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ABSTRACT

The main quantitative measure of nuclear safeguards effec-
tiveness is nuclear material accounting (NMA), which con-
sists of sequences of measured material balances that should
be close to zero if there is no loss of special nuclear material
such as Pu. NMA is essentially “accounting with measure-
ment errors,” which arise from good, but imperfect, measure-
ments. The covariance matrix ΣMB of a sequence of material
balances is the key quantity that determines the probability to
detect loss. There is a recent push to include process moni-
toring (PM) data along with material balances from NMA in
new schemes to monitor for material loss. PM data includes
near-real-time measurements by the operator to monitor and
control process operations. One concern regarding PM data is
the need to estimate normal behavior of PM residuals, which
requires a training period prior to ongoing testing for mate-
rial loss. Assuming that a training period is used for PM
data prior to its use in statistical testing for loss, that same
training period could also be used for improving the estimate
of ΣMB that is used in NMA. We consider updating ΣMB

using training data with a Bayesian approach. A simulation
study assesses the improvement gained with larger amounts
of training data.

1. INTRODUCTION

Nuclear material accounting (NMA) at safeguarded facilities
consists of periodic measurement of special nuclear material
(SNM) flows and inventories, both of which are measured
with nonnegligible errors. Typically, the SNM mass is mea-
sured using a combination of techniques. For example, an
aqueous reprocessing facility chops and dissolves spent fuel,
then purifies the recovered Pu in a series of separation steps.
Such a facility recovers, for example, Pu from spent fuel,
and the main measurements are bulk solution volume and Pu
concentration. The Pu mass is then estimated by multiply-
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ing measured volume by measured Pu concentration. NMA
compares the measured Pu in inputs, outputs, and inventory
to track Pu mass during facility operations.

The main quantitative assessment is the material balance (MB),
defined as MB = beginning inventory + transfers in - trans-
fers out - ending inventory. Metrology for each measurement
method, such as bulk weight and SNM concentration in a
tank, provide estimates of individual measurement errors in
each inventory and transfer term. Propagation of variance is
used to estimate the covariance ΣMB of a sequence of MBs
by combining the effects of individual “random” and “sys-
tematic” errors (Goldman et al., 1992; Aigner et al., 2010;
Beedgen, 1987). Random errors impact the measurement of
only one item. Systematic errors impact the measurements of
multiple items; therefore, while systematic errors can cancel
or partly cancel out in some cases (for example, when com-
paring two volume measurements in a tank), in other cases
they have a large impact on ΣMB . Multiple items can share
a systematic error due to calibration effects, leading to a sys-
tematic positive or negative error until the assay method is
recalibrated.

Time series modeling and various forms of data mining, such
as nonparametric smoothing, have been proposed in the NMA
context in response to the fact that the loss detection probabil-
ity of small sustained (“protracted”) loss of SNM over multi-
ple time periods is lower than desired (Prasad et al., 1995a,
1995b; Hamburg et al., 1996; Grznar et al., 1997; Down-
ing et al., 1978). Such data mining requires up-front train-
ing data prior to testing for SNM loss. Assuming that MB
sequences have approximately a multivariate normal distribu-
tion, with known covariance matrix ΣMB , Burr and Hamada
(2014a) show that traditional parametric modeling of the MB
sequences leads to higher detection probability than nonpara-
metric modeling. The results in Burr and Hamada (2014a)
confirm that parametric modeling performs better than non-
parametric modeling if the parametric modeling assumptions
are true or close to true. One contribution of Burr and Hamada
(2014a) is to clarify that protracted loss over multiple time pe-
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riods is simply difficult to detect; and, under the assumption
that the MB sequence is multivariate normal, an option that
exploits the assumed multivariate normality has the highest
possible detection probability for any type of SNM loss. Note
that the multivariate normal assumption, MB ∼ N(0,ΣMB)
if there is zero loss, is a reasonable assumption because of
the central limit theorem applied to the many measurements
that are combined in typical MB calculations (Downing et
al., 1978; Burr and Hamada, 2013a; Jones, 1989). However,
there is always some estimation error in ΣMB , that Burr and
Hamada (2013a) showed can have non-negligible impact on
the false alarm probability and on the detection probability at
a given facility. The focus of this paper is to evaluate to what
extent one can reduce the estimation error in ΣMB by using
training data, as illustrated below.

Partly in response to low detection probabilities for protracted
loss, there is recent interest in extending quantitative assess-
ments to include frequently recorded residuals from process
monitoring (PM) in addition to less frequent MB values (Burr
et al. 2012, 2013a, 2013b). PM residuals include in-vessel
readings and comparisons of data to various engineering es-
timates and models. A disadvantage of such PM is the need
for training data to establish alarm thresholds prior to testing
for SNM loss (Burr et al., 2013a, 2014b). Also, Avenhaus
and Jaech (1981) show that analyzing more frequent MBs ac-
tually decreases loss detection probability for protracted loss,
due to requiring high alarm thresholds to account for more
statistical tests per unit time. Although more frequent MBs
will slightly decrease the loss detection probability for worst-
case protracted loss, specialized PM and high-frequency MBs
can have high loss detection probability for specified loss sce-
narios, while only slightly decreasing the loss detection prob-
ability for the worst-case protracted loss (Burr et al., 2012).

Quantitative evaluations of the loss detection probability for
sequential tests of MB sequences with various loss scenarios
have been presented (Beedgen, 1987; Avenhaus and Jaech,
1981; Jones, 1989), but estimation error in ΣMB was ig-
nored. The most commonly-used sequential test in safeguards
is Page’s cusum test applied to a transform of the MB se-
quence (known as the SITMUF sequence, the standardized
independently transformed MUF sequence, where MUF =
MB is the international term “material unaccounted for”). Op-
tions are being developed to use both PM residuals and NMA
sequences in multivariate statistical process monitoring (Burr
et al., 2012), some of which use multivariate versions of Page’s
cusum test.

As mentioned above, the requirement for training data in the
PM context was proposed in previous literature, but in the
context of training methods to predict MB values in testing.
The main topic of this paper is the potential to use training
data in order to improve the estimate of ΣMB , which has not
yet been considered. It is assumed that both PM and NMA

can use training data prior to testing for SNM loss. In the
NMA context, we illustrate how to use such training data to
improve the estimate of ΣMB .

The current emphasis on quantitative roles for PM leads to
a new challenge for domestic safeguards. The challenge is
to simultaneously monitor for changing sensor health and for
SNM loss using relatively frequent monitoring. Tradition-
ally, this journal does not deal with the topic of monitor-
ing for material loss, but deals extensively with monitoring
sensor health. In measurement control for safeguards, one
typically uses frequent consistency checks to monitor sen-
sor health. For example, known volume additions can check
instrument responses for stability. Also, tank-to-tank trans-
fers can be monitored for consistency; however, if one aims
to simultaneously monitor for either SNM loss or instrument
anomalies or drift, then some type of redundancy checks are
necessary. Such instrument health checks lead to confidence
that the infrequently-reported MB values are not subject to
instrument-related artifacts. International safeguards has the
same challenge as domestic safeguards, but the possibility
of data falsification by the operator to conceal SNM diver-
sion (a type of loss) is an added complication. Howell et
al. (2013) present a semi-quantitative approach for domes-
tic safeguards to simultaneously monitor for changing sensor
health and SNM loss. The approach assumes that some sen-
sor redundancy is available, and that neighboring sensors will
not simultaneously malfunction. To our knowledge, there has
not been an analogous quantitative attempt for international
safeguards.

This article focuses on the challenge of monitoring for SNM
loss, assuming that sensor health is monitored using measure-
ment control data. The article considers updating an esti-
mated ΣMB using training data with a Bayesian approach.
We assume that an initial estimate of ΣMB is available, as
usual, from metrology data that can include calibration data,
measurement control data, and perhaps, measurement com-
parison data, for each type of measurement that is used in
the MB calculation. While PM requires training data prior
to monitoring for SNM loss, in principle, NMA does not,
provided the metrology data leads to an adequate estimate
of ΣMB . In practice, such estimates are often based on very
limited data and can be revised as more meta data become
available. So, in practice, NMA is vulnerable to having a
poorly estimated ΣMB in the early history of an operating fa-
cility, and in effect, also relies on a training period prior to
quantitative monitoring for SNM loss.

An outline is as follows. Section 2 provides additional back-
ground. Section 3 provides details of the form of ΣMB for
five cases depending on whether there is systematic measure-
ment error, whether there is an end-of-year cleanout, and whether
there is an end-of-year measurement calibration. Section 4
briefly reviews Bayesian inference. In Section 5, we outline
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a simulation study to assess the improvement gained by us-
ing training data to update ΣMB . Section 6 reports results of
the simulation study. Section 7 describes a second option for
analysis of the training data. Section 8 describes sequential
tests in use for NMA and what the simulation study results
imply about their performance in the presence of estimation
error in ΣMB . We conclude with a discussion in Section 9.

2. BACKGROUND

Large facilities are divided into material balance areas, such
as the first separation/purification area of an aqueous repro-
cessing facility. The area includes feed, receipt, buffer, and
storage tanks that all handle Pu solution, as well as a waste
stream and a chemical separations area that holds Pu, but is
not equipped for Pu measurement. Approximately every 10
days, a MB is computed, usually without cleaning out the
holdup in the separations area, pumps, pipes, or in the un-
instrumented tanks. The MB definition implies that if there
is SNM loss, then the expected value of the MB is positive;
if there is SNM gain, then the expected value of the MB is
negative. Statistical tests analyze sequences of MBs for SNM
loss as evidenced by one or more large positive MBs that is
(are) too large to have been likely to arise from measurement
errors.

In a typical aqueous reprocessing plant, the Pu mass is es-
timated as M = V C, where V is the bulk volume mea-
surement, and C is the Pu concentration measurement. Fol-
lowing international target values for uncertainty (Aigner et
al., 2010), we assume V = Vtrue(1 + SV + RV ) and C =
Ctrue(1 +SC +RC), which collectively imply that the mea-
surement equation for M is M ≈ Mtrue(1 + SV + RV +
SC +RC), ignoring products of errors, because they are neg-
ligible. The net variance for the Pu mass in one tank is there-
fore approximately M2

true(σ̃2
S,M + σ̃2

R,M ), where σ̃2
S,M =

σ̃2
S,V + σ̃2

S,C and σ̃2
R,M = σ̃2

R,V + σ̃2
R,C , and here we use the

tilde notation for relative error variances. Note that MBi =∑nini

i (ViCi)−
∑nouti
i=1 (ViCi) +∑ninvi−1

i=1 (ViCi)−
∑ninvi
i=1 (ViCi), so additional variance prop-

agation is used to estimate the covariance matrix ΣMB of a
sequence of MBs (see Section 3).

A key fact from the variance propagation is that ΣMB de-
pends on the true inputs, outputs, and inventories, and on only
a few aggregate variance components, (σ̃2

S,M and σ̃2
R,M ). The

true inputs, outputs, and inventories are estimated well enough
for variance propagation purposes by the corresponding mea-
surements (because the overall standard deviation of an MB
is relatively small, typically 1 % or less of the SNM through-
put). Although usually measured with large relative uncer-
tainty, material holdup in pumps, pipes, and un-instrumented
areas, can be included in the inventory terms. The aggre-
gate variance components should be somewhat well estimated
from auxiliary measurement control data and measurement

studies. The main point of this paper is to illustrate that MB
data provides an additional data source to improve the initial
estimates of σ̃2

S,M = σ̃2
S,V + σ̃2

S,C and σ̃2
R,M = σ̃2

R,V + σ̃2
R,C ,

which leads to improved estimation of ΣMB . As we demon-
strate in Section 8, improved estimation of ΣMB means that
sequential tests (which use the estimate of ΣMB) have actual
false alarm rates that are closer to the nominal false alarm
rates (and the actual detection probabilities for a specified loss
of SNM are closer to the nominal detection probabilities).

3. COVARIANCE MATRICES FOR MB DATA

Burr and Hamada (2013a) considered five covariance matri-
ces for MB data over two years. Using the same type of mea-
surement error equation as in Section 2, and the same simple
variance propagation, one can calculate the covariance ma-
trix ΣMB of a sequence of MBs. The five covariances corre-
spond to five distinct scenarios. Scenario one has no cleanout,
and no systematic measurement error (as in Avenhaus and
Jaech, 1981). Scenarios two to five each have systematic er-
ror. Scenario two has no cleanout, with measurement calibra-
tion. Scenario three has no cleanout, without measurement
calibration. Scenario four has cleanout, with measurement
calibration. Scenario five has with cleanout, without mea-
surement calibration. These covariance matrices are denoted
Σ1-Σ5, respectively.

Following convention, we assume that a new systematic error
with relative variance σ̃2

S,M = σ̃2
S,V + σ̃2

S,C is generated after
each measurement calibration. If there is only one calibration
period, then we have a low-quality (one degree of freedom)
estimate of σ̃2

S,M = σ̃2
S,V + σ̃2

S,C . Regarding cleanout, a fa-
cility is typically (but not always) almost completely cleaned
out, removing all inventory, approximately once per year for
the annual physical inventory.

3.1. Avenhaus and Jaech (1981) Model (Σ1)

Avenhaus and Jaech (1981) assume only random error com-
ponents for It and Tt, inventory and transfer at the tth bal-
ance. There is no cleanout and no systematic measurement
error. We have the tth balance (writing Xt for the MB at
period t), Xt = It + Tt − It−1 where σI,∗ and σT,∗ are
the absolute standard deviations of It and Tt, respectively.
For all of our examples, we use the notation for the vari-
ance components from Avehnaus and Jaech (1981), which
slightly modifies the notation in Section 2. We use the ∗
symbol as a dummy placeholder for the other four covari-
ance scenarios to distinguish between systematic and random
error components. Then σ2

X = 2σ2
I,∗ + σ2

T,∗ for all t and
Cov(Xt−1, Xt) = Cov(Xt, Xt+1) = −σ2

I,∗. Avehnaus and
Jaech (1981) use values σI,∗ = 1 and σT,∗ = 0.5 based on
12 balance periods per year. If there are n balance periods
per year, then σ2

T,∗ = (12/n)0.52. To be consistent with
Avehnaus and Jaech (1981), we also use absolute variances
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for the remaining four scenarios. In applications, the mea-
sured inventories, inputs, and outputs are used to convert be-
tween relative and absolute variances. Therefore, there is no
loss of generality to simplify the presentation here and use
absolute variances throughout. An additional simplification
is to let the transfer term T represent the aggregate effect of
input and output measurements. The remaining four scenar-
ios have systematic measurement error.

3.2. Extended Model, No Cleanout, With Measurement
Calibration (Σ2)

The remaining four scenarios consider both random and sys-
tematic error components for It and Tt. Measurement cali-
bration is assumed, for illustration purposes, to occur at the
end of each year for both inventory and transfer measure-
ments, but other recalibration schedules are certainly possi-
ble. We have the tth balance, Xt = It + Tt − It−1, where
σI,ran and σI,sys are the random and systematic error stan-
dard deviations of It,while σT,ran and σT,sys are the random
and systematic error standard deviations of Tt, respectively.
Then we have for the first year:

V ar(It + Tt − It−1) = 2σ2
I,ran + σ2

T,ran + σ2
T,sys,

Cov(It + Tt − It−1, It+1 + Tt+1 − It) = −σ2
I,ran + σ2

T,sys,

and for j >= 2,

Cov(It+j + Tt+j − It+j−1, It + Tt − It−1) = σ2
T,sys.

For multiple years, the covariance matrix is block diagonal,
except for the last balance of one year and the first balance of
the next year, where

Cov(In + Tn − In−1, In+1 + Tn+1 − In) = −σ2
I,ran,

and except for the first balance of year one and the first bal-
ance of year two (and similarly for the first balance of year
two and the first balance of year three, etc.), where

Cov(I1 + T1 − I0, In + Tn+1 − In+1) = −σ2
I,sys,

The covariance between the last balance of one year and the
first balance of the next year, Cov(In + Tn − In−1, In+1 +
Tn+1−In) = −σ2

I,ran, is negative, because the ending inven-
tory for one period is the beginning inventory for the next pe-
riod, and there is no positive covariance arising from the sys-
tematic transfer measurement error because of the recalibra-
tion at the end of each year. The first balance of one year and
the first balance of the next year are in separate calibration pe-
riods by assumptions, but Cov(I1 + T1 − I0, In+1 + Tn+1 −
In) = −σ2

I,sys, is negative, because Cov(I1 − I0, In+1 −
In) = −Cov(I1, In) = −σ2

I,sys, with only I1 and In shar-

ing an inventory term systematic error. Notice also that σ2
I,sys

does not appear in the first-year expression because it cancels,
but it does appear between successive years.

Appendix 1 gives the variance propagation results for the other
three cases, Σ3,Σ4, and Σ5.

4. BAYESIAN INFERENCE

In this article, we apply a Bayesian inferential approach. A
Bayesian analysis combines prior information with observed
data to produce a posterior distribution for the parameters θ
using Bayes’ theorem:

π(θ |y) =
L(y |θ) π(θ)∫

Θ
L(y |θ)π(θ) dθ

(1)

where Θ denotes the range of values for the parameters θ.
θ is the vector of σI , σT , σI,sys, σI,ran, σT,sys and σT,ran,
where applicable. The likelihood function denoted byL(y |θ)
describes the probability density function (pdf) of y given the
model parameters θ, where y denotes the vector of training
data. The pdf of y corresponds to

MultivariateNormal(0,ΣMB), so that L(y |θ) is this pdf,
where ΣMB is one of Σ1-Σ5. The available information about
θ is summarized by the prior distribution π(θ). Bayes’ the-
orem in Equation (1) demonstrates how the data and prior
information are combined to obtain the posterior distribution
of θ denoted by π(θ |y).

In many applications, an analytical expression for the integral
in Equation (1) does not exist. Instead, Markov chain Monte
Carlo (MCMC) is used to simulate samples {θ(m)

; m = 1, . . . ,M} from the posterior distribution π(θ |y).
See Casella and George (1992), Chib and Greenberg (1995)
and Gelman et al. (2003) for discussions of popular MCMC
algorithms.

Estimates of the parameters and their uncertainties are then
based on the posterior samples. For each model parameter,
empirical quantiles of its posterior samples, e.g., the 0.025
and 0.975 quantiles, are calculated to obtain central 95% cred-
ible intervals. The median or 0.5 quantiles of its posterior
samples can be used as estimates. The width of the 95%
credible intervals is a good measure of uncertainty, which
in our context is the uncertainty on the standard deviations
σI,sys,σI,ran, σT,sys and σT,ran.

5. SIMULATION STUDY

Here, we consider cases Σ2 - Σ5 with systematic measure-
ment errors. Their ΣMB depend on all or some of σI,ran,
σI,sys, σT,ran and σT,sys. We use lognormal priors on σI,ran,
σI,sys, σT,ran and σT,sys because these are positive quanti-
ties. Also, to allow for the prior to have the correct or an
incorrect mean value, we consider two versions of the prior
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distributions. The two prior versions, referred to as Prior 1
and Prior 2 are:

1. σI,ran ∼ Lognormal(log(σI,ran,true), 0.152),
σI,sys ∼ Lognormal(log(σI,sys,true), 0.152),
σT,ran ∼ Lognormal(log(σT,ran,true), 0.152),
σT,sys ∼ Lognormal(log(σT,sys,true), 0.152), i.e., the
median of the prior is the true value and the prior is quite
wide, because the variance of 0.152 is large.

2. σI,ran ∼ Lognormal(log(0.75σI,ran,true), 0.152),
σI,sys ∼ Lognormal(log(0.75σI,sys,true), 0.152),
σT,ran ∼ Lognormal(log(0.75σT,ran,true), 0.152),
σT,sys ∼ Lognormal(log(0.75σT,sys,true), 0.152), i.e.,
the median of the prior is 75% of the true value (biased
low) and the prior is again quite wide.

We use m training data sets of two years of MB balances,
where m = 2, 4, 10. We simulate m sets of data 500 times
and I0 = 0 for all cases.

Also assume true σI = 1 and σT = 0.1, 1 with ratio σran

σsys

= 0.5 and 1.0. We consider n = 12, i.e., 12 balances per
year. We use the Metropolis-Hastings algorithm to obtain
draws from the joint posterior distribution of σI,ran, σI,sys,
σT,ran and σT,sys (Chib and Greenberg, 1995) implemented
in R (R Development Core Team, 2009). For each data, the
Metropolis-Hastings algorithm is run for 3500 draws and the
first 500 draws are discarded before summarizing the results.

To estimate the true values of σI,ran, σI,sys, σT,ran and σT,sys,
for each of the 500 simulated data sets, we use the posterior
median of σI,ran, σI,sys, σT,ran and σT,sys. These 500 me-
dian values can in turn be used to evaluate ΣMB . The average
over these 500 median values are viewed as average estimates
of σI,ran, σI,sys, σT,ran, σT,sys, and the elements of ΣMB .
For plotting purposes, for each data set, we divide the pos-
terior medians of σI,ran, σI,sys, σT,ran and σT,sys by their
true values to obtain relative medians. For each data set, we
evaluate ΣMB with the posterior medians of σI,ran, σI,sys,
σT,ran and σT,sys, element-wise divide by the corresponding
non-zero elements of the true ΣMB , and compute the median
of these relative quantities. These quantities are then aver-
aged over the 500 data sets. Figure 1 plots these for Σ2, as
explained further in Section 6.

Because the Prior 1 medians are the true values of σI,ran,
σI,sys, σT,ran and σT,sys, we expect values near 1. Because
the Prior 2 medians are 75% of the true values of σI,ran,
σI,sys, σT,ran and σT,sys, we expect values less than 1 that
increase as the number of training sets increases.

From the posterior distributions of σI,ran, σI,sys, σT,ran and
σT,sys, we divide the length of the 95% central credible inter-
vals by that corresponding to their prior distributions. Taking
the average over the 500 data sets provides an average rela-
tive length of the 95% central credible intervals. We expect
values less than 1 that decrease as the number of training sets

increases. Figure 2 in Section6 plots these types of summaries
of the uncertainty in σI,ran, σI,sys, σT,ran and σT,sys.

6. SIMULATION STUDY RESULTS

6.1. Σ2

Qualitatively, we expect the dashed curves to approach 1 in
Figure 2, because eventually there is enough training data to
overwhelm the wrong mean in Prior 2. Unfortunately, the
approach to 1 is very slow; fortunately, the Prior 2 case is
very pessimistic, but is included here for completeness.

The average relative posterior median results for Prior 2 are
among the most interesting results in Figure 1. The best im-
provement is for σI,ran. From Figure 1c for σT,ran, there
appears to be no improvement for (ratio, σT ) pairs (0.5,0.5)
and (1,0.5), i.e., for the small σT . In Section 3.2, σT appears
with other terms, making it hard to estimate when it is small.
However, for the other two pairs, there is improvement. For
σI,sys and σT,sys, there is only slight improvement. Figure 1e
illustrates that there is little improvement for the elements of
ΣMB for Prior 1. There is improvement in the elements of
ΣMB for Prior 2.

Recall that Figure 2 plots the uncertainty in posterior distri-
bution for σI,ran, σI,sys, σT,ran and σT,sys, ratioed to the
uncertainty in the prior. Therefore, ideally the curves in Fig-
ure 2 should decrease toward zero as the training data size
increases. Like Figure 1, Figure 2 illustrates the most im-
provement for σI,ran. There is no improvement for σT,ran
for (ratio, σT ) pairs (0.5,0.5) and (1,0.5) as shown in Fig-
ure 2c.
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Figure 1. Average Relative Posterior Median for Σ2 (Colors black, red, green, blue correspond to (ratio, σT ) pairs (0.5,0.5),
(0.5,1), (1,0.5), (1,1). Solid lines are for Prior 1. Dashed lines are for Prior 2.)
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(b) σI,sys
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(c) σT,ran
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(d) σT,sys

Figure 2. Average Relative Posterior Interval Length for Σ2 (Colors black, red, green, blue correspond to (ratio, σT ) pairs
(0.5,0.5), (0.5,1), (1,0.5), (1,1). Solid lines are for Prior 1. Dashed lines are for Prior 2.)
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6.2. Σ3

The average relative posterior median results for Prior 2 are
the most interesting results. The same type of figures just
described for Σ2 are available in Burr and Hamada (2014c)
for the Σ3, Σ4, and Σ5 scenarios; we summarize here the key
findings.

The best improvement is for σI,ran, while there is no im-
provement for σI,sys. This is not surprising because σI,sys
does not appear in Σ3 as presented in Section 10.1, and so it
is not important to estimate σI,sys well for our main purpose
of improving the estimate of Σ3.

There is no improvement for (ratio, σT ) pairs (0.5,0.5) and
(1,0.5), i.e., for the small σT . In Section 3.2, σT appears
with other terms, making it hard to estimate when it is small.
However, for the other two pairs, there is improvement. For
σT,sys, there is only slight improvement. and there is little
improvement for the elements of ΣMB .

6.3. Σ4

The average relative posterior median results for Prior 2 are
the most interesting findings. The best improvement is for
σI,ran. There appears to be no improvement for (ratio, σT )
pairs (0.5,0.5) and (1,0.5), i.e., for the small σT . In the Ap-
pendix (Section 10.2), σT appears with other terms, so it is
hard to estimate when it is small. However, for the other two
pairs, there is improvement. For σI,sys and σT,sys, there is
only slight improvement, and there is little improvement for
the elements of ΣMB .

6.4. Σ5

Again the Prior 2 results are the most interesting. The best im-
provement is for σI,ran. For σT,ran, unlike that for the previ-
ous ΣMB , there is improvement for (ratio, σT ) pairs (0.5,0.5)
and (1,0.5). It is not clear from Section 10.3 in the Appendix
why this addition to the variance propagation results in Sec-
tion 10.2 makes a difference. For σI,sys, σT,ran and σT,sys,
there is only slight improvement. There is some improvement
for the elements of ΣMB .

7. USING ONE LONG TRAINING SET

Here we consider the training set as one long data set rather
than using blocks of one-year periods as in the previous op-
tion. Our purpose is to investigate which option leads to more
improvement in the estimate of ΣMB . As with the previous
option, we use ratio σran

σsys
= 1, σI = 1, σT = (0.1, 1), n = 12

balances, number of years training 4 and 8 as above, with
Prior 2. From Section 10.2 in the Appendix, there is no dif-
ference for Σ4 between the one long training set and multiple
segments covariance matrices, because they are block diago-
nal. Consequently, we do not consider Σ4 further. Note that
for Σ2, Σ3 and Σ5, the one long training set and multiple seg-

ments data will not be the same because their MB covariance
matrices are different. Here we use average relative median
and average relative interval length as previously considered.
These results are based on 1000 data sets and 5000 posterior
draws per data set.

7.1. Σ2

From Section 3.2 with the one long training set, there are 1
and 3 additional covariance matrix entries over m = 2 and
4 multiple two-year sets (i.e., between the last balance of the
last year of the first set and the first balance of the first year
of the next set) for σ2

I,ran and the same for σ2
I,sys. Conse-

quently there is hardly any difference for the average relative
posterior median results. The same holds for the posterior in-
terval length results that are slightly smaller for the one long
training set. These differences for σ2

I,ran and σ2
I,sys appear to

be within “simulation error,” the error associated with doing a
finite number of simulations. Similarly, apparent differences
for σ2

T,ran and σ2
T,sys are easily attributed to “simulation er-

ror” associated with doing a finite number of simulations.

7.2. Σ3

From Section 10.1 in the Appendix with the one long train-
ing set, there are 1 and 3 additional covariance matrix entries
over m = 2 and 4 multiple two-year sets (i.e., between the
last balance of the last year of the first set and the first bal-
ance of the first year of the next set) for −σ2

I,ran + σ2
T,sys,

so there is little additional information for σ2
I,ran besides it

being coupled with σ2
T,sys. However, for the remaining bal-

ances between the multiple data sets, their covariance matrix
entries are σ2

T,sys. We do not have an explanation for why
one long period is worse for σ2

T,sys and for σ2
T,ran, especially

for σT = 1; however, the difference is small and possibly due
mostly to using a finite number of simulations.

7.3. Σ5

From Section 10.3 in the Appendix, there are additional co-
variance matrix entries between balances from different years
that couple σ2

I,sys and σ2
T,sys. There are also additional co-

variance matrix entries between balances from different years
for σ2

T,sys. Again, using one long period is slightly worse for
σ2
I,sys and σ2

T,sys.

8. SEQUENTIAL TESTING IN NMA

Quantitative evaluations of the loss detection probability for
sequential tests of MB sequences with various loss scenar-
ios have been presented (Avenhaus and Jaech, 1981; Beed-
gen, 1987; Jones, 1989; Speed and Culpin, 1986; Burr et al.,
1995), but estimation error in ΣMB was ignored. The most
commonly-used sequential test in safeguards is Page’s cusum
test applied to a transform of the MB sequence (known as

8
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the SITMUF sequence, the standardized independently trans-
formed MUF sequence, where MUF = MB is the international
term “material unaccounted for”). Other sequential tests in-
clude the “power one” test, the cumulative MUF test, and the
GeMUF test, which is similar to the Mahalanobis distance,
but adapted to be sequential (Speed and Culpin, 1986; Beed-
gen, 1987;). For our purposes, it is sufficient to consider only
Page’s cusum test applied to the SITMUF sequence. Our fo-
cus is to evaluate the impact of estimation error in ΣMB (with
or without estimation error reduction by using training data)
on the performance of Page’s test applied to the SITMUF se-
quence.

Page’s statistic for SNM loss is calculated on balance period t
as St = max(0, St−1+Yt−k), where k is a control parameter
and Y = AX is the SITMUF sequence computed from the
MB sequence X = x1, x2, . . . xn. The matrix A = Σ

−1/2
MB ,

and in practice, the Cholesky decomposition is used to com-
pute Y . Page’s test alarms at period t if St > h for some
alarm threshold h.

The typical approach to apply Page’s test in NMA is to set
k equal to approximately one half of a “significant quantity”
(SQ), which for Pu is 8 kg, because this leads to a good detec-
tion probability for a loss of 8 kg or more (Page, 1955). Then,
simulation is used to select h for k = 8/2 = 4 to have the
nominal false alarm probability (FAP) of 0.05 per year. Note
that this approach assumes Σ̂MB = ΣMB . If instead we al-
low for estimation error in Σ̂MB , we can estimate the range
of FAPs that could result from estimation error in Σ̂MB . As
an example, we assumed a 10 % relative standard deviation in
each of σI,ran, σI,sys, σT,ran and σT,sys for scenario 2 with
Σ2. We found (by using 106 simulations, with each simula-
tion having a different value of Σ̂MB according to the 10%
relative standard deviation in each of σI,ran, σI,sys, σT,ran
and σT,sys), that the lower 2.5% and upper 97.5% quantiles
of the FAPs are 0.02 and 0.28, respectively, with an average
FAP of 0.05, equal to the nominal FAP. Now if we multi-
ply each of the 10% relative standard deviations by a factor
of 0.8 (Figure 2 suggests that the factor 0.8 is reasonable for
σI,ran, and is optimistic, depending on the prior and case, for
the other standard deviations, but is used only for illustration
here), then the 2.5% and upper 97.5% quantiles are 0.02 and
0.09, again with an average FAP of 0.05.

Similarly, the detection probability (DP) for a given SNM
loss can be estimated using simulation, but estimation error
in Σ̂MB is typically ignored. As with the FAP, we can use
simulation to find the range of actual DPs that results from
error in Σ̂MB . For example, we simulated the effect of SNM
loss of 0.8 units (in units of the standard deviation) for 5 con-
secutive periods, again for case 2 scenario with Σ2. Using
simulation, we find that the true DP is 0.32 when the correct
value of Σ2 is known. The 2.5% and upper 97.5% quantiles
are 0.09 to 0.88, and the average DP is the same as the true

DP, 0.32. If the 10% relative standard deviations in σI,ran,
σI,sys, σT,ran and σT,sys) are multiplied by a factor of 0.8,
then the 2.5% and upper 97.5% quantiles are 0.29 and 0.34,
respectively, again with an average of 0.32, which is the true
DP.

If one uses the correct prior, our prior 1, then on average, the
true FAP is the same as the nominal FAP. However, for any
one facility, there could be a very large difference between the
actual FAP and the nominal FAP (0.02 to 0.28 in our scenario
2 example, with a nominal FAP of 0.05 per year), and simi-
larly for the DP. Current efforts to use PM data more quanti-
tatively are confronted with the same challenge to try to make
the actual FAP close in value to the nominal FAP.

9. DISCUSSION

This article demonstrated how training data can be used to es-
timate ΣMB . Previous studies have ignored estimation error
in ΣMB . The simulation study demonstrated much improve-
ment for the estimate of σI,ran. However, even with 20 years
(20 calibration periods) of training data, there was only mod-
erate or little improvement in the estimates of σI,sys, σT,ran
and σT,sys. We do not claim that these are general findings,
although an argument based on degrees of freedom suggests
that systematic error variances are more difficult than random
error variances to estimate.

In recent efforts to apply PM, similar variance propagation
equations as presented here apply (Smith et al., 2013). And,
the PM is collected 10 times per hour, plus recalibrated fre-
quently, so similar analyses are likely to be relevant for that
type of PM data, although our treatment was for NMA data.

Quantitative PM evaluates the amount of training data needed
in order for the actual FAP be close in value to the nominal
FAP. Similarly, NMA should be challenged to illustrate that
its actual FAP is close to the nominal FAP, particularly be-
cause the impact of estimation error in ΣMB can get magni-
fied when one inverts ΣMB in order to compute the SITMUF.
We have shown how training data can be used to improve the
estimate of ΣMB , but one conclusion is that metrology data
should continue to be collected, as it provides the other op-
tion to improve the estimate of ΣMB . For NMA data, 20 cal-
ibration periods (perhaps years) of training data is unrealistic,
and was only examined for completeness. We did use diffuse
prior distributions, however. For real processing plants, the
measurement system should be well understood, so that the
prior distributions are much tighter and this type of analysis
could be repeated.

This article shows to what extent training MB data can be
used to update the estimates of σI,ran, σI,sys, σT,ran and
σT,sys depending on the situation. Instead of training data
consisting of multiple segments, we also tried one long data
set. There were only slight differences between the multiple
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segments and one long training set methods which we believe
is due to using a finite number of simulations, based on 1000
data sets and 5000 MCMC posterior draws of the parameters
per data set.
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10. APPENDIX 1

Appendix 1 describes the assumptions for Σ3, Σ4, and Σ5.

10.1. Extended Model, No Cleanout, No Measurement Cal-
ibration (Σ3)

We have the tth balance, Xt = It + Tt − It−1 where σI,ran
and σI,sys are the random and systematic error standard de-
viations of It and σT,ran and σT,sys are the random and sys-
tematic error standard deviations of Tt. Then we have:

V ar(It + Tt − It−1) = 2σ2
I,ran + σ2

T,ran + σ2
T,sys,

Cov(It + Tt − It−1, It+1 + Tt+1 − It) = −σ2
I,ran + σ2

T,sys,

and for j >= 2,

Cov(It+j + Tt+j − It+j−1, It + Tt − It−1) = σ2
T,sys.

This holds for multiple years.

10.2. Extended Model, Cleanout, Measurement Calibra-
tion (Σ4)

We have the tth balance, Xt = It + Tt − It−1 where σI,ran
and σI,sys are the random and systematic error standard devi-
ations of It and σT,ran and σT,sys are the random and system-
atic error standard deviations of Tt. Because of cleanout, I0
and In are zero with no associated measurement error. Then
we have for the first year:

V ar(I1 + T1) = σ2
I,ran + σ2

I,sys + σ2
T,ran + σ2

T,sys

V ar(Tn − In−1) = σ2
I,ran + σ2

I,sys + σ2
T,ran + σ2

T,sys

For 2 ≤ t ≤ n− 1,

V ar(It + Tt − It−1) = 2σ2
I,ran + σ2

T,ran + σ2
T,sys.

Cov(I1 + T1, I2 + T2 − I1) = −σ2
I,ran + σ2

T,sys

For 3 ≤ t ≤ n− 1,

Cov(I1 + T1, It + Tt − It−1) = σ2
T,sys.

Cov(I1 + T1, Tn − In−1) = −σ2
I,sys + σ2

T,sys

Cov(In−1 + Tn−1 − In−2, Tn − In−1) = −σ2
I,ran + σ2

T,sys

For 2 ≤ t ≤ n− 2,

Cov(It + Tt − It−1, Tn − In−1) = σ2
T,sys.

For 2 ≤ t ≤ n− 2,

Cov(It + Tt − It−1, It+1 + Tt+1 − It) = −σ2
I,ran + σ2

T,sys.

For t ≥ 2, j ≥ 2, and t+ j ≤ n− 1,

Cov(It + Tt − It−1, It+j + Tt+j − It+j−1) = σ2
T,sys.

For multiple years, the covariance matrix is block diagonal.

10.3. Extended Model, Cleanout, No Measurement Cali-
bration (Σ5)

We have the same covariances for balances within the same
year as given in the preceding scenario. Below is what has to
be added for years 1 and 2 for all pairs of years.

Cov(I1 + T1, In+1 + Tn+1) = σ2
I,sys + σ2

T,sys

Cov(Tn − In−1, In+1 + Tn+1) = −σ2
I,sys + σ2

T,sys

For n+ 2 ≤ k ≤ 2n− 1,

Cov(I1 + T1, Ik + Tk − Ik−1) = σ2
T,sys.

Cov(I1 + T1, T2n − I2n−1) = −σ2
I,sys + σ2

T,sys

For 2 ≤ j ≤ n− 1,

Cov(Ij + Tj − Ij−1, T2n − I2n−1) = σ2
T,sys.

Cov(Tn − In−1, T2n − I2n−1) = σ2
I,sys + σ2

T,sys

For 2 ≤ j ≤ n− 1 and n+ 2 ≤ k ≤ 2n− 1,

Cov(Ij + Tj − Ij−1, Ik + Tk − Ik−1) = σ2
T,sys.
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For 2 ≤ j ≤ n− 1,

Cov(Ij + Tj − Ij−1, In+1 + Tn+1) = σ2
T,sys.

For n+ 2 ≤ j ≤ 2n− 1,

Cov(Tn − In−1, Ij + Tj − Ij−1) = σ2
T,sys.
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