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ABSTRACT 

In this paper, an ensemble approach is proposed for 

prediction of time series data based on a Support Vector 

Regression (SVR) algorithm with RBF loss function. We 

propose a strategy to build diverse sub-models of the 

ensemble based on the Feature Vector Selection (FVS) 

method of Baudat & Anouar (2003), which decreases the 

computational burden and keeps the generalization 

performance of the model. A simple but effective strategy is 

used to calculate the weights of each data point for different 

sub-models built with RBF-SVR. A real case study on a 

nuclear power production component is presented. 

Comparisons with results given by the best single SVR 

model and a fixed-weights ensemble prove the robustness 

and accuracy of the proposed ensemble approach. 

1. INTRODUCTION 

Combining various data-driven approaches into an ensemble 

has become a popular direction of research in the last 

decades, motivated by the aim of improving the robustness 

and accuracy of the final prediction. The models which 

compose the ensemble are called sub-models. Various 

strategies have been proposed for building sub-models, 

including error-correcting output coding, Bagging, 

Adaboost, and Boosting (Kim, Pang, Je, Kim & Bang, 2003; 

Hu, Youn, Wang & Yoon, 2012). Similarly, several 

methods for aggregating the prediction results of the sub-

models have been proposed, such as majority vote, weighted 

vote, Borda count, Bayes and probabilistic schemes, etc 

(Polikar, 2006).  

Support Vector Machine (SVM) is a popular and promising 

data-driven method for prognostics. SVM-based ensemble 

models have been proposed for classification. Chen, Wang 

and Zuylen (2009) use ensemble of SVMs to detect traffic 

incidents. The sub-models use different kernel functions and 

parameters, and their outputs are combined to improve the 

classification performance. Acar and Rais-Rohami (2009) 

treat the general weighted-sum formulation of an ensemble 

as an optimization problem and, then, minimize an error 

metric to select the best weights for the sub-models of 

SVM. Kurram and Kwon (2013) try to achieve an optimal 

sparse combination of the sub-model results by jointly 

optimizing the separating hyperplane obtained by each SVM 

classifier and the corresponding weights of the sub-

decisions. Valentini and Dietterich (2003) prove that an 

ensemble of SVMs employing bagging of low-bias 

algorithms improves the generalization power of the 

procedure with respect to single SVM. The ensemble of 

SVMs built with bagging and boosting can greatly 

outperform a single SVM in terms of classification accuracy 

(Kim et al., 2003). 

In this paper, we focus on the combination of multiple SVR 

sub-models (Liu, Seraoui, Vitelli & Zio, 2012) with Radial 

Basis loss Function (RBF). The case study considered to 

present the application of the method concerns the 

monitoring of the leak flow in the first seal of the Reactor 
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Coolant Pump (RCP) of a Nuclear Power Plant (NPP), using 

real data collected from sensors.  

The high complexity of the NPP system and the catastrophic 

economic and environmental loss under accidents make the 

monitoring for failure prediction very important in NPP 

accident management (Lee, 1998; Hallbert and Thomas, 

2014). RCP pumps the coolant into the reactor to transfer 

the heat to steam generator and to protect the nuclear 

material (In Soo and Kim, 2000). With large amount of 

leakage from RCP, NPP has the risk of melting down. Thus, 

it is critical to predict the leakage in the future. The 

prediction can be divided into long-term (months) and short-

term (hours) prediction. Long-term prediction provides 

future information for the maintenance scheduling, while 

short-term prediction helps for emergency actions. 

An ensemble of SVRs with RBF and dynamic weighting 

strategy is proposed in this paper. The elements of novelty 

of the method here proposed are various.  

In the previously cited literature on ensembles of SVMs, the 

weights of the sub-models in the ensemble are calculated 

during training and kept fixed for testing. However, a sub-

model may perform well only on a part of the dataset. 

Hence, the weights need to be updated considering the 

different datasets involved in the case study, and even 

different input vectors. In Fantoni, Figedy and Racz (1998), 

a dynamic strategy is integrated into a Neuro-Fuzzy Model. 

A dynamic weighting method is also used in Muhlbaier, 

Topalis and Polikar (2009), Yang, Yuan and Liu (2009) and 

Razavi-Far, Baraldi and Zio (2012), for adding new 

classifiers to the ensemble model, but the weights are not 

adjusted to the different input vectors.  

A novel dynamic weighting strategy, based on local fitness 

calculation (Baudat & Anouar, 2003) is proposed in this 

paper.  

To generate diversity in the sub-models, each of them is 

trained on a different dataset. In this respect, one can use 

bagging and boosting with possible overlapping between 

different datasets (Quinlan, 1996). In this work, the strategy 

to form the training dataset of each sub-model is based on 

the angle between different data points in the Reproducing 

Kernel Hilbert Space (RKHS), so as to reduce the 

computational burden.  

Moreover, in order to be able to build ensembles of SVRs 

on very large datasets, FVS is used to select a smaller subset 

of the training data points of each sub-model, again to 

decrease the computational burden.   

All the above novel strategies are tested on the case study 

concerning the prediction of leak flow of the RCP in a NPP. 

The rest of the paper is organized as follows. Section 2 

gives details about the proposed ensemble approach. Section 

3 illustrates the case study, the available data and how the 

proposed ensemble model is constructed. Section 4 presents 

the experimental results from the SVR ensemble models and 

describes the comparison with a single SVR model and a 

fixed weighted ensemble. Finally, conclusions with some 

considerations are drawn in Section 5. 

2. DYNAMIC-WEIGHTED RBF-BASED ENSEMBLE 

The underlying strategy motivating the use of ensemble-

based methods in prediction problems is to benefit from the 

strength of different sub-models by combining their outputs 

to improve the global prediction performance, if compared 

to the results of a single sub-model.  

In this section, we give details about the proposed Dynamic-

Weighted RBF-based Ensemble (named DW-RBF-

Ensemble, in short). 

2.1. Standard Support Vector Regression with RBF and

ε-sensitive loss function 

Suppose a set of training data points (𝒙𝑖 , 𝑦𝑖) , for 𝑖 =
1, 2, … , 𝑇 is available. The construction of an SVR model 

amounts to finding the best estimate function 𝑓(𝒙) = 𝝎𝒙 +
𝑏 of the real underlying function. To this aim, the primal 

quadratic optimization problem is  

Minimize 
1

2
‖𝝎‖2 + 𝐶 ∑ (𝜉𝑖 + 𝜉𝑖

∗)𝑇
𝑖=1                        

Subject to {

𝑦𝑖 − 𝝎𝒙𝑖 − 𝑏 ≤ 𝜀 + 𝜉𝑖

𝝎𝒙𝒊 + 𝑏 − 𝑦𝑖 ≤ 𝜀 + 𝜉𝑖
∗

𝜉𝑖 , 𝜉𝑖
∗ ≥ 0

,                ⑴ 

where 𝜉𝑖 and 𝜉𝑖
∗ are slack variables. The dual formulation of 

Eq. (1) is  

𝐿 =
1

2
‖𝝎‖2 + 𝐶 ∑ (𝜉𝑖 + 𝜉𝑖

∗)𝑇
𝑖=1 − ∑ 𝛼𝑖(𝜀 + 𝜉𝑖 − 𝑦𝑖 +𝑇

𝑖=1

𝝎𝒙𝒊 + 𝑏) − ∑ 𝛼𝑖
∗(𝜀 + 𝜉𝑖

∗ + 𝑦𝑖 − 𝝎𝒙𝒊 − 𝑏)𝑇
𝑖=1 −

∑ (𝜂𝑖𝜉𝑖 + 𝜂𝑖
∗𝜉𝑖

∗)𝑇
𝑖=1 ,                           ⑵ 

where 𝛼𝑖 , 𝛼𝑖
∗ , 𝜂𝑖 , 𝜂𝑖

∗ ≥ 0 are the Lagrange multipliers. By 

calculating the partial derivative of 𝐿  with respect to the 

primal variable 𝝎, the best estimate function can be written 

as  

𝑓(𝒙) = ∑ (𝛼𝑖 − 𝛼𝑖
∗) ∗ 𝑘(𝒙𝑖 , 𝒙)𝑇

𝑖=1 + 𝑏.              ⑶ 

The values of 𝛼𝑖  and 𝛼𝑖
∗  can be calculated by solving the 

Kuhn-Tucker conditions related to Eq. (2) 

The kernel function 𝑘(𝒙𝑖 , 𝒙) in Eq. (3) enables the mapping 

of an input vector in a higher-dimensional RKHS. By 

calculating pairwise inner products between mapped 

samples, the kernel functions return the similarity between 

different samples. In fact, only kernels that fulfill Mercer’s 

Theorem (i.e. the kernel matrix must be positive semi-

definite) are valid ones and, thus, can be used in SVM 

(Minh, Niyogi and Yang, 2006). The most common kernel 

functions include the linear kernel function, the polynomial 

kernel function and the RBF. In this paper, the ensemble 

approach is proposed to be built based on SVR with RBF. 
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For RBF, 𝑘(𝒙𝑖 , 𝒙) = 𝑒
−

‖𝒙𝑖−𝒙‖
2

2𝜎2  and a good property for RBF 

is that for each data point 𝒙, 𝑘(𝒙, 𝒙) = 1, i.e., the data point 

in RKHS is a unit vector. The difference between different 

data points in RKHS is only the angle between them.  

2.2. Feature Vector Selection 

In Baudat and Anouar (2003), the authors propose a Feature 

Vector Selection (FVS) method to select a subset of the 

training data points (i.e. Feature Vectors (FVs)), which can 

represent the dimension of the whole dataset in RKHS. The 

other data points can all be expressed as a linear 

combination of the selected FVs. 

 

 

Fig. 1.  Pseudo-code for FVS. 

Suppose (𝒙𝑖 , 𝑦𝑖) , for 𝑖 = 1, 2, … , 𝑇  are the training data 

points and the mapping φ(𝒙) maps each input vector 𝒙𝑖 into 

RKHS with the mapping 𝝋𝑖, for 𝑖 = 1, 2, … , 𝑇. The kernel 

𝑘𝑖,𝑗 = 𝑘(𝒙𝑖 , 𝒙𝑗)  is the inner product between 𝝋𝑖  and 𝝋𝑗 . 

Suppose that the FVs selected from the training dataset are 

{ 𝒙1, 𝒙2, … , 𝒙𝑁 } and the corresponding mapping is S = 

{𝝋1, 𝝋2, … , 𝝋𝑁}: the process for selecting the new next FV 

is to calculate {𝑎𝑛𝑒𝑤,1, 𝑎𝑛𝑒𝑤,2, … , 𝑎𝑛𝑒𝑤,𝑇}  which gives the 

minimum of Eq. (4), with  𝝋𝑛𝑒𝑤 being the mapping of the 

new input vector 𝒙𝑛𝑒𝑤: 

𝛿𝑛𝑒𝑤 =  
‖𝝋𝑛𝑒𝑤−∑ 𝑎𝑛𝑒𝑤,𝑖𝝋𝑖

𝐿
𝑖=1 ‖

2

‖𝝋𝑛𝑒𝑤‖2 .                                 ⑷ 

The minimum of 𝛿𝑛𝑒𝑤  can be expressed with an inner 

product, as shown in Eq. (5): 

min 𝛿𝑛𝑒𝑤 = 1 −
𝐾𝑆,𝑛𝑒𝑤

𝑡 𝐾𝑆,𝑆
−1𝐾𝑆,𝑛𝑒𝑤

𝑘𝑛𝑒𝑤,𝑛𝑒𝑤
,                      ⑸ 

where 𝐾𝑆,𝑆 = (𝑘𝑖,𝑗), 𝑖, 𝑗 = 1,2, … , 𝑁 is the kernel matrix of S 

and 𝐾𝑆,𝑛𝑒𝑤 = (𝑘𝑖,𝑁), 𝑖 = 1,2, … , 𝑁 is the vector of the inner 

product between 𝝋𝑛𝑒𝑤 . The expression  𝐽𝑆,𝑛𝑒𝑤 =
𝐾𝑆,𝑛𝑒𝑤

𝑡 𝐾𝑆,𝑆
−1𝐾𝑆,𝑛𝑒𝑤

𝑘𝑛𝑒𝑤,𝑛𝑒𝑤
 is the local fitness of 𝒙𝑛𝑒𝑤  with respect to 

the present feature space S. If 1 − 𝐽𝑆,𝑛𝑒𝑤  is zero, the new 

data point is not a new FV; otherwise, it is a new FV and is 

added to S. With the global fitness defined as in Eq. (6), the 

FVS procedure proceeds to select a subset of training data 

points with minimal size, which gives zero global fitness. 

The details for FVS is shown in Figure 1. 

𝐽𝑺 = ∑ 𝐽𝑺,𝑖
𝑇
𝑖=1                                     ⑹ 

2.3. Ensemble-Based Approach 

An ensemble-based approach is obtained by training diverse 

sub-models and, then, combining their results following 

given strategies. It can be proven that this can lead to 

superior performance with respect to a single model 

approach (Bauer & Kohavi, 1999). A simple paradigm of a 

typical ensemble-based approach with N sub-models is 

shown in Figure 2. Ensemble models are built on three key 

components: a strategy to build diverse models; a strategy to 

construct accurate sub-models; a strategy to combine the 

outputs of the sub-models in a way such that the correct 

predictions are weighted more than the incorrect ones.  

In the DW-RBF-Ensemble that we are proposing, the sub-

models are built using a modified SVR model with RBF.  

 

Fig. 2.  Paradigm of a typical ensemble method. 

A dynamic weighted-sum strategy is proposed to combine 

the outputs of the sub-models. As mentioned in the 

Introduction, different methods can be applied to calculate 

the weights for the sub-models. In the methods that can be 

found in the literature, the weights are normally fixed after 
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the ensemble model is built. They are only updated when 

new sub-models are added to the ensemble or when some 

sub-models are changed. In some real applications with fast 

changing environmental and operational conditions, the 

performance of the ensemble model may degrade rapidly. 

This degradation is not always caused by the low robustness 

or capability to adapt of the ensemble model, but can be due 

to the fact that the best sub-models are not given proper 

weights.  

In this paper, a dynamic weighting strategy is thus 

proposed. The weights are no longer constant during the 

prediction, but dependent on the input vector. They are 

recalculated each time a new input vector arrives. Inspired 

by the work of Baudat and Anouar (2003) and considering 

the characteristics of SVR, a local fitness calculation is 

implemented in this paper to calculate the weights of the 

different sub-models for each input vector. 

 

 

Fig. 3 Pseudo-code of angle-clustering algorithm. 

2.3.1. Sub-datasets determination 

Clustering methods are widely used in ensemble approaches 

for determining the sub-datasets for different sub-models. 

In this paper, SVR models are trained with RBF. The 

difference between different data points in RKHS is only the 

angle between them, as the norm of all data points in RKHS 

is one. Thus, we can use the angular-clustering algorithm to 

divide the whole training dataset into several sub-datasets. 

The pseudo-code is shown in Figure 3. As kernel function, 

RBF is the inner product of two vectors in RKHS and the 

angle between them can be expressed as Eq. (7) in the 

pseudo-code of Figure 3. 

2.3.2. Train a RBF-SVR sub-model 

With the angle-clustering method, the training dataset is 

divided into several clusters. But in the DW-RBF-Ensemble 

method, the data points in each cluster are not used directly 

to train a RBF-SVR. FVS is firstly used to select the FVs in 

each cluster and, then, the SVR model is trained on these 

selected FVs, in order to decrease the computational burden. 

The procedures for training a SVR model with FVs are not 

the same as shown in Sub-Section 2.1, as the estimate 

function in Eq. (2) is no longer a kernel expansion on all the 

training data points in one cluster, but only on the selected 

FVs.  

Suppose that for the j-th cluster, the training data points are 

(𝒙𝑖 , 𝑦𝑖), for 𝑖 = 1, 2, … , 𝑇𝑗  and the FVs selected by FVS are 

(𝒙𝑖 , 𝑦𝑖), for 𝑖 = 1, 2, … ,  𝑁𝑗 ; the estimate function of SVR 

for the i-th cluster is given in Eq. (8): 

𝑓(𝒙) = ∑ (𝛼𝑖 − 𝛼𝑖
∗) ∗ 𝑘(𝒙𝑖 , 𝒙)

𝑁𝑗

𝑖=1
+ 𝑏.              ⑻ 

In order to avoid the overfitting problem, the optimization 

still aims at finding the minimum of the objective function 

in Eq. (1) on all the training data points in the cluster. Thus, 

by replacing 𝝎𝒙𝒊 + 𝑏  in Eq. (2) with ∑ (𝛼𝑘 −  𝛼𝑘
∗ ) ∗

𝑁𝑗

𝑘=1

𝑘(𝒙𝑘 , 𝒙𝒊) + 𝑏 , we can have the new, dual formulation of 

SVR. Classical methods can be used to estimate the 

unknowns in Eq. (8). 

Such a process can efficiently decrease the risk of 

overfitting and guarantee the generalization performance of 

the sub-models. 

2.3.3. Weights Calculation 

In Section 2.2, FVS defines global and local criteria to 

characterize the feature space. The proposed local fitness 

can describe the linearity between the mapping of a new 

input vector and the mapping of all the Feature Vectors 

(FVs) of the model: if a linear combination of the mapping 

of the FVs can better approach the mapping of the new input 

vector, i.e. 1 − 𝐽𝑆,𝑛𝑒𝑤 ≈ 0  the model gives better 

approximation of the output of the new data point; 

otherwise, i.e. 1 − 𝐽𝑆,𝑛𝑒𝑤 ≈ 1, the model performs worse for 

this data point. Thus local fitness can be implemented to 

derive the weight of each sub-model for each input vector.  

With Eq. (5), for a new coming data point at time t, we can 

calculate the local fitness 𝐽𝑖(𝑡) with respect to the FVs of the 

i-th sub-model. And the weight of the i-th sub-model for 

this data point is calculated as  

𝜔𝑖(𝑡) =
1/(1−𝐽𝑖(𝑡)+𝜏)

∑ 1/(1−𝐽𝑗(𝑡)+𝜏)𝑁
𝑗=1

,                                      ⑼ 
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where τ is a very small value so that Eq. (9) works in the 

case 𝐽𝑖(𝑡) = 1. 

2.3.4. Combining Sub-Models Outputs 

Figure 4 shows the paradigm of DW-RBF-Ensemble, where 

𝑁 is the number of sub-models, 𝒙(𝑡) is a new input vector 

arriving at time 𝑡, 𝑤𝑗(𝑡) is the weight assigned to the j-th 

sub-model for the new input vector, �̂�𝑗(𝑡) is the predicted 

value for the j-th sub-model given by RBF-SVR and �̂�(𝑡) is 

the final output of the ensemble model. 

 

Fig. 4.  Paradigm of the proposed DW-PSVR-Ensemble. 

We can derive the fact that �̂�(𝑡) =  ∑ 𝜔𝑗(𝑡)�̂�𝑗
𝑁
𝑗=1 (𝑡), if we 

assume sub-models results to be uncorrelated. 

Note that all the sub-models weights and outputs are a 

function of 𝑡, which means that they are all dependent on 

the input vector of the ensemble model. 

3. CASE STUDY DESCRIPTION 

The study considered in this paper concerns the 1-day ahead 

prediction of leak flow from the first seal of the RCP of a 

NPP. RCP is a critical component in NPP, whose function is 

to circulate coolant into the reactor to transport the heat 

produced by nuclear fission to the steam generator. The 

leakage of coolant reduces such heat removal function, 

posing serious safety concerns. Short-term prediction can 

provide warning on a time horizon of hours and the lead 

time for deciding emergency actions. The time horizon of 

one day has been considered appropriate for NPP systems of 

interest, as indicated by the experts involved in this work.  

In this section we describe the time series data and briefly 

recall the data pre-processing steps. We also detail the 

strategies to build the diverse sub-models of the ensemble. 

3.1. Data Description and Pre-Processing 

The data provided correspond to 9 scenarios of leak flow 

from different NPPs. Each scenario contains a time series 

data of the leak flow.  They are named Scenario 1, Scenario 

2, …, Scenario 9 in the following sections of the paper. 

These data are monitored every four hours. As these data are 

time-dependent and recorded within different time windows, 

only scenarios coming from the same NPP have the same 

size. In some of the scenarios, there are missing data points 

and outliers.  

Since the dataset we are going to analyze contains both 

missing data and outliers, we have to deal with both these 

issues. First of all, we must remove anomalous data, since 

their extreme values would affect the results of the analysis. 

Outliers can be detected with reference to some constraints, 

e.g. the limits 𝑥 ̅ ± 3 ∗ 𝜎𝑥 where 𝑥 ̅ is the mean of the data 

points values and 𝜎𝑥 is the standard deviation. These limits 

allow detecting the outliers, selected as those data points 

whose values are larger than 𝑥 ̅ + 3 ∗ 𝜎𝑥  or smaller than 

𝑥 ̅ − 3 ∗ 𝜎𝑥, and subsequently removed. Some observations 

are in order with respect to the adopted procedure: i) In 

nonstationary time series, this outlier detection method 

should be carried out on local data and not on the whole 

scenario. We choose this method, not to delete any values 

which are possible indicators for changing conditions. ii) 

Given that the scenario is known, the strategy of outlier 

selection is chosen considering its overall development 

where there is no sudden changes, and the single values that 

are significantly outside the range of their neighbors are 

considered as outliers. iii) Note that we use those 

constraints, rather than the usual ones based on the median 

and the InterQuartile Range (IQR), to be more conservative 

in the outlier selection, due to the dependence among data 

(Brodsky, Lemmens, Brock-Utne, Vierra & Saidman, 

2002). 

Secondly, we want to reconstruct missing data. A possible 

way to deal with the reconstruction of missing data is local 

polynomial regression fitting (Masry, 1996). This local least 

squares regression technique estimates effectively the values 

of missing data points. Moreover, it can also be used to 

perform the smoothing of the available observations, in 

order to reduce noise. We will, thus, use this technique both 

to reconstruct data where missing, and to obtain a smoother 

and less noisy time series in all remaining time instances. 

All the time series data of all scenarios are, then, normalized 

from 0 to 1. All details on this pre-processing task can be 

found in Liu et al. (2012). 

3.2. Strategies to Build Sub-Models 

We have a time series dataset and we need to decide the best 

number of historical values to be used as inputs. 

Suppose 𝑎(𝑡) represents an instance of the time series data 

of one scenario. For 1-day ahead prediction, the output 𝑦(𝑡) 

is 𝑎(𝑡 + 6), because the signals are monitored every four 

hours. In order to decide the best 𝐻 for selecting the input 

vector 𝒙(𝑡) = (𝑎(𝑡 − 𝐻 + 1), … , 𝑎(𝑡))  most related to the 

output, a partial autocorrelation analysis is carried out, i.e. 

the correlation between the output values at current time and 

different temporal lags is computed. Figure 5 shows the 

results of this analysis on all the scenarios, where the x and y 

axis represent the temporal lag (a multiple of four hours) 
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and the corresponding empirical partial autocorrelation, 

respectively. The bounds of a 95% confidence interval are 

also shown with dashed lines in the Figure. The correlation 

decreases with the lag (although not linearly) and after a lag 

of 17 time steps it is no longer comparable with the values 

observed for lags smaller than 17, i.e. the best choice is 𝐻 =
17. Although the autocorrelation is still high for t = 18 and 

t= 20, the results are not improved on the real case study, 

according to the numerical experiments. The selection of 17 

is already a “conservative” choice: in fact the most 

important values appear to be the first 7 values. 

 

Fig. 5. Partial autocorrelation function with respect to time 

lags (multiples of four hours). Dotted lines are the bounds of 

the 95% confidence interval. 

Then, the training dataset is divided into several sub-

datasets for different sub-models using the angle-clustering 

algorithm described in sub-section 2.3.1. 

3.3. Comparison of DW-RBF-Ensemble with Single SVR 

and Fixed Weights Ensemble 

The ensemble model is expected to give better results than a 

single SVR model. To verify this claim, a comparison 

between a single SVR model and the proposed DW-RBF-

Ensemble is carried out on the considered case study. A 

fixed weights ensemble (Kurram and Kwon, 2013) is also 

taken as a benchmark method to prove the benefit of using a 

dynamic weighting strategy.  

Each time one out of 9 scenarios is chosen as the test dataset 

(named Observed Scenario) and the other 8 scenarios 

(named Reference Scenarios) from the training dataset 

which is used to construct the DW-RBF-Ensemble and the 

Fixed Weights Ensemble (FW-Ensemble). A SVR model is 

also trained on the training dataset for comparison (it is 

named Single SVR to be distinguished from the two 

ensemble models).  

The steps for the comparison are the following: 

1. Train a Single SVR model with all the training dataset. 

2. The training dataset is divided into 6 clusters by the 

angle-clustering algorithm. 

3. Train DW-RBF-Ensemble: FVS select the FVs in each 

cluster and a sub-model is trained on the selected FVs. 

Weights of different sub-models for each data point are 

calculated with Eq. (9). 

4. Train a FW-Ensemble: train a sub-model with all the 

data points in each cluster. The weight for each sub-

model is decided by minimizing the MAE on the 

training dataset. 

5. Calculation of Mean Absolute Error (MAE), Mean 

Relative Error (MRE) of the outputs of DW-RBF-

Ensemble, FW-Ensemble and Single PSVR. 

6. Compare prediction accuracy, computational burden 

and model robustness. 

The results and comparisons among these models are 

presented in the next section. 

4. RESULTS 

In this section, the results from DW-RBF-Ensemble, FW-

Ensemble and Single SVR are compared with respect to 

different aspects.  

Fig. 6. Prediction results of ensembles and Single SVR, for 

the Scenario 1. 

 
Fig. 7. MAE of prediction results of ensembles and Single 

SVR, for all 9 scenarios. 
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Fig. 8. MRE of prediction results of ensembles and Single 

SVR, for all 9 scenarios. 

4.1. Prediction Accuracy  

Figure 6 shows the prediction results of the ensembles 

(DW-RBF-Ensemble and FW-Ensemble) on the first 

scenario. Figures 7 and 8 report the prediction results of 

MAE and MRE obtained, respectively, by DW-RBF-

Ensemble, FW-Ensemble and Single SVR. It is clear that 

DW-RBF-Ensemble gives best results in this case study, i.e. 

on average, the MAE and MAE values are smaller than for 

Single SVR and FW-Ensemble. 

The bad results of the Single SVR are caused by the fact 

that the predictions are highly dependent on the training 

dataset. Moreover, the hyperparameters optimization is also 

critical to the performance of SVR. Well-chosen 

hyperparameters values can improve the performance of the 

SVR. However, the optimization method may converge to a 

local extreme, which results into a good performance at the 

beginning but bad at the end of the scenario. The ensemble 

approach can avoid such problem by combining the results 

from different sub-models.  

Fig. 9. Weights of different sub-models of DW-RBF-Ensemble for test data points of the Scenario 9. 

 

These unstable results from the Single SVR prove the 

necessity of the ensemble approach for avoiding the limits 

of Single SVR in attaining the desired accuracy and 

robustness of the model.  

In this case study, FW-Ensemble gives the worst results as 

the weights are fixed after training. Somewhat surprisingly, 

it even gives results worse than the single SVR but that is 

due to the fact that with the partitioning by angle clustering 

for the training of the ensemble sub-models, it turns out that 

for some data points, the best sub-model is not given the 

most important weight. In this case, overlapping datasets for 

sub-models training would likely improve the FW-ensemble 

prediction performance. Figure 9 above shows the weights 

for different sub-models of DW-RBF-Ensemble in the case 

of selecting the ninth scenario as the Observed Scenario. It 

is clear that the weights of the sub-models change frequently 

to adapt to the ongoing data points.  

The prediction results from DW-RBF-Ensemble confirm the 

practicability and efficiency of the proposed approach. 
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4.2. Robustness 

From Figures 7 and 8, it is seen that the DW-RBF-Ensemble 

gives more stable prediction results compared to the Single 

SVR model and FW Ensemble. The Single SVR model 

cannot properly handle the noise in the data and it is 

difficult to find the global optimal values of the 

hyperparmeters. The weighted-sum ensemble models can 

decrease the influence of the noise by combining the 

prediction outputs of the sub-models. But the fixed 

weighting strategy cannot adapt to the changing 

environment and the weights of the sub-models are not 

changed adaptively. This is one reason for which DW-RBF-

Ensemble model can give stable results, i.e. the DW-RBF-

Ensemble model is more robust compared to the Single 

SVR and FW-Ensemble. 

4.3. Computational complexity 

Suppose the size of the training dataset is 𝑇 ; then, the 

computational complexities of the Single SVR for training 

and testing are 𝑇3  and 𝑇 , respectively. For very large 

datasets, the computational burden of the Single SVR model 

is very high and sometimes unacceptable. By dividing the 

training dataset into different sub-datasets, the total 

computational burden is decreased as 𝑇3 > 𝑇1
3 + ⋯ +

𝑇𝑁
3, with 𝑇1 + ⋯ + 𝑇𝑁 = 𝑇 . With FVS, the size of the 

training dataset is further decreased for training and testing. 

Thus, the computational complexity of the DW-RBF-

Ensemble approach is much smaller than the Single SVR 

trained on all the training dataset and the FW-Ensemble. 

5. CONCLUSIONS 

In this paper, we have proposed an innovative dynamic-

weighted RBF-based ensemble approach for short-term 

prediction (1-day ahead prediction) with time series data. 

An angular-clustering algorithm is used to divide the 

training dataset into sub-datasets and FVS is used to 

decrease the size of the training data points by selecting 

only the representative data points in RKHS. Local fitness 

calculation is integrated to calculate the specific weights of 

the sub-models of the ensemble for each new input vector, 

without bringing too much computational burden.  

The proposed ensemble approach has been shown to 

perform well in a real case study of signals recorded on a 

NPP component. Compared to the single SVR model and 

FW Ensemble, the proposed ensemble model outperforms 

them on prediction accuracy, computational burden, 

robustness and adaptability. 

Further research needs to be carried out for optimizing the 

numbers of sub-models and the tuning of the 

hyperparameters. From the application point of view, the 

further developments of the method for long-term prediction 

will be investigated, for the purpose of remaining useful life 

prediction, i.e. prognostics. 
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