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ABSTRACT

To monitor wind turbine health, wind farm operators can take
advantage of the historical SCADA (supervisory control and
data acquisition) data to generate the wake pattern beforehand
for each wind turbine, and then decide in real time whether
observed reduction in power generation is due to wake or true
faults. In our earlier efforts, we proposed an effective wake
pattern modeling approach based on edge detector using Lin-
ear Prediction (LP) with entropy-thresholding, and smoothing
using Empirical Mode Decomposition (EMD) on the wind
speed difference plots. In this paper, we compare the LP
based edge detector with two other predominant edge detec-
tors, Sobel and Canny edge detectors, to quantitatively justify
the appropriateness and effectiveness of the LP based edge
detector in wind turbine wake pattern analysis. We generate
a fused wake model for the turbine of interest with multiple
neighboring turbines, and then analyze the wake effect on tur-
bine power generation. With a fused wake pattern, we do not
need to identify the individual source of wake any more. We
expect that wakes cause reduced wind speed and hence re-
duced power generation, but we have also observed from the
SCADA data that the wind turbines in wake zones tend to
overreact when the wind speed is not yet close to the high-
wind-shut-down threshold, which causes further power gen-
eration loss.

1. INTRODUCTION

With the rapid development of the wind energy industry, the
modern wind farms consist of hundreds of wind turbines.
The effect of wake (Burton et al., 2001) is that, when a tur-

Yanjun Yan et al. This is an open-access article distributed under the terms of
the Creative Commons Attribution 3.0 United States License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the
original author and source are credited.

bine extracts energy from the wind, it leaves behind a wake
characterized by reduced wind speeds and increased levels of
turbulence. Since wake adversely affects power generation,
when a wind farm is being designed, the wind map informa-
tion will be used to simulate the wake propagation for various
configurations of wind turbines. The optimal locationing of
the wind turbines should enable the turbines to generate the
most power in some windy locations while incurring the least
amount of wake. However, the co-existence of the large num-
ber of turbines complicates the air dynamics, and the practical
constraints (such as property ownerships, road building capa-
bilities to transport and build the wind turbines) restrict where
the wind turbines can be built. As a result, wake effect is un-
avoidable at a certain wind direction for a certain turbine, al-
though the likelihood is supposed to be minimized by proper
wind farm planning. When wake happens, the power gener-
ation will be hampered. However, once the wind changes its
direction and the downwind turbine is no longer in the wake
region, the power generation will return to normal. There-
fore, wake is not a fault of the wind turbine in itself, because
the wind turbine can return to its full operational capacity as
soon as it is no longer in wakes. Of course, while wake hap-
pens, the air turbulence will stress the wind turbine more than
normal, which may lead to potential faults, but it is a grad-
ual process, in a similar time scale as other wear and tear ef-
fects. When we observe reduced power generation, we need
to identify the wake effect to separate such temporary power
reduction from true faults.

There have been many efforts to model wake propagation
across the wind farm, mostly for wind farm design purposes
(Ainslie, 1988; Quarton & Ainslie, 1990; Hassan, 1992; Wu
& Port-Agel, 2011; Nilsson, 2012). Such models are more
accurate over an averaging of 30 degree bins than across 5
degree bins or 10 degree bins (Beaucage et al., 2012), be-
cause the wake effect in a wider angular range may cancel
out to yield a better overall power prediction accuracy. Once
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the wind farms are built, the wake effects can be measured
by sodar (Barthelmie et al., 2006), lidar (Lang & McKeogh,
2011), or remote sensing (Clive et al., 2012), in the entire at-
mosphere of the wind farm. Arthelmie et al. (Barthelmie et
al., 2006) compared several state-of-the-art theoretical wake
models with the sodar measurements to discover that the spread
away from the wake model predictions is considerable even
for relatively simple offshore single wake cases. Recently,
Philippe Beaucag et al. proposed the Deep-Array Wake Model
(DAWM) that agrees with the real data better than other mod-
els (such as Park (Jensen), Eddy Viscosity (Ainslie), and Com-
putational Fluid Dynamics (CFD) models) for the offshore
wind farms (Beaucage et al., 2012). For onshore applications,
however, a better wake model is still of great interest in the
wind energy community, particularly when the wake effect is
caused by multiple sources and complex terrains other than
the sea surface.

Once the wind turbines are built and the wind farm is estab-
lished, the main interest in wake analysis is for operational
monitoring purpose. However, the models mentioned in the
previous paragraph are developed based on the physics of
air dynamics, often under simplified assumptions, and they
can not provide sufficiently fine resolution (Beaucage et al.,
2012). Meanwhile, the models mentioned in the previous
paragraph aim at estimating the entire wind farm’s power
generation to help the investors decide whether they want to
build the wind farm or not. Once the wind farm is built, the
wake models should aim at estimating the individual wind
turbine’s power generation to help monitor the wind turbine’s
health and repair it in a timely fashion, if needed. A wake
model using SCADA data is discussed in this paper, which
provides an operational model of wake effects for each tur-
bine of interest on the wind farm. Using the same framework
but individual data sets collected from each wind turbine, the
generated wind pattern is customized for each wind turbine.
This procedure is automatic and adaptive, which is desirable
when handling a large number of wind turbines.

Yan et al. (Yan et al., 2009) proposed to model wake phe-
nomena using SCADA data, where the major wake patterns
were segmented using morphological imaging operators (di-
lation and erosion) to automate the wake pattern identifica-
tion. Then on the wake patterns, a threshold based deci-
sion strategy was implemented to determine the existence of
wakes. However, the morphological operators were restricted
by the structuring element’s shape and size, and the bound-
ary detected by the morphological operators could be im-
proved. Meanwhile, the threshold based approach needs a
priori knowledge on how much the wake effect would influ-
ence the wind speed significantly, and such knowledge might
not apply to different terrains. These issues were addressed
in a recent paper (Yan & Zhang, 2014), where a solution of
multiple steps was proposed: 1. In the wind speed difference
versus wind direction scatter plot, the data points within the

wake pattern might still be unconnected, and hence a moving
window based intensity map was used to connect such sparse
data points. This intensity map was finer and more accurate
than using morphological operators in (Yan et al., 2009). 2.
The “valleys” in the wake data represented the wake region’s
width and severity. An edge detector was used to capture
the characteristic pattern of the “valley”, based on the rel-
ative depth calculated from the majority of the data, which
was more adaptive than the threshold-based decision maker
in (Yan et al., 2009). 3. A novel edge detector using Linear
Prediction and Entropy Thresholding was used. The analysis
in (Yan & Zhang, 2014) was qualitative without comprehen-
sive comparison with other well-known edge detectors.

Therefore, the contributions of this paper include: 1. It presents
a comparison of the LP edge detector with Canny edge detec-
tor and Sobel edge detector in the framework of wake pattern
modeling. 2. It provides a comprehensive quantitative eval-
uation of all these approaches. 3. It includes discussions on
the observations in wake pattern analysis and interpretations
of the observations in each wake zone.

The rest of the paper is organized as follows. The previous
work on wake pattern extraction is briefly explained in Sec-
tion 2. The LP edge detector in this wake modeling frame-
work is compared with other edge detectors in Section 3,
where the properties of each approach are discussed. Sec-
tion 4 demonstrates the wake pattern fusion of multiple neigh-
boring turbines. Section 5 presents a metric to compare the
three approaches. Based on the best wake pattern, we parti-
tion the data based on whether there is wake or not in Sec-
tion 6, and interpret the data in Section 7. This paper is con-
cluded in Section 8 with some future research areas identified.

2. WAKE REPRESENTATION AND INFORMATION EXTRAC-
TION

In wind turbine’s operation, wind speed measurement is cru-
cial, because wind speed is the input to the wind turbine’s
control system, and the wind is the energy source that deter-
mines how much power can be generated.

Figure 1. Compass coordinate to define the wind direction.

Wind direction is defined in the compass coordinate (US Dept
of Commerce et al., 2002), as shown in Figure 1. In the wake
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pattern, the x axis is the wind direction defined by Figure 1,
the y axis is the normalized wind speed difference (Yan et al.,
2009; Yan & Zhang, 2014) defined by

wsd =
ws1 − ws2

(ws1 + ws2)/2
= 2− 4

ws1/ws2 + 1
, (1)

where ws1 is the wind speed of the 1st turbine (let say X),
and ws2 is that of the 2nd turbine (let say Y ). The theoreti-
cal data range of wsd is −2 to 2, but actual data range rarely
goes beyond −1 or 1. In wake analysis, we only care about
the negativewsd value when the current turbine is in the wake
of another turbine or obstruction , because the positive wsd
value, when X blocks the wind to Y , is reflected in Y ’s wake
pattern, and hence does not matter in X’s wake analysis. The
prominent features in this wake representation are the val-
ley’s width (wake angular span) and depth (wake intensity).
With hundreds of turbines on the wind farm, an automated
procedure of wake pattern analysis is desirable, where image
processing is a handy tool to automate this procedure. The
steps in this image processing procedure consist of intensity
map generation, edge detection, envelope extraction, and en-
velope smoothing, to help estimate valley width and depth.

2.1. Intensity Map

Yan et al. proposed morphological imaging operators to seg-
ment the majority of the data (Yan et al., 2009), but the pre-
cision was limited by the shape and size of the structuring
elements. To improve upon that approach and inspired by the
fact that the data points were still sparse in the wake region
(although much denser than the region with outliers), Yan and
Zhang proposed the intensity map, a moving window based
data intensity measure (Yan & Zhang, 2014).

2.2. LP Based Edge Detection Method

Linear prediction (LP) uses a linear model to predict future
values of a discrete time signal using past and present values
(Makhoul, 1975), while minimizing the the error between the
estimated value and the real value. In images, however, edges
can be viewed as discontinuities in the given 2-D signal, and
large errors in the estimated image represents the edge in-
formation of that image (Zhang & Punch, 2012). After ap-
plying the LP edge detection to an image, Yan and Zhang
employed an entropy-based threshold to further eliminate the
background information and retain the edge information (Yan
& Zhang, 2014; Zhang & Punch, 2012).

2.3. Envelope Extraction and Smoothing using Empirical
Mode Decomposition

Measurement of the valley width and the depth directly from
an edge map is difficult given the irregular distribution of
edge pixels. It is desirable to convert the edge map into a
“time-series like” data sequence so that standard mathemati-

cal techniques can be applied to calculate the span of a seg-
ment as well as the extrema of the function. A lower envelope
of an edge map is extracted by simply keeping the minimal
intensity value at each corresponding direction of the wake.
The challenge is that there may be excessive ringing effects
caused by small variations in intensity around neighboring
directions. Consequently, appropriate smoothing needs to be
applied to the envelope to sufficiently remove ringing with-
out significantly attenuate the amplitude. Due to its unique
filtering characteristics, Yan and Zhang chose the Empirical
Mode Decomposition method (ur Rehman & Mandic, 2011)
(Flandrin et al., 2004) (Huang et al., 1998) for smoothing.

The basic concept of EMD is to identify proper time scales
that reveals physical characteristics of the signals, and then
decompose the signal into modes intrinsic to the function,
which are referred to as Intrinsic Mode Functions (IMF). The
following signal is used as the input to the algorithm to ex-
amine the output components for verification.

x(t) = sin(2.5πt) + 0.1 cos(50πt) + 0.8 sin(5πt) (2)

A signal defined in (2) is used as an example to show the pro-
cedure of EMD in this waking modeling framework, because
this signal contains various known frequency components and
it looks like a typical envelope observed in wake pattern anal-
ysis. The extracted IMFs are shown in figure 2 (a)-(c), which
illustrate that the amplitude and frequency contents of the sig-
nal can be accurately extracted by EMD.

Figure 2. IMFs of x(t)

2.4. Wake Location and Severity Decision Maker

After the envelope of the scatter data is detected, the location
and information of the “valleys” are determined. Given any
point on the envelope (the boundary points are considered in
a circular fashion), if the points on its left and right are higher
than this point on the envelope, this point is considered a can-
didate of valley point. The candidates of peak points can
be similarly identified. A segment of envelope with a val-
ley point candidate in between two peak point candidates is
considered an oscillation. The “valleys” are oscillations that
are significantly deeper than normal and are wide enough to
be substantial (Yan & Zhang, 2014). Meanwhile, the “small
dents” are consolidated into its neighboring “valleys” if the
dents’ depth is small. The selected valleys’ depth indicates
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the severity of the wakes, and the pixel breadth is converted
into the corresponding angular width of the wakes.

3. COMPARISON WITH OTHER EDGE DETECTORS

The Canny edge detector (Canny, 1986) and Sobel edge de-
tector (Farid & Simoncelli, 2004) are well established edge
detectors, and they could be used in place of the LP edge de-
tector. However, one needs to understand the mechanism and
the purpose of the edge detector in our data processing to ap-
preciate the differences in these edge detectors.

3.1. Sobel edge detector

The Sobel edge detector is one of the first-order differentia-
tion based edge detectors (Belyaev, 2011), defined by

∆Ix =

−1 0 +1
−2 0 +2
−1 0 +1

 · I (3)

∆Iy =

−1 −2 −1
0 0 0

+1 +2 +1

 · I (4)

where I is an image, and its Sobel edge map is defined by

Iedge =
√

∆I2x + ∆I2y (5)

3.2. Canny edge detector

The initial step in the Canny edge detector can be the Sobel
edge detector (or other edge detectors), and then the pixels
that are not within thin lines (regarded as not part of an edge)
are removed (Canny, 1986). The Canny edge detector uses
hysteresis to declare a pixel, pd, with certain gradient value,
d, to be an edge pixel (E(pd) = 1) or not (E(pd) = 0), based
on the following rule:

E(pd) =


0, if d < τl

1, if τl ≤ d ≤ τu and ∃E(neighbor(pd)) = 1

0, if τl ≤ d ≤ τu and ∀E(neighbor(pd)) = 0

1, if d > τu
(6)

where τu is an upper threshold, τl is a lower threshold, and
a typical ratio between τu and τl is between 2 : 1 and 3 : 1.
When τl ≤ d ≤ τu, the pixel, pd, is declared an edge pixel
only if it is connected to another edge pixel.

3.3. Results when using different edge detectors

Wake pattern analysis includes edge map generation, enve-
lope extraction, EMD smoothing, and deep “valley” charac-
teristic derivation. The LP edge detector can be replaced by
Sobel and Canny edge detectors in this framework.

For a single turbine of interest with multiple neighboring tur-

bines, there are multiple wakes at different wind directions.
Take real data as an example, turbine A is surrounded by
twelve other turbines within 1000 meter radius, as shown in
Figure 3, which is an extraction from a much larger wind
farm.
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Figure 3. All the turbines surrounding turbine A within a
1000-meter radius.

The pair-wise wind speed difference versus wind direction
plots are shown in Figures 4 and 5. The twelve pairs are
shown in three blocks with four pairs in one block. The first
row of each block shows the results from using LP edge de-
tector, the second row using Sobel edge detector, and the third
row using Canny edge detectors. Each column is for a pair of
wind turbines. In each subplot, the x axis is the wind direc-
tion in degrees (from 0 to 360), and the y axis is the normal-
ized wind speed difference from -1 to 1 as defined in (1). The
magenta lines indicate the centers of the wakes.

The numerical results showing the wake angle regions and
the intensity of the wake effect are listed in Table 1. The
depth is a unit-less number: the closer it is to -1, the higher
the wake intensity. The center, left and right angles of the
wake regions are in degrees. If the detected valleys using
three edge detectors are roughly around the same angles, they
are aligned at the same rows for easy comparison.

As observed, Sobel edge detector renders similar results to
those of the LP edge detector, but the edge extraction can be
inaccurate to cause unnecessary oscillations and hence trivial
wake regions, such as in Turbine pair (A, 5) in Figure 5. The
Canny edge detector renders some edges that are so low that
they include outlier data points. Canny edge detector is an
optimal edge detector if the purpose is to extract objects from
a natural scene (Canny, 1986), but given a scatter plot with
patches of different data densities, Canny edge detector is not
as effective as a gradient based edge detector, such as Sobel
edge detector and our LP edge detector. Another caveat to use
Sobel and Canny edge detectors is that when the envelope is
spiky, the boundary condition in EMD smoothing may affect
the result, as shown in the Sobel pair (A,B) in Figure 5, and
Canny edge detector’s Sim IDW fusion result in Figure 6.
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4. FUSION FOR A COMPREHENSIVE WAKE PATTERN

A complete understanding of the wake pattern of a central
turbine demands an analysis from all of its neighbors, such as
in Figures 4 and 5. The individual pairs’ results are further
fused by the four schemes (Yan et al., 2009):

1. Equal-weight fusion (EW), where all data scatters are
combined with equal weight.

2. Inverse-distance-weight fusion (IDW), where the data scat-
ters are combined with heavier weight on the closer neigh-
bors.

3. Similarity clustering based EW fusion (Sim EW), where
the similar clusters are fused first, and the clusters are
treated equally.

4. Similarity clustering based IDW fusion (Sim IDW), where
the clusters are weighted based on their distances to the
centering turbine.

The numerical results showing the fused wake patterns using
the proposed framework and the comparison of three edge
detectors are listed in Table 2.

Figure 6 shows the fused wake pattern using the LP edge de-
tector, the Sobel edge detector, and the Canny edge detector.
The similarity-clustering based fusion preserves the wake in-
tensity information better than the ones without clustering,
and the equal-weight based fusion turns out to be more ro-
bust than the inverse-distance-weight scheme, which further

indicates that distance alone is not necessarily a stable indi-
cator of wake intensity.

As mentioned earlier, Sobel and Canny edge maps can be
spikier than LP edge map, yielding harder constraints on the
boundary conditions for the EMD procedure to cause unde-
sired smoothing results, such as in the right-most plot in the
last row in Figure 6, where the filtered envelope using Canny
edge detector fails to follow the edge map in certain segments.
This did not happen for LP edge detector in our experiments,
because LP edge detector uses entropy thresholding to effec-
tively adjust its edge declaration threshold for each plot.

5. A METRIC TO EVALUATE THE WAKE PATTERN

To quantify the goodness of an approach to derive the wake
pattern, we propose a numerical metric, besides the analysis
earlier. The desired property of such a metric is that the de-
rived wake pattern should follow the data accurately. Namely,
the data points beneath the smoothed edge map should be rea-
sonable few, with low density.

Take Figure 6 as an example: In each column of subplots,
the same fused data plot is fed into the wake pattern analysis
system. Depending on the choice of edge detector, the edge
map is different. Different columns use different fused data.
While comparing different edge detectors, we focus on each
column of Figure 6.

Pair (A,1) Pair (A,2) Pair (A,3) Pair (A,4)

LP

Sobel

Canny

Figure 4. Results using our LP edge detector (in the first row), Sobel edge detector (in the second row), and the Canny edge
detector (in the third row), between turbineA and its first four neighboring turbines within a 1000-meter radius. In each subplot
of this figure and the next two figures, the x axis is the wind direction in degrees (from 0 to 360), and the y axis is the normalized
wind speed difference from -1 to 1 as defined in (1).
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Pair (A,5) Pair (A,6) Pair (A,7) Pair (A,8)

LP

Sobel

Canny

Pair (A,9) Pair (A,B) Pair (A,10) Pair (A,11)

LP

Sobel

Canny

Figure 5. Results using our LP edge detector (in the first and fourth rows), Sobel edge detector (in the second and fifth rows),
and the Canny edge detector (in the third and sixth rows), between turbine A and its last eight neighboring turbines within a
1000-meter radius.

Suppose that the data plot is a logical matrix, WSD, with M
rows andN columns. The rows ofWSD are partitions of the
normalized wind speed difference values, and the columns
are partitions of the wind directions. A logical 1 in the WSD
matrix indicates the existence of data point(s) landing in that
cell, and 0, otherwise. The data counting beneath the edge

map is hence

Di =

M∑
j=edgei

WSDi,with i = 1, . . . , N (7)

where the edge map is an N -dimensional row vector, with
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Table 1. Numerical results of the wakes for individual turbine pairs. The depth is a unit-less number: the closer it is to -1, the
higher the wake intensity. The center, left and right angles of the wake regions are in degrees. If the detected valleys using three
edge detectors are roughly around the same angles, they are aligned at the same rows for easy comparison.

LP Sobel Canny

depth center left right width depth center left right width depth center left right width

Pair
(A,1)

−0.48 44.7 25.7 57.9 32.3 −0.45 43.9 24.0 67.9 43.9 −0.62 40.5 29.0 53.8 24.8
−0.53 84.4 57.9 97.7 39.7 −0.49 82.8 67.9 92.7 24.8 −0.72 81.9 59.6 96.8 37.2

−0.40 130.8 115.9 140.7 24.8
−0.63 288.0 274.8 294.6 19.9 −0.58 287.2 274.8 295.4 20.7 −0.74 283.0 269.0 297.1 28.1

Pair
(A,2)

−0.46 44.7 26.5 92.7 66.2 −0.40 40.5 24.8 66.2 41.4 −0.53 48.8 27.3 65.4 38.1
−0.49 96.8 83.6 110.1 26.5

−0.41 123.3 96.0 141.5 45.5 −0.41 114.2 105.1 123.3 18.2 −0.56 125.0 110.1 138.2 28.1
−0.33 130.8 123.3 142.3 19.0 −0.58 213.5 192.0 242.5 50.5
−0.35 258.2 236.7 273.1 36.4 −0.50 273.1 242.5 297.9 55.5

Pair
(A,3)

−0.49 43.0 27.3 58.8 31.4 −0.47 41.4 28.1 77.8 49.7 −0.57 44.7 27.3 56.3 29.0
−0.64 116.7 108.4 127.5 19.0
−0.60 179.6 166.3 189.5 23.2

−0.41 218.5 197.0 235.9 38.9 −0.41 216.8 198.6 230.9 32.3 −0.60 210.2 200.3 232.6 32.3
−0.37 286.3 278.1 297.9 19.9 −0.39 286.3 279.7 297.9 18.2 −0.54 287.2 276.4 303.7 27.3

Pair
(A,4)

−0.62 80.3 62.1 101.8 39.7 −0.42 45.5 15.7 64.5 48.8 −0.62 62.9 28.1 70.3 42.2
−0.58 80.3 64.5 103.5 38.9 −0.69 81.1 70.3 95.2 24.8

−0.61 101.8 95.2 111.7 16.6
−0.45 213.5 173.0 234.2 61.2 −0.37 212.7 183.7 238.3 54.6 −0.74 191.2 171.3 206.1 34.8
−0.49 288.8 278.1 302.9 24.8 −0.42 288.8 279.7 315.3 35.6 −0.62 288.0 278.9 298.8 19.9

Pair
(A,5)

−0.39 48.0 25.7 67.0 41.4 −0.38 44.7 31.4 57.9 26.5 −0.48 44.7 19.9 57.9 38.1
−0.39 82.8 73.7 94.3 20.7

−0.42 118.3 97.7 142.3 44.7 −0.40 105.9 94.3 114.2 19.9 −0.48 110.9 91.0 144.8 53.8
−0.40 125.8 114.2 139.0 24.8

−0.55 280.6 269.8 288.8 19.0 −0.51 281.4 269.8 288.8 19.0 −0.60 282.2 265.7 293.0 27.3

Pair
(A,6)

−0.36 34.8 16.6 48.8 32.3 −0.33 34.8 19.0 43.0 24.0 −0.63 72.0 55.5 91.9 36.4
−0.33 82.8 73.7 95.2 21.5

−0.47 126.6 102.6 135.7 33.1 −0.40 126.6 114.2 137.4 23.2 −0.57 119.2 91.9 138.2 46.3
−0.45 282.2 261.5 310.3 48.8 −0.49 285.5 267.3 295.4 28.1 −0.75 282.2 269.8 295.4 25.7

Pair
(A,7)

−0.34 59.6 39.7 88.5 48.8 −0.32 53.0 18.2 91.0 72.8 −0.50 62.9 47.2 87.7 40.5
−0.38 113.4 88.5 122.5 33.9 −0.38 114.2 105.1 122.5 17.4 −0.46 111.7 87.7 163.0 75.3

−0.26 219.3 207.7 243.3 35.6

Pair
(A,8)

−0.46 6.6 1.7 16.6 14.9
−0.45 43.0 24.0 55.5 31.4 −0.40 43.9 18.2 75.3 57.1 −0.58 31.4 23.2 43.0 19.9

−0.51 81.1 63.7 91.0 27.3
−0.38 127.5 116.7 143.2 26.5 −0.36 123.3 96.8 149.0 52.1 −0.49 124.1 101.0 137.4 36.4

−0.49 151.4 141.5 160.6 19.0
−0.50 287.2 278.9 294.6 15.7

Pair
(A,9)

−0.44 40.5 24.8 56.3 31.4 −0.44 43.9 26.5 57.1 30.6 −0.59 43.0 29.0 57.9 29.0
−0.59 91.9 62.9 101.0 38.1 −0.57 82.8 70.3 101.0 30.6 −0.83 77.0 57.9 105.9 48.0
−0.36 115.9 106.8 122.5 15.7
−0.40 129.9 122.5 141.5 19.0 −0.55 123.3 109.2 143.2 33.9

Pair
(A,B)

−0.33 25.7 21.5 33.1 11.6
−0.71 79.5 67.0 109.2 42.2 −0.64 82.8 66.2 115.0 48.8 −0.79 77.8 67.0 85.2 18.2

−0.84 96.0 85.2 107.6 22.3
−0.55 134.9 124.1 145.7 21.5
−0.73 194.5 186.2 201.1 14.9

−0.37 287.2 275.6 302.1 26.5 −0.46 288.0 282.2 293.0 10.8

Pair
(A,10)

−0.31 37.2 28.1 43.0 14.9
−0.36 67.0 48.0 92.7 44.7 −0.28 62.1 53.8 68.7 14.9 −0.51 66.2 43.0 82.8 39.7
−0.38 105.9 92.7 115.0 22.3 −0.34 106.8 97.7 119.2 21.5
−0.42 283.0 265.7 293.8 28.1 −0.39 286.3 276.4 293.0 16.6 −0.46 278.9 246.6 297.1 50.5

−0.26 350.1 331.0 357.5 26.5

Pair
(A,11)

−0.60 88.5 54.6 111.7 57.1 −0.59 84.4 55.5 122.5 67.0 −0.71 77.8 64.5 89.4 24.8
−0.77 100.1 89.4 108.4 19.0

−0.36 125.8 114.2 145.7 31.4 −0.53 131.6 115.9 163.0 47.2
−0.36 284.7 273.1 294.6 21.5 −0.35 285.5 275.6 295.4 19.9 −0.56 283.9 272.3 299.6 27.3

each element, edgei, indicating the row number of the wake
pattern’s edge point at that particular column i inWSD. WSDi

is the ith column of WSD.

Then we can examine the mean and variance of the vector D
of each approach to see which approach can achieve both a
smaller mean and a smaller variance of its D value.

In our particular partitions of WSD, we have M = 343, and
N = 435, and hence the resultant mean and variance of D
are in a particular data range in Table 3. If the partitions of
WSD are of different dimensions from our choices, the ab-
solute values of such mean and variance will be different, but
the relative relationships between different approaches will
be similar.
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EW IDW Sim EW Sim IDW

LP

Sobel

Canny

Figure 6. Four fusion schemes using our LP edge detector (in the first row), Sobel edge detector (in the second row), and the
Canny edge detector (in the third row) to generate the overall wake pattern of turbine A.

Table 2. Numerical results of the fused wake pattern (EW: equal weight, IDW: inverse distance weight, Sim: similarity). The
depth is a unit-less number: the closer it is to -1, the higher the wake intensity. The center, left and right angles of the wake
regions are in degrees. If the detected valleys using three edge detectors are roughly around the same angles, they are aligned
at the same rows for easy comparison.

LP Sobel Canny

depth center left right width depth center left right width depth center left right width

EW
−0.40 46.3 16.6 64.5 48.0 −0.43 43.9 21.5 62.1 40.5
−0.46 82.8 64.5 99.3 34.8 −0.43 86.1 62.1 100.1 38.1 −0.71 80.3 65.4 102.6 37.2
−0.38 121.7 99.3 152.3 53.0 −0.41 123.3 100.1 139.9 39.7 −0.48 128.3 116.7 139.0 22.3
−0.44 285.5 269.8 296.3 26.5 −0.41 282.2 273.9 297.1 23.2 −0.62 284.7 278.9 291.3 12.4

IDW

−0.44 45.5 24.0 62.1 38.1 −0.43 43.0 22.3 52.1 29.8
−0.66 81.1 67.0 107.6 40.5 −0.62 86.1 68.7 101.0 32.3 −0.79 77.8 65.4 86.1 20.7

−0.87 96.8 86.1 108.4 22.3
−0.58 135.7 117.5 143.2 25.7
−0.56 195.3 182.9 211.9 29.0

−0.46 285.5 274.8 293.8 19.0 −0.41 285.5 273.9 297.1 23.2 −0.55 288.0 276.4 301.2 24.8

Sim
EW

−0.41 44.7 16.6 58.8 42.2 −0.41 43.9 14.1 59.6 45.5 −0.44 50.5 15.7 62.9 47.2
−0.55 83.6 63.7 110.9 47.2 −0.53 81.1 59.6 91.9 32.3 −0.71 81.9 66.2 106.8 40.5
−0.39 125.8 112.6 144.8 32.3 −0.45 126.6 111.7 151.4 39.7
−0.45 285.5 273.9 293.8 19.9 −0.43 284.7 274.8 294.6 19.9 −0.57 283.9 273.1 291.3 18.2

−0.54 9.9 3.3 19.0 15.7

Sim
IDW

−0.44 45.5 21.5 59.6 38.1
−0.61 82.8 66.2 113.4 47.2 −0.62 83.6 67.0 92.7 25.7 −0.89 78.6 58.8 110.1 51.3
−0.40 125.8 113.4 147.3 33.9 −0.42 129.1 120.0 135.7 15.7 −0.50 121.7 110.1 141.5 31.4
−0.40 284.7 261.5 307.0 45.5 −0.41 283.9 269.0 297.9 29.0 −0.51 284.7 267.3 298.8 31.4

As noted earlier, each column in Table 3 is corresponding to a
different fusion scheme with different data plot, so when we
compare the three approaches, we compare them only within
each column. Table 3 shows that the LP approach achieves a
small mean and a small variance in all the columns (In some
columns, the Canny approach can achieve a smaller mean,
but with a much larger variance, due to the overshooting of its
edge maps, which is not desirable). Overall, the LP approach

is the best among the three.

Then comparing the four columns in Figure 6, we see that
the fourth column, the fused plot based on similarity based
inverse distance weighting, preserves the wake intensity the
best, and hence preferred.

The same metric can be applied to individual wind speed dif-
ference plots in Figures 4 and 5, but omitted to save space.
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Table 3. The mean and variance comparison of metric D (a
good approach achieves both small µ and small σ). Each col-
umn is corresponding to a different fused data set, so the com-
parison is within each column.

µ EW IDW Sim EW Sim IDW
LP 1.7678 2.1195 1.8391 1.9011

Sobel 2.2552 3.2069 2.2161 2.4483
Canny 1.292 0.7839 1.2552 5.308

σ EW IDW Sim EW Sim IDW
LP 3.3354 3.7368 3.3105 3.4626

Sobel 4.8172 7.123 3.8933 4.5751
Canny 47.6035 15.308 33.1721 283.3565

6. DATA PARTITION BASED ON THE WAKE PATTERN

The relationship between wind speed and power is most widely
presented by a power curve, with wind speed along the x-
axis and the generated power along the y-axis, as illustrated
in Figure 7. When the wind speed is lower than the wind tur-
bine start-up threshold, T1, the power that would be needed
to keep the turbine running exceeds the generated power and
hence the turbine is often braked to be not in operation. When
the wind speed is higher than T1 but less than the the constant-
power threshold, T2, the generated power increases with an
increasing wind speed. However, when the wind speed ex-
ceeds T2, the wind turbine starts to generate constant power
at its maximum capacity, with a nearly constant rotating speed.
If the wind speed gets even higher, to be above the shut-down
threshold, denoted by T3, the wind turbine is often shut down
because such high wind speed may cause the wind turbine
to over-rotate or over-heat to damage itself. Given different
manufacturers of wind turbines, the values of the wind speed
thresholds may differ, but the general idea and control logic
are similar. In this paper, the generated power is normalized
to be 1 as its maximum value, and the wind speed is pre-
sented in proportion to the thresholds of T1, T2, and T3.
The nominal power curve provided by the manufacturer pro-
vides a baseline of the desired power generation performance.
The nominal power curve is typically a piece-wise connected
line, and the middle region between T1 and T2 is nonlinear
but monotonically increasing. The actual power curve data,
however, is not so regular, with variations above or below the
nominal power curve, as shown in Figure 7.

The best wake pattern obtained by the LP edge detector and
the fourth fusion scheme is taken out from Table 2 to form Ta-
ble 4, with a new last column showing the percentage of the
data within each wake zone relative to the entire data set we
have analyzed. As reported in Table 4, there are four wake
zones of turbine A. To illustrate the wake effect on power
generation, we take an arbitrary segment of data (the wind
speed and the generated power of turbine A) in various sce-
narios: when the wind direction is not in the wake zones or in
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Figure 7. Real data power curve of turbine A.

either of the four wake zones.

Table 4. The best fused wake pattern of turbine A.

wake zone depth center left right percentage

1 −0.44 45.5 21.5 59.6 12.2%
2 −0.61 82.8 66.2 113.4 7.7%
3 −0.40 125.8 113.4 147.3 7.6%
4 −0.40 284.7 261.5 307.0 4.5%

If the wind farm is thoughtfully designed with optimal wind
turbine locationing, the wake effects should be minimized
along the most predominant wind directions in that region.
In our two and a half years of data, there are about 68% data
points not in the wake zones, 12.2% in wake zone 1, 7.7% in
wake zone 2, 7.6% in wake zone 3, and 4.5% in wake zone
4. This data proportion roughly indicates the likelihood when
wakes may happen (roughly 32% of the time), which is not
negligible but not significant, either. To present these time se-
ries in a legible way, an arbitrary segment of 800 consecutive
data points is chosen from each scenario. The other segments
are visually examined and they show similar trends between
wind speed and power.

Using the wind speed thresholds as references, we present
the wind speed measurements and generated power from the
SCADA data as two time-series in the same plot. The seg-
ment not in the wake zone is presented in Figure 8 (a). The
data segments from each of the four wake zones are presented
in Figure 8 (b)-(e). The left axis shows the wind speed in blue
dashed line, and the right axis shows the normalized power in
solid color line. We align the data pair as follows:

• Power value of 0 is aligned with wind speed threshold
T1, since when the wind speed is below T1, the wind
turbine is braked and does not generate power.

• Power value of 1 is aligned with wind speed threshold
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T2, since the wind turbine will produce constant power
when the wind speed is above T2 (and below T3).

• T3 is not aligned with any power value, but when the
wind speed is above T3, we expect the power to be 0,
since the wind turbine would have been shut down at
such high wind speed to avoid damaging itself.

Figure 8 (a) clearly demonstrates an agreement between the
data and the desired control logic as explained above. Fig-
ure 8 (b)-(e) indicate a similar agreement, but with excep-
tions: When the wind speed is between T2 and T3, some-
times the generated power is 1, but other times the wind tur-
bine is shut down with a generated power of 0, such as in
wake zone 1 between time index 520 to 550, in wake zone 2
between time index 275 to 293, and in wake zone 3 between
time index 278 and 329. These exceptions warrants more re-
search into the wind turbine behaviors in the wake zones.

7. INTERPRETATION OF THE WAKE PATTERN

The wake pattern in Table 4 is replotted in Figure 9 with-
out data points. We want to connect the data with the spe-
cific wind farm that we are studying, and hence we overlay
the wake pattern with the farm layout, which requires a po-
lar representation of the wake pattern. If we were to convert
Figure 9 to a polar format directly, the “base DC term”, or the
common variation in the wind speed difference, up to about
−0.2, will “overshadow” the variations due to wake effect in
the polar plot, so we first subtract this DC term, and then scale
it up to overlay with the turbine layout, to generate Figure 10.
Figure 10 is an exaggerated wake pattern in the sense that the
relative size of the rose pedal in the polar plot does not in-
dicate the severity of the wake in proportion, but in relative
sense. The angular range of each wake zone, whose numeri-
cal values are already presented in Table 2, is also marked by
magenta dashed lines (wake zones 2 and 3 share one bound-
ary).

As observed from Figure 10, the rose pedals indicate the di-
rections from which wind comes towards turbineA that causes
turbineA to see less wind speed. Along northeast, east, south-
east, and west directions, turbine A sees significant wakes
due to those neighboring wind turbine clusters. On the other
hand, at this wind farm, the north and south winds are most
predominant, and this wake pattern confirms that turbine A
is least affected by those wind directions in terms of wakes.
It verifies that the locations of the wind turbines are properly
designed.

Wakes are influenced by distance, as turbineA’s nearest neigh-
bor, turbine B, causes the most significant wakes to turbine
A. However, wakes are affected by more than just the dis-
tance factor. The wake phenomenon involves various aspects
of air flow dynamics, and the northern wind turbine cluster is
observed to not affect turbineA as much as other neighboring
turbines.
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(a) Non-wake zone
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(b) Wake zone 1

0 100 200 300 400 500 600 700 800
0

T1

T2

T3

W
in

d
 S

p
ee

d
 (

m
/s

)

0 100 200 300 400 500 600 700 800

0

1

N
o

rm
al

iz
ed

 G
en

er
at

ed
 P

o
w

er

Time Index

(c) Wake zone 2
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(d) Wake zone 3
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(e) Wake zone 4

Figure 8. Data segments from non-wake zone (a) and four
wake zones (b-e) of turbine A. Without wakes, the turbine
is shut down when the wind speed exceeds threshold T3.
With wakes, however, (as observed in three out of four wake
zones), the turbine is shut down at relatively low wind speeds.

When the wind blows from the west, significant wakes are
observed in the pair-wise comparison between turbine A and
turbines 1, 5, and 6. It does not imply that turbines 1, 5, and
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Figure 9. Extracted wake pattern of turbine A.
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Figure 10. Exaggerated wake pattern overlayed with tur-
bine layout. Note that the rose pedal length indicates relative
severity of wakes, but not in proportion, since the DC term in
Figure 9 is removed.

6 are the causes of the wakes seen by turbine A. Actually,
the whole cluster (of turbines 6, 7, 8 and 9) is likely to be
the cause, but not just a single turbine 6. However, turbines
7, 8 and 9 are also in the wakes of turbine 6, and hence the
wind speed differences between turbine pair A and 7, etc, are
not as significant as that between turbine pair A and 6. Wake
analysis only indicates that the turbine of interest is in wake,
but does not imply which turbine(s) is/are the cause of the
wake.

Note that turbines 1, 5, and 6 are all located at the west-most
position in turbine chain clusters, and hence when the wind is
blowing from the west, they see the highest wind speed.

Similarly, when the wind blows from the east, significant
wakes are observed in the pair-wise comparison between tur-
bine A and turbines 4, 9, B, and 11. Note that turbines 4, 9,
B, and 11 are all located at the east-most position in turbine
chain clusters, and hence when the wind is blowing from the
east, they see the highest wind speed.

Back to Figure 8, the actual power generation in the wake
zones suggests that when the wind speed is above T2 but be-
low T3, sometimes turbine A over-reacts and decides to shut
down, otherwise it could have generated power at its full ca-
pacity. Meanwhile, we need to point out that the wakes cause
non-fault power generation loss, and the wake effects are ex-
pected to be minimized via optimal wind turbine locationing.

However, not all wind farms are designed in this desired man-
ner, and wakes can cause significant loss in power generation.

8. CONCLUSIONS AND FUTURE WORK

In an optimal wind farm design, the wake effects should be
minimized, but never eliminated, because one can not control
the wind direction and wake is bound to happen at a certain
wind direction, when multiple turbines or obstacles exist.

For operational monitoring purpose, when reduced power gen-
eration is observed, it is desirable to generate a wake model
for each wind turbine on the farm to exclude wake from true
faults. The SCADA data is used to represent the 2D data (nor-
malized wind speed difference versus wind direction), simi-
lar to an image, and then one can use an edge detector to
discern the pattern in the data to capture the wake effect. In
this paper, the Linear Prediction (LP) and Entropy Threshold-
ing based edge detector are thoroughly compared with popu-
larly used Sobel and Canny edge detectors to extract the wake
pattern, and both qualitative and quantitative analysis illus-
trate that the LP edge detector is more accurate and more ro-
bust than the other edge detectors. The Canny edge detector
is optimal to detect edges in natural images, however, since
the wake data representation is a scatter plot, without natural
edges, Canny edge detector tends to retain the unnecessary
edge points. Also, the entropy thresholding is effective for
the LP edge detector to adjust its edge pixel declaration, but
the Sobel or Canny edge detectors may yield spiky envelopes,
which cause difficulty in setting the boundary condition in the
EMD smoothing.

The wake zones identified from the wake pattern are further
used to segment the power data. Power analysis is carried out
in non-wake zone and in each of the four wake zones of this
particular turbine of interest. With a reduced wind speed in
the wake zones, the power is less than what would have been
generated, which is intuitive. But from the power data, we can
see that this wind turbine still generates the amount of power
that it is expected to generate at that reduced wind speed, so it
is healthy. An unexpected observation is that when the mea-
sured wind speed is between the constant power threshold
T2 and the shut-down threshold T3, the wind turbine is ex-
pected to generate constant power at its maximum capacity,
but sometimes it is shut down instead, which causes further
power generation loss.

In the future, since wake effect is closely related to turbulence
and turbine height, we plan to partition the data by turbulence
or turbine heights to provide more detailed information and
more accurate prediction on the wake pattern.
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