (OPC)
based on the power produced by the wind turbine. For a 3
MW turbine, the power classes are as follow: 100 - 700 kW
(Class 1), 700 - 1300 kW (Class 2), 1300 - 2000 kW (Class
3), 2000 - 2700 kW (Class 4), and 2700 - 3200 kW (Class 5).
Thus each measurement is classified based on in which op-
erating condition it is taken. No data are recorded when the
turbine operates below 100 kW or above 3200 kW.

Figure 3 and 4 present the distributions of ISO RMS and
HFBP taken over a period of approximately two months in
two power classes. Through out the paper only data from the
first two power classes are presented for better clarity and or-
ganization. Johnson, Normal, and Weibull distributions are
fitted in each type of data for comparison. The figures show
that even though the data type is the same (e.g. ISO RMS),
however the distribution in different power classes can be sig-
nificantly different. In this example, the Johnson family type
that fits each data type is found to be bounded Johnson distri-
bution (SB).

The alarm thresholds were then computed following steps de-
scribed in section 3. In this work, all data are assumed to be
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Figure 3. Histogram of HFBP data with different distributions
fit in 2 power classes.

Table 1. HFBP thresholds at 2 OPCs (m/s2).

Underlying Distribution OPC 1 OPC 2
Johnson 12.79 20.75
Normal 8.55 13.18
Weibull 9.19 16.64

valid. Thus no preprocessing (e.g. outliers removal) were
done on the collected data. For comparison, table 1 and table
2 present the thresholds of HFBP and ISO RMS calculated
based on Johnson, Normal, and Weibull distributions.

The false alarm rates of the whole data were computed when
the thresholds set based on the whole data were used. The
results are presented in tables 3 and 4. Thresholds based on
Johnson and Weibull distributions generally result in the low-
est false alarm rates. However, there are some thresholds that
result in false alarm rates that are not within the specified
probability of false alarm. Thresholds set based on Normal
distribution are more likely to have higher false alarm rate.
This shows the difficulty in fitting the most appropriate distri-
bution to the data. For Normal distribution, it only has param-
eters that describe location and scale of a population. Thus it
is very difficult to describe data that are not symmetric. An-
other example, the type of Johnson family fitted to the data
is bounded (SB) in all power classes for both HFBP and ISO
RMS since the data determine this family to be the most suit-

Figure 4. Histogram of ISO RMS data with different distri-
butions fit in 2 power classes.

Table 2. ISO RMS thresholds at 2 OPCs (m/s2).

Underlying Distribution OPC 1 OPC 2
Johnson 0.77 0.99
Normal 0.89 0.93
Weibull 1.11 0.97

able. Having Johnson (SB) distribution can result in lower
thresholds. One can choose to strictly fit Johnson unbounded
distribution (SU ) regardless what the data indicate the most
appropriate family is, such as in the work done by (Marhadi,
Venkataraman, & Pai, 2012). However, having the data de-
termine the most appropriate family is more consistent with
the objective of using Johnson distribution and should also be
more accurate (due to more likely representing the data). In
this way optimum and conservative estimate of the threshold
can be achieved.

5. THRESHOLD CALCULATION BASED ON LIMITED DATA

Ideally, the vibration data collected to set alarm thresholds
should reflect all normal operating conditions (without any
mechanical faults and the turbine has gone through all possi-
ble weather and seasonal conditions) in order to set the thresh-
olds effectively. This data collection may take up to a year,
and it is clearly impractical. A more practical approach is to
collect a month of vibration data (or even less than a month),
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Table 3. HFBP false alarm rates (%) at 2 OPCs when thresh-
olds are set based on the whole data.

Underlying Distribution OPC 1 OPC 2
Johnson 0.00 0.00
Normal 0.65 1.17
Weibull 0.46 0.31

Table 4. ISO RMS false alarm rates (%) at 2 OPCs when
thresholds are set based on the whole data.

Underlying Distribution OPC 1 OPC 2
Johnson 0.29 0.00
Normal 0.00 0.10
Weibull 0.00 0.00

and set the thresholds based on the collected data.

Realistically, the turbine may not have gone through all nor-
mal operating conditions after a month of operation. Within
almost two months of data collection with every 5 minutes
interval of data recording, the numbers of vibration data in
each OPC from the turbine used in this study are as follows:
3067 data in OPC 1, 1960 data in OPC 2, 1673 data in OPC 3,
1595 data in OPC 4, and 1719 data in OPC 5. The underlying
question is: do these numbers reflect the operating conditions
for the rest of the year? Experience has shown that thresholds
can be set based on these data, but adjustments might be nec-
essary after a couple of months. For all practical purposes the
number of adjustments needs to be minimum.

To investigate the effects of having limited data (not enough
data to capture all operating conditions of a turbine) in set-
ting alarm thresholds, the vibration data collected from each
OPC are re-sampled uniformly with the following numbers of
samples: 720, 360, 180, and 90. It is assumed that all vibra-
tion data collected represent the overall operating conditions
of the turbine. Another assumption is made that in a worst
case scenario, vibration data from a turbine are collected and
sent every hour (e.g. to reduce data collection). With this
assumption, the vibration data available in this study repre-
sent approximately 3 months of data. Then the numbers of
re-samples from these data represent 30 days, 15 days, 7.5
days, and 3.75 days of data. Although the numbers of sam-
ples look statistically sound, in reality, they may reflect only
short periods of the turbine operational time (order of days).

Tables 5 and 6 present the false alarm rates when the thresh-
olds set based on limited data are used or checked against the
whole data available. As the number of data used to compute
thresholds decreases, the false alarm rates can either increase
or decrease. This indicates that the data available are cru-
cial for thresholds setting. Smaller false alarm rates can be
achieved if the sampled data are more representative of the
actual distribution. Figures 5 and 6 give visual representa-
tions of how the distributions of sampled data could actually

Table 5. HFBP false alarm rates (%) at 2 OPCs when thresh-
olds are set based on different number of data.

Number of data Underlying Distribution OPC 1 OPC 2

720
Johnson 0.00 0.00
Normal 0.65 0.97
Weibull 0.36 0.00

360
Johnson 0.00 0.00
Normal 0.59 0.61
Weibull 0.13 0.00

180
Johnson 0.00 0.00
Normal 0.46 0.31
Weibull 0.20 0.00

90
Johnson 0.00 5.41
Normal 0.65 3.60
Weibull 0.13 1.53

be different from the whole population.

Figure 5. Emperical CDF of HFBP from various sampled
data in 2 power classes.

To give some visual representations of the data and how false
alarms could occur, figures 7 and 8 show the vibration data
over a time period and the thresholds set based on Johnson
distribution with different number of data. The figures also
show exponential averages of the collected data over time (see
Eq. (7)), which can be done to reduce fluctuation in the data
and to provide smoother trending. In this study, α = 0.01 and
x̄1 = x1.

x̄t = αxt + (1− α)xt−1 (7)

Alarming can be done on the averaged data over time. As
stated earlier, the averaged data are smoother and provide a
clearer picture when a mechanical fault develops, e.g. by in-
creasing vibration level over time. The false alarm rates are
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Figure 6. Emperical CDF of ISO RMS from various sampled
data in 2 power classes.

Table 6. ISO RMS false alarm rates (%) at 2 OPCs when
thresholds are set based on different number of data.

Number of data Underlying Distribution OPC 1 OPC 2

720
Johnson 0.00 0.10
Normal 0.00 0.10
Weibull 0.00 0.00

360
Johnson 0.95 0.00
Normal 0.00 0.20
Weibull 0.00 0.00

180
Johnson 0.15 0.00
Normal 0.00 0.10
Weibull 0.00 0.00

90
Johnson 0.72 1.28
Normal 0.00 0.10
Weibull 0.00 0.00

zero in most cases (e.g. different number of samples to set
thresholds) when the averaged data are checked against the
computed thresholds. Trending the averaged data also en-
sures that the machine condition is indeed entering an abnor-
mal condition when the trend crosses a threshold.

The data used to represent overall operating conditions of the
turbine are indeed limited. However the main purpose of this
exercise is to show the effects of having limited data. The
study shows the importance of having data as representative
as possible to the overall operating condition data.

Sampled data from wind turbines vary a lot in reality depend-
ing on when the data are collected, e.g. seasons and operat-
ing conditions. Thus for example thresholds set based on data
sampled during winter time will be different from the ones set
based on data sampled during summer time. The study rep-

Figure 7. HFBP data over time with thresholds based on fit-
ting Johnson distribution at different number of data in power
class 2.

resents this reality because it is clearly impractical to collect
one year data before setting thresholds. A fault could develop
within a year, and it could be undetected if no appropriate
thresholds are set. The next section describes possibilities of
dealing with such limited data.

6. QUANTIFYING UNCERTAINTY IN LIMITED DATA

The previous sections have shown that in wind turbine appli-
cations, the number of available data can be statistically large,
but not necessarily represent the actual distribution of the
data or all operating conditions of a turbine. Having limited
amount of data generally leads into uncertainty in choosing
the appropriate probability distribution to fit the data. More-
over, even if the correct probability distribution is known,
having limited amount of data that do not represent the actual
population can results in wrong estimates of the distribution
parameters. Thus the thresholds set based on these data could
be either too low or too high (not optimum).

It is beneficial to quantify the uncertainty of thresholds (the
confidence bounds) set based on limited data. This can be
done by first quantifying the uncertainty of the statistical dis-
tribution parameters. Different methods are available, both
analytically (e.g. maximum likelihood estimate) or based on
re-sampling techniques (e.g. bootstrap) and Bayesian esti-
mate. (Marhadi et al., 2012) have described that there have
been no analytical methods to estimate uncertainties (confi-
dence bounds) of Johnson distribution fitted to some data.
To estimate the uncertainties of the thresholds set based on
Johnson distribution and other distributions in this work, a
re-sampling technique (bootstrap) is used. Bootstrap method
has relatively simple implementation in comparison to other
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Figure 8. ISO RMS data over time with thresholds based
on fitting Johnson distribution at different number of data in
power class 2.

methods, e.g. Bayesian inference. Although the implementa-
tion is simple, bootstrap method is known to have some lim-
itations as described by (Chernick, 1999), such as problems
with estimating extreme values and variance of a distribution
that has a very large/infinite variance. For comparison and to
overcome some limitations of bootstrap method, a Bayesian
inference procedure is used to estimate the distribution of
Johnson, Normal, and Weibull parameters and the resulting
bounds of the thresholds.

6.1. Bootstrap Method

Bootstrap technique re-samples the sampled data of 720, 360,
180, and 90 with replacements, and obtains new sets of 720,
360, 180, and 90 data. After each sampling, the distribution
parameters are estimated using the selected samples, and the
thresholds are calculated based on the estimated parameters
of the distributions. Due to sampling with replacement, some
samples are repeated in the new selected set. Bootstrap sam-
pling is applied 1000 times, and the statistical parameters es-
timated are computed for each sample set in 1000 bootstrap
repetition.

For estimating Johnson distribution parameters, in each se-
lection set the appropriate Johnson family distribution (SL,
SB , SU , or SN ) is determined using moment values of the
data in the selection set. The results of the bootstrap tech-
niques are the 2.5 and 97.5 percentiles of the thresholds set
based on each distribution studied. They provide lower and
upper bounds of the thresholds with 95% confidence. This
information provides flexibility for an engineer to choose the
thresholds within the lower and upper bounds.

Table 7. HFBP false alarm rates (%) at 2 OPCs when upper
thresholds from bootstrap are used.

Number of data Underlying Distribution OPC 1 OPC 2

720
Johnson 0.00 0.00
Normal 0.52 0.66
Weibull 0.13 0.00

360
Johnson 0.00 0.00
Normal 0.29 0.31
Weibull 0.00 0.00

180
Johnson 0.00 0.00
Normal 0.26 0.00
Weibull 0.00 0.00

90
Johnson 0.00 3.47
Normal 0.26 2.81
Weibull 0.00 0.26

The false alarm rates are then computed again as the lower
and upper bound thresholds are used on the whole data avail-
able to simulate a real situation when only limited amount of
data available to set thresholds. The results are presented in
tables 7 to 10. As one may expect, the lower bound thresh-
olds result in higher false alarm rates and the upper bound
ones result in lower rates. Generally the upper thresholds set
based on both Johnson and Weibull distributions result in low
false alarm rate. The main concern is always whether the
thresholds have been set optimally by choosing the most ap-
propriate distribution describing the data. Since the underly-
ing distribution of data collected is not always known before-
hand, fitting Johnson distribution can be a general or middle
ground solution.

Figures 9 and 10 show the lower and upper bounds (2.5 and
97.5 percentiles) of the thresholds based on Johnson distri-
bution from bootstrapping the 90, 180, 360, and 720 data.
They are represented as error bars. For comparison, the lower
and upper bounds of thresholds based on Weibull distribution
are shown in figures 11 and 12. Bounds of thresholds based
on Normal distribution are not shown because generally they
result in higher false alarm rates compared to the other two
distributions and to make the paper more readable.

Some thresholds determined from limited data are very closed
to the thresholds determined from the whole data (e.g. ISO
RMS threshold in OPC 2 in figure 12). Some of them are
higher or even lower than the thresholds determined from
the whole data, but the upper and lower bounds enclose the
thresholds from the whole data (e.g. HFBP thresholds in OPC
1 in figure 9). Comparing the bounds of thresholds based
on Johnson and Weibull distributions, they are relatively in
the same order of magnitude. However, Weibull distribution
tends to result in larger upper bounds (e.g. see ISO RMS
thresholds in figure 12). Thus choosing Johnson distribution
as the basis of setting threshold in this case is a more conser-
vative approach.
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Figure 9. Confidence bounds of HFBP thresholds from boot-
strapping various sampled data in 2 power classes. Thresh-
olds are based on Johnson distribution.

Table 8. HFBP false alarm rates (%) at 2 OPCs when lower
thresholds from bootstrap are used.

Number of data Underlying Distribution OPC 1 OPC 2

720
Johnson 0.00 0.31
Normal 0.85 1.58
Weibull 0.59 0.26

360
Johnson 0.13 0.31
Normal 0.85 1.53
Weibull 0.36 0.00

180
Johnson 0.65 0.61
Normal 0.82 0.87
Weibull 0.36 0.00

90
Johnson 1.17 9.03
Normal 1.43 5.56
Weibull 0.65 3.11

6.2. Bayesian Inference

Bayesian inference is a statistical method that allows using
observation data (x) to infer the unknown parameters (θ) of a
distribution that may describe the data. The unknown param-
eters are represented as PDF. Bayes theorem allows to relate
the condition probability distribution of the observed data (x)
given the distribution parameters (θ), p(x|θ) to the condition
probability of the parameter (θ) given the observation data
(x), p(θ|x) as shown in equation 8,

p(θ|x) ∝ l(θ|x)p(θ), (8)

where p(θ|x) is the posterior PDF of θ given x, l(θ|x) =
p(x|θ) is the likelihood of data x given θ, and p(θ) is known
as the prior distributions of θ. The prior here reflects prior
knowledge of θ before any data are considered.

Figure 10. Confidence bounds of ISO RMS thresholds
from bootstrapping various sampled data in 2 power classes.
Thresholds are based on Johnson distribution.

Table 9. ISO RMS false alarm rates (%) at 2 OPCs when
upper thresholds from bootstrap are used.

Number of data Underlying Distribution OPC 1 OPC 2

720
Johnson 0.00 0.00
Normal 0.00 0.00
Weibull 0.00 0.00

360
Johnson 0.13 0.00
Normal 0.00 0.00
Weibull 0.00 0.00

180
Johnson 0.26 0.00
Normal 0.00 0.00
Weibull 0.00 0.00

90
Johnson 0.00 0.10
Normal 0.00 0.00
Weibull 0.00 0.00

The likelihood is the same as the PDF chosen to fit the data.
The prior is usually subjective. The posterior distribution is
then obtained by multiplying the prior and all the likelihood
functions according to the number of observed data (n) as

p(θ|x) ∝ l(θ|x1)l(θ|x2) . . . l(θ|xn)p(θ). (9)

Implementation of Bayesian inference for each distribution
studied in this work is slightly different. Each implementation
will be briefly described.

6.2.1. Johnson Distribution

The inference of Johnson distribution parameters follows the
procedure outlined by (Marhadi et al., 2012). Sampling the
joint distribution function (posterior distribution) in equation
9 is often difficult and required using a Markov Chain Monte

9
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Figure 11. Confidence bounds of HFBP thresholds from
bootstrapping various sampled data in 2 power classes.
Thresholds are based on Weibull distribution.

Table 10. ISO RMS false alarm rates (%) at 2 OPCs when
lower thresholds from bootstrap are used.

Number of data Underlying Distribution OPC 1 OPC 2

720
Johnson 0.59 0.56
Normal 0.00 0.26
Weibull 0.00 0.00

360
Johnson 2.38 0.56
Normal 0.00 0.51
Weibull 0.00 0.20

180
Johnson 4.47 0.31
Normal 0.00 0.46
Weibull 0.00 0.20

90
Johnson 5.80 4.59
Normal 0.00 0.61
Weibull 0.00 0.41

Carlo (MCMC) method. In (Marhadi et al., 2012), they used a
Metropolis method to sample the posterior distribution. They
also chose to use non-informative prior or flat prior, with an
infinite interval. They reported that sampling the four pa-
rameters of Johnson distribution simultaneously could cause
the Metropolis method fail to converge. It is more likely to
achieve convergence by inferring only two parameters, namely
γ and δ assuming the estimates for location and scale param-
eters (ξ and λ) are more accurate to obtain.

Following findings in (Marhadi et al., 2012), only γ and δ are
inferred in this work. Based on the sampled data, Bayesian
inference of Johnson SB , SL, SN or SU distribution can be
performed. It is determined based on the moments of the
data using moment matching method as described in sec-
tion 2. Bayesian inference is performed with a random walk
Metropolis method with 4000 burn-in iterations period and

Figure 12. Confidence bounds of ISO RMS thresholds
from bootstrapping various sampled data in 2 power classes.
Thresholds are based on Weibull distribution.

2000 samples from the posterior distribution. The scale pa-
rameters (variance) of the proposal distribution/density (a bi-
variate Normal distribution with zero covariance) are adjusted
so that acceptance rate between 30% to 50% can be achieved.
For more details description of the Metropolis method, one
can refer to (MacKay, 2003). It is found that even when only
γ and δ are inferred in this work, convergence of the Metropo-
lis method can be difficult to achieve when flat prior is used.
Thus Normal priors for γ and δ are investigated. Again, prior
is often subjective and could be subject to more detailed in-
vestigation in future work.

It is assumed that γ and δ are distributed according to Nor-
mal distribution. The means are assumed to be equal to the
first estimates of γ and δ of the sampled data. The variance
is difficult to estimate. However, after some trials and errors,
it is found that standard deviations of 0.5 of the means (first
estimates of γ and δ) could result in satisfactory convergence.
Figure 13 shows the output of 2000 samples for γ and δ from
the Metropolis method after 4000 burn-in iteration with 90
data from ISO-RMS at OPC 2. The running average plotted
in the figure (green line) shows convergence of the method.
The initial estimates of the parameters for these 90 data are as
follows: γ = 0.644, δ = 0.807, ξ = 0.339, λ = 0.499, and
the Johnson distribution family is SB or bounded. Samples
from the Metropolis method have means of γ = 0.624 and
δ = 0.806. In this work, all of the limited sampled data fall
into the family of SB or bounded Johnson distribution. Thus
in this work Bayesian inference is done mainly with Johnson
SB family distribution. The 2000 samples of parameters es-
timated from Bayesian inference are then used to determine

10
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Figure 13. 2000 samples of γ and δ from Metropolis method
after 4000 burn-in iteration with 90 data from ISO-RMS at
OPC 2. ξ and λ are kept constant at the initial estimates.

thresholds based on Johnson distribution. The 2.5 and 97.5
percentiles of the thresholds are determined as in the case
when bootstrap is used to provide lower and upper bounds.

6.2.2. Normal Distribution

Bayesian inference for normal distribution has been discussed
thoroughly by (Box & Tiao, 1973). The normal distribution
has PDF in the form of

p(x) =
1

σ
√

2π
exp{−1

2

[
x− µ
σ

]2
}. (10)

The joint posterior distribution between σ and µ can be de-
scribed as proportional to p(µ, σ)p(x̄|µ, σ2)p(s2|σ2). The
priors for µ and σ are approximately independent so that p(µ, σ)
is approximately equal to p(µ)p(σ), where the prior for σ
and µ are assumed to be p(µ) is proportional constant and
p(σ) = 1/σ. Hence the posterior distribution can be shown
to be

p(µ, σ|x) = σ−(n+1)exp
{
− 1

2σ2

[
(n− 1)s2 + n(µ− x̄)2

]
}
}
,

(11)
where

s2 =

n∑
i=1

(xi − µ)2

n
(12)

and

x̄ =
1

n

n∑
i=1

xi. (13)

The conditional posterior distribution for µ and σ can then be
described as

p(µ|σ,x) =
2πσ2

n
exp

{
− n

2σ2
(µ− x̄)2

}
, (14)

which is a normal distribution with mean x̄ and variance σ2/n,
and

p(σ|µ,x) ∝ σ−(n+1)exp
{
−ns

2

2σ2

}
. (15)

It is shown in (Box & Tiao, 1973) that ns2/σ2 has chi-square
(χ2) distribution with n degrees of freedom. Thus a Gibbs
sampling (see for example (MacKay, 2003)) can easily be
performed to obtain parameters µ and σ from their condi-
tional posterior distributions. Similar to Bayesian inference
of Johnson distribution described in the previous section, 2000
samples of the parameters are obtained after 4000 burn-in it-
erations period. The 2000 samples of the parameters are then
used to determine thresholds based on Normal distribution.
The 2.5 and 97.5 percentiles of the thresholds are determined
to provide lower and upper bounds.

6.2.3. Weibull Distribution

In this work three-parameter Weibull distribution is used with
PDF as follows

p(x) =
β

η

(
x− τ
η

)(β−1)

exp

{
−
(
x− τ
η

)β}
, (16)

where β is the shape parameter, η is the scale parameter, and τ
is the location parameter. Bayesian inference of Weibull dis-
tribution in this study follows some of the work by (Green,
Roesch Jr., Smith, & Strawderman, 1994). Parameters β and
η are constrained to be positive, and thus Jeffrey’s prior for
positive parameters are adopted, where p(β) ∝ (1/β) and
p(η) ∝ (1/η). Shape and scale parameters are usually more
detrimental in setting alarm thresholds than the location pa-
rameter τ . Thus τ in this study is not inferred (constant at the
estimated value of the data available). The posterior distribu-
tion is shown to be

p(β, η|x, µ) ∝

β(n−1)

η(n+1)

{
n∏
i=1

(
xi − τ
η

)(β−1)
}

exp

{
−

n∑
i=1

(
xi − τ
η

)β}
.

(17)

Similar to Bayesian inference of Johnson distribution, the
posterior distribution in equation 17 is sampled using ran-
dom walk Metropolis method with 4000 burn-in iterations
period and then obtaining 2000 samples. The scale param-
eters of the proposal distribution (a bivariate Normal distri-
bution) are adjusted so that acceptance rate between 30% to
50% can be achieved. The 2000 samples from Bayesian in-
ference are then used to determine alarm thresholds based on
Weibull distribution, and the 2.5 and 97.5 percentiles of the
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Table 11. HFBP false alarm rates (%) at 2 OPCs when upper
thresholds from Bayesian inference are used.

Number of data Underlying Distribution OPC 1 OPC 2

720
Johnson 0.00 0.00
Normal 0.59 0.71
Weibull 0.26 0.00

360
Johnson 0.00 0.00
Normal 0.36 0.51
Weibull 0.00 0.00

180
Johnson 0.00 0.00
Normal 0.26 0.00
Weibull 0.00 0.00

90
Johnson 0.00 5.41
Normal 0.29 2.75
Weibull 0.00 0.41

Table 12. HFBP false alarm rates (%) at 2 OPCs when lower
thresholds from Bayesian inference are used.

Number of data Underlying Distribution OPC 1 OPC 2

720
Johnson 99.7 97.5
Normal 0.71 1.38
Weibull 0.55 0.15

360
Johnson 99.7 96.0
Normal 0.65 0.77
Weibull 0.29 0.00

180
Johnson 99.7 93.0
Normal 0.65 0.51
Weibull 0.36 0.00

90
Johnson 0.13 15.5
Normal 0.85 5.10
Weibull 0.52 0.32

thresholds are determined to provide lower and upper bounds.

The false alarm rates are computed again as the lower and
upper bound thresholds are used on the whole data available.
The results are presented in tables 11 to 14. Comparing the
results from Bayesian inference and from Bootstrap method,
the false alarm rates are more or less in the same order of
magnitude with the exception of thresholds based on John-
son distribution. Using lower thresholds of HFBP based on
Johnson distribution result in significantly higher false alarm
rates. This is because the lower bounds are very low as can
be seen in figure 14.

Figures 14 and 15 show the lower and upper bounds of the
thresholds based on Bayesian inference of Johnson distribu-
tion using 90, 180, 360, and 720 data. In comparison to
results from bootstrap, the bounds for HFBP are generally
larger, with the lower bounds are generally much lower. These
bounds results in much higher false alarm rates if they are
used. Only in OPC 1 where HFBP thresholds from 360 and
720 data have much higher upper bounds than the bounds
from bootstrap. These results could be due to the choice of
prior, which is subject to further study. On the contrary, the
bounds for ISO RMS are generally much tighter than bounds
from bootstrap.

Table 13. ISO RMS false alarm rates (%) at 2 OPCs when
upper thresholds from Bayesian inference are used.

Number of data Underlying Distribution OPC 1 OPC 2

720
Johnson 0.00 0.00
Normal 0.00 0.00
Weibull 0.00 0.00

360
Johnson 0.59 0.00
Normal 0.00 0.00
Weibull 0.00 0.00

180
Johnson 1.50 0.00
Normal 0.00 0.00
Weibull 0.00 0.00

90
Johnson 0.59 1.07
Normal 0.00 0.00
Weibull 0.00 0.00

Table 14. ISO RMS false alarm rates (%) at 2 OPCs when
lower thresholds from Bayesian inference are used.

Number of data Underlying Distribution OPC 1 OPC 2

720
Johnson 10.2 0.10
Normal 0.00 0.20
Weibull 0.00 0.00

360
Johnson 10.6 0.00
Normal 0.00 0.35
Weibull 0.00 0.10

180
Johnson 8.80 0.00
Normal 0.00 0.31
Weibull 0.00 0.00

90
Johnson 1.04 1.32
Normal 0.00 0.51
Weibull 0.00 0.10

The lower and upper bounds of thresholds based on Weibull
distribution are also shown in figures 16 and 17. Compar-
ing the bounds from Bayesian inference and from bootstrap
method, they are in the same order of magnitude. However,
bounds from Bayesian inference of Weibull distribution are
slightly tighter than bounds from bootstrap. These results are
encouraging to prevent setting thresholds too high.

Using Bayesian inference to quantify uncertainties in setting
alarm thresholds is actually attractive when large quantity of
historical data are available because the method facilitates
learning. However there are still some challenges that need
to be solved before it can be used in real industrial applica-
tions, such as having a faster/efficient method to sample the
posterior distribution. In case of using an MCMC method,
there is not yet a well established method to determine how
many burn-in iterations are needed that guarantees conver-
gence. Convergence could potentially be achieved after a
long burn-in period that requires long computational time.
In regards to using Johnson distribution, proper selection of
the priors still needs further investigation so that sampling
the posterior distribution is computationally efficient, and the
whole 4 parameters could possibly be inferred.

In the actual wind turbine condition monitoring at B&K Vi-
bro, an alarm is not always generated when a measurement
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Figure 14. Confidence bounds of HFBP thresholds from
Bayesian inference of various sampled data in 2 power
classes. Thresholds are based on Johnson distribution.

crosses a threshold in any power classes. A more complex
system is implemented to prevent false alarms, see for exam-
ple the work by (Marhadi & Hilmisson, 2013). This paper
simply presents a general framework to set alarm thresholds
automatically with possible industrial applications in mind,
and how the uncertainties in setting the thresholds can be
quantified when only limited data are available. The method
could be useful not only in wind turbine applications, but also
in other machineries.

7. CONCLUSION

A method to set alarm thresholds automatically based on fit-
ting different distributions to vibration data has been presented.
In particular, using Johnson distribution eliminates the need
to test various distributions that could fit the collected data
most appropriately. Thus it can prevent choosing incorrect
distribution that may result in setting sub-optimal thresholds.
Results in this study show that low false alarm rate can be
achieved by utilizing Johnson distribution. The implementa-
tion is simple and straightforward, which should also be ap-
plicable in machineries other than wind turbines.

The problem of having limited data in wind turbines that may
not represent the whole or most operating conditions of a tur-
bine has been investigated based on bootstrap method and
Bayesian inference. Lower and upper bounds of alarm thresh-
olds are obtained using both methods, and the false alarm
rates are investigated when these thresholds are used. These
could provide information where to set the thresholds effec-
tively. Bootstrap is generally simple to implement, while

Figure 15. Confidence bounds of ISO RMS thresholds
from Bayesian inference of various sampled data in 2 power
classes. Thresholds are based on Johnson distribution.

Bayesian inference has more complicated implementation. Re-
sults from both methods are comparable in most cases. How-
ever, initial results in this study suggest that Bayesian infer-
ence could potentially prevent from setting the thresholds too
high once the challenges of its implementation can be over-
come.

Future work may include investigation of the effectiveness of
the method when it is actually implemented to a wide num-
ber of turbines to catch real mechanical faults. Comparison
with other methods or the more established ones could be
made in this way, and the effectiveness of each method can
be validated. Future work may also include finding the most
effective method to estimate Johnson distribution parameters
other than the moment matching method used in this study.
Comparison with more various distributions, such as Gaus-
sian mixture distribution or Rayleigh distribution could also
be made.
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