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ABSTRACT 

Today, poor long-term performance and durability 

combined with high production and maintenance costs 

remain the main obstacles for the commercialization of the 

polymer electrolyte membrane (PEM) fuel cells (PEMFCs). 

While on-line diagnosis and operating condition 

optimization play an important role in addressing the 

durability issue of the fuel cell, health-monitoring and 

prognosis (or PHM) techniques are of equally great 

significance in terms of scheduling condition-based 

maintenance (CBM) to minimize repair and maintenance 

costs, the associated operational disruptions, and also the 

risk of unscheduled downtime for the fuel cell systems.  

The two essential components of a PHM scheme for a 

general engineering system are 1) an accurate aging model 

that is capable of capturing the system’s gradual health 

deterioration, and 2) an algorithm for damage estimation 

and prognostics. In this paper, a physics-based, prognostic-

oriented fuel cell catalyst degradation model is developed to 

characterize the relationship between the operating 

conditions and the degradation rate of the electro-chemical 

surface area (ECSA). The model complexity is kept minimal 

for on-line prognostic purpose. An unscented Kalman filter 

(UKF) approach is then proposed for the purpose of damage 

tracking and remaining useful life prediction of a PEMFC. 

1. INTRODUCTION 

To date long-term performance and durability of the fuel 

cells are difficult to quantify because not all degradation 

mechanisms of the various fuel cell components are 

completely understood. The fuel cell’s performance 

degrades irreversibly throughout its lifetime mainly due to 

the following components’ degradations: (1) catalyst 

degradation (catalyst particle coarsening); (2) carbon 

support degradation (carbon corrosion); and (3) membrane 

degradation (chemical deterioration and dehydration) 

(Okada, 2003; Schmittinger & Vahidi, 2008). Factors 

affecting these degradation processes include temperature, 

high potentials, heat cycle but most of all water 

management, contaminants, and impurities. Thus, 

depending on the power load and the long-term operating 

conditions of the fuel cell, the extent of performance and 

durability degradation varies. In general, the longer the fuel 

cell stack is operated in transient or cycling conditions, or 

detrimental operating conditions such as flooding, the 

stronger is the corrosion and therefore the degradation. 

While extensive research has been carried out on control 

and dynamical modeling for fuel cell system (Alejandro, 

Arce, & Bordons, 2007; Danzer, Wilhelm, Aschemann, & 

Hofer, 2008; Miotti, Di Domenico, Guezennec, & 

Rajagopalan, 2005; Pukrushpan, Peng, & Stefanopoulou, 

2004; Soltani & Bathaee, 2010), modeling work addressing 

PEMFC degradation and corresponding health-monitoring 

and prognostic system has been much less reported (Zhang 

& Pisu, 2012). Many of the degradation models have little 

physical basis, and thus have no predictive capability (A.A. 

Franco & Tembely, 2007). Franco et al. (A. A. Franco, 

Schott, Jallut, & Maschke, 2007; Alejandro A. Franco & 

Gerard, 2008; Alejandro A. Franco et al., 2009; Alejandro 

A. Franco, Gerard, Guinard, Barthe, & Lemaire, 2008) have 

done a series of leading work on developing a multi-scale 

mechanistic model of the electrochemical aging processes in 

a PEMFC to describe, in particular, the carbon corrosion at 

the cathode, the cathodic oxidation/dissolution of platinum 

and the carbon supported platinum electrochemical ripening. 

However, its computational fluid dynamics (CFD) modeling 

approach makes it unsuitable for the on-line prognostic 

purpose due to the computation burden involved. Also, the 

model needs too many parameters that are hard to obtain. 

Darling and Meyers (R.M. Darling & Meyers, 2003) 

proposed a spatially lumped model that treats a single, 

porous platinum electrode and the ionomeric solution that 

fills the pores of the electrode. The model includes spherical 

platinum particles that can grow and shrink as platinum 

plates and dissolves, a platinum oxide layer, and an ionic 

platinum species in solution (Pt
2+

). The kinetic expressions 

for platinum oxidation and dissolution developed in this 

work is incorporated by the same authors (Robert M. 

Darling & Meyers, 2005) in a transient, one-dimensional 
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mathematical model of the cross section of a PEM fuel cell. 

In this model, each electrode contains two platinum particle 

sizes, enabling a description of electrochemically driven 

transfer of platinum between particles of different sizes. 

That is, platinum can be exchanged between particles by 

dissolution and crystallization, capturing the underlying 

principles of the quasi-Ostwald ripening. Simulation results, 

however, didn’t quite capture the curvature of the ECSA 

evolution with time as seen in the durability tests, and show 

that the ECSA decreases linearly. The authors presumed that 

this may have been caused by short simulation time.  

Bi and Fuller (Bi & Fuller, 2008) modified the model in 

(R.M. Darling & Meyers, 2003; Robert M. Darling & 

Meyers, 2005) by considering the diffusion of Pt ions in the 

membrane electrode assembly (MEA), while still adopted 

the two particle groups model structure. The authors 

concluded that the model is not adequate to predict well the 

catalyst degradation rates including Pt nanoparticle growth, 

catalyst surface area loss and cathode Pt mass loss, and 

suggest other degradation mechanisms such as new Pt 

cluster formation on carbon support and neighboring Pt 

clusters coarsening be investigated.  

Holby et al. (Edward F. Holby, Sheng, Shao-Horn, & 

Morgan, 2009) investigated the influence of particle size 

distribution (PSD) and crossover hydrogen on the Pt 

nanoparticle stability in PEM fuel cells by extending the 

previous degradation model of Darling and Meyers (R.M. 

Darling & Meyers, 2003; Robert M. Darling & Meyers, 

2005) to include PSD effects, more complete interfacial 

thermodynamics, and hydrogen crossover effects. With the 

PSD sampled non-uniformly at 700 distinct radii (with 200 

radii concentrated in the small particle region of the final 

distribution for accuracy), the model successfully captures 

the evolution trend of the PSD and the ECSA of the catalyst 

with aging. However, considering so many particle groups 

also compromises the computational efficiency of the 

model.  

In this paper, a physics-based, prognostic-oriented catalyst 

degradation model is developed to characterize the fuel cell 

damage that establishes the relationship between the 

operating conditions and the degradation rate of the electro-

chemical surface area (ECSA). Our approach follows from 

the analysis of the underlying principle of the catalyst 

degradation, investigation of the interacting behavior of 

multi-group particles of the catalyst and the effect of the 

particle size distribution, and analytical derivation of a 

reduced order model that can describe and predict the 

lumped ECSA based on the analysis result. The model 

complexity is thus kept minimal and is suitable for on-line 

prognostic purpose. The model is then utilized in a novel 

UKF framework for the damage tracking and RUL 

estimation of the PEM fuel cell. 

The rest of the paper is organized as follows: Section 2 

presents the derivation process of a prognostic-oriented fuel 

cell catalyst degradation model; Section 3 gives a brief 

introduction to the UKF framework; and in Section 4, we 

apply the UKF approach to the damage tracking and RUL 

prediction of the fuel cell, and discuss the results obtained 

from the simulation tests.. 

2. AGING MODELING FOR CATALYST DEGRADATION 

CHARACTERIZATION 

2.1. Catalyst Degradation Mechanisms 

The main degradation mechanisms for the catalyst can be 

roughly divided into three steps.  

The first step of this process is Pt dissolution/oxidation, 

where Pt atoms are either oxidized to Pt ions and dissolve 

into the ionomer phase in the catalyst layer, or form an 

oxide film on the surface of the Pt particles. Platinum 

dissolution is described by reaction (1) in the forward 

direction.  

 
1

2
Pt  Pt 2e


 
  (1) 

Pt
2+

 is assumed to be the only ionic platinum species present 

in significant amounts, while other ionic species with higher 

oxidation states are not expected to be important in the 

region of interest (R.M. Darling & Meyers, 2003).  

Platinum oxide film formation and the subsequent 

dissolution of this film are described by (2) and (3) 

respectively. 

 
2

2
Pt + H O PtO + 2H  + 2e


   (2) 

 2

2
PtO + 2H   Pt + H O

   (3) 

When exposed to high voltage, the formation of the oxide 

layer actually serves to protect the Pt particles from 

accelerated dissolution through (1) due to elevated potential 

across the interface of the electrolyte and the cathode. 

Although it is thermodynamically possible for the PtO to be 

further chemically dissolved through reaction (3), the 

kinetic rate of this reaction is considered to be extremely 

slow. Therefore, (3) is neglected in our degradation model. 

The second step of the quasi-Ostwald process is the 

migration of Pt ions, where the dissolved Pt ions (Pt
2+

) 

migrate to nearby Pt particles, with a distance of a few 

nanometers [17]. The ions can also migrate into the proton 

exchange membrane and precipitate there by reduction of 

Pt
2+

 by crossover H2 from anode, as described by (4). 

 2

2
Pt + H   Pt + 2H

   (4) 

This reaction results in the absolute mass loss of the 

effective catalyst and the forming of a Pt “band” in the 

membrane (Bi & Fuller, 2008). The Pt band is actually 

observed by electron probe microanalysis (EPMA) inside 

the electrolyte membrane of the used MEA at a location 
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near the cathode catalyst layer (Shimoi, Aoyama, & Iiyama, 

2009). However, the authors in (Shimoi et al., 2009) also 

reported that the amount of Pt inside the electrolyte 

membrane was markedly smaller than the Pt loading of the 

cathode catalyst layer. Another evidence of the negligibility 

of the Pt precipitation in the membrane can be found in 

(Debe, Schmoeckel, Vernstrom, & Atanasoski, 2006), 

where the surface area loss in both catalyst types appears to 

be primarily by agglomeration. Based on these results, 

reaction (4) is not considered in this study. 

The third step of the process is the Pt ions reduction and 

redeposition on the Pt particle surface, which is described 

by reaction (1) in the reverse direction. Pt
2+ 

ions tend to 

redeposit on larger Pt particles that have lower surface 

energy. This can be seen in the kinetic rate equation for the 

Pt dissolution/deposition to be presented later.  

Since the key kinetic reactions involved in this process, i.e., 

(1) and (2), are both electro-chemical reactions, it becomes 

obvious that potential load is the main driving force for the 

quasi-Ostwald ripening. In fact, during the potential rise, Pt 

dissolution, along with the Pt oxidation, is facilitated due to 

favored electro-chemical environment, with the smaller Pt 

particle dissolving in a faster rate; while when potential 

drops, Pt ion reduction is facilitated and tends to redeposit 

on larger Pt particle due to its lower surface energy. 

Repeated cycling of the potential therefore results in larger 

catalyst particles getting larger while smaller catalyst 

particles getting even smaller. The consequence is then Pt 

ripening, which in turn causes decreased ECSA.  

The quasi-Ostwald ripening mechanism explains why the 

high potential and the load cycling are the main aging 

factors for catalyst degradation. There is, however, another 

mechanism for catalyst degradation – particle migration and 

coalescence – that is not driven by the potential. But due to 

the fact that the role of this mechanism in the Pt surface area 

loss at low-temperature fuel cells is still uncertain, and there 

still lacks unique experiment evidence in support of crystal 

migration and coalescence (Shao-Horn et al., 2007), it is not 

considered in the catalyst degradation modeling here.  

2.2. N-Group Catalyst Degradation Model 

In this subsection, we establish a detailed catalyst 

degradation model based on the platinum dissolution kinetic 

model proposed by Darling and Meyers in (R.M. Darling & 

Meyers, 2003; Robert M. Darling & Meyers, 2005). The 

main assumptions for this model are as follows: 

1) The model is spatially lumped that treats a single 

porous platinum electrode, and the ionomeric solution 

that fills the pores of the electrode (R.M. Darling & 

Meyers, 2003), while the concentration gradient of the 

Pt ion across the catalyst layer is neglected. 

2) Pt precipitation in the membrane is neglected. 

3) The cathode includes Pt/C solid phase uniformly mixed 

with Nafion electrolyte and gas pore phase. The 

polymer (and/or ionomer) volume fractions were 

assumed to be 30% in the cathode and 100% in Nafion 

membrane (Bi & Fuller, 2008). 

4) There are N groups of Pt particles. All particles in each 

group have a unique and identical initial radius at the 

fresh state of the MEA, and they are uniformly 

distributed across the cathode. 

5) The particle can grow and shrink during the aging 

process, but the particle number in each group remains 

the same; also, the sizes of all the particles in a group 

are the same at all times. 

6) When the radius of one group of Pt particles reached 

the Pt atom radius, that group of Pt particles is 

considered to be dissolved completely into the inomer 

phase.  

7) PtO grows as a film of uniform thickness, on the 

surface of the platinum crystallites. 

Now, for particles in group i, we can obtain the dynamics of 

the characteristic variable, i.e., the radius
i

r and the PtO 

coverage
 

PtO

i
 , by material balance, which are given in (5) 

(R.M. Darling & Meyers, 2003) 

 

 

     

Pt

1

P t

P tO PtO2

m ax

2

ii

i ii

i

i

dr M
v

dt

d drv

dt r dt



 


 





 

 

 (5) 

where
Pt

M and
Pt

 are the molecular weight and density of 

platinum, respectively. v1 and v2 refer to the reaction rates of 

(1) and (2), in moles per second per square centimeter of Pt 

surface area. 
max

 is the number of moles of active sites per 

unit of platinum area. This number is taken to be constant 

(R.M. Darling & Meyers, 2003) and is calculated assuming 

a specific charge of 220 µC/cm
2
 in the hydrogen adsorption 

region. This equation indicates that PtO grows as a film of 

uniform thickness, on the surface of the platinum 

crystallites. 

The reaction rate v1 for the Pt dissolution rate 

( 2
Pt  Pt 2e

 
 ) is expressed in (6) 

 
   

2

2

1

1

1 1 vac

1Pt
ref 1

P t

exp

exp

c

ii i

c

i

F
U

RT r
v k

C F
U

C RT r

















   
     

    
  

    
         

      

(6) 

where k1 is a constant characteristic of the kinetic rate of the 

reaction, and is usually determined by experiments; F is the 
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Faraday constant, R is the universal gas constant (J/mol·K) 

and T  the absolute temperature (K);
c

 is the phase 

potential difference between the electrolyte phase and the 

cathode phase; 
1

1.188VU

 is the standard equilibrium 

potential of reaction (1) for bulk platinum; 
10

1
1.14 10


  ;  

vac

i
 is the fraction of the platinum surface 

that is not covered by oxides, and     vac PtO
max 0,1

i i
   , 

due to the fact that the PtO film can grow beyond one layer. 

2
Pt

C  and 2

ref

P t
C  are the actual and reference concentration for 

Pt
2+

( 2

ref

P t
C  is chosen to be 1M, i.e., 1mol/L in this work) 

while 2
Pt

C  can be written as (7) using mass balance. 

 

 

2

2

1

Pt

fc CL

4
i

i i

i

r N v
dC

dt A











 (7) 

where
i

N is the particle number in the i-th group. 

fc
A and

C L
 are the nominal fuel cell area and the catalyst 

layer  thickness, respectively. 

The reaction rate v2, the Pt oxidization rate 

(
2

Pt + 2H O PtO + 2H  + 2e
  ) is expressed in (8) 

 
 

 

PtO 2

2

2 2 2

2H
refP tO 2

H
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(8) 

where k2 is kinetic rate coefficient of the reaction; 

H
C  and ref

H
C  are the actual and reference concentration for 

H
+
; 30 kJ/m ol  (R.M. Darling & Meyers, 2003), 

2
0.76U


 V, and 11

2
3.65 10


  . 

From the kinetic rate equations presented above, it now 

becomes clear that particles with smaller radius
i

r tend to 

have higher dissolution rate v1 and oxidation rate v2 under 

the same potential load. 

It should be noted that, instead of the cell voltage measured 

across the fuel cell terminals, the aging process is actually 

driven by the phase potential difference between the 

electrolyte phase and the electrode phase, i.e., 

c c e
     in the case of cathode, where

e
 is the 

electrical potential of the electrolyte, and
c

 is the electrical 

potential at the cathode. As the cell voltage can be expressed 

as
cell c a fc ohm

V i A R        , and the anode phase 

potential difference 
a e a

     can be neglected, the 

potential load can be obtained as
c cell fc ohm

V i A R     , 

i.e., the so called “iR free voltage”. 

To simplify the notation, we 

define exp ,
c c

F
u

RT


 
  

 
1

exp
F

U u
RT

  
 

 
, 

and  1

1
exp

i

i

F
f r

RT r

 
 

 

. It follows from (8) that 
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ref1 1 vac 1

Pt 1

i i c

i

c i

u C u
v k f r
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 (9) 

Also, we define 2

geo
4

i i

i

A r N  to be the geometric 

surface area of the catalyst, which is calculated by totalizing 

the surface area of all particle groups. Note that 
geo

A  does 

not equal to the ECSA, the two area values can be thought 

to be proportional to each other, with a typical rescaling 

coefficient of ECSA/
geo

A =0.63 , as given by (Edward F. 

Holby et al., 2009). 

As a first step to study the model behavior, we assume that 

only two particle groups are present in the cathode. The 

concept of the bimodal particle size distribution is also 

proposed in (Robert M. Darling & Meyers, 2005). 

For reaction rate coefficient, we choose k1 = 10
-10

 

mol/cm
2
/s, k2 = 3×10

-10
 mol/cm

2
/s, these rate parameters 

will be used throughout this section unless otherwise 

specified. Simulation result for the 2-group case with a 

constant potential load 0.97V
c

  is shown in Figure 1. 

The ratio of ECSA over nominal fuel cell area ECSA/
fc

A  is 

termed as catalyst magnifying coefficient here.  

 

Figure 1. Evolution of the catalyst magnifying coefficient 

and the two radius with time (constant 0.97V) 

As seen from Figure 1, with the 2-particle group model, the 

catalyst magnifying coefficient (or equivalently the ECSA) 

decreases, due to the underlying ripening mechanism. But 

unfortunately, the model fails to capture the exponential-like 

shape of the ECSA decay as observed from experimental 
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results as shown in (E.F. Holby, Shao-Horn, Sheng, & 

Morgan, 2010). In fact, instead of having a degradation rate 

that gradually slows down, the modeled degradation rate in 

Figure 1 is accelerating throughout the decay process, and 

after about 21h, the ECSA reached a stagnant state.  

Next, we assume that there are 64 particle groups in the 

cathode. Generally speaking, more particle groups would 

result in better model accuracy, but bigger computational 

burden at the same time. The number of 64 is chosen here to 

balance both the accuracy and the computational burden. 

A normal distribution for the particle size is assumed in the 

initial state; the bell shaped distribution plot is shown in the 

following. The simulation is carried out with the same 

constant potential load 0.97V
c

  . Simulation results are 

presented in Figure 3 ~ Figure 5. 

In Figure 3, it can be seen that the 64-particle-size model 

has now successfully captured the exponential trend of the 

ECSA decay that is observed in the PEM fuel cell aging 

test. Figure 4 shows the evolution of the particles size 

distribution during aging at 100h, 200h, 300h, and 700h 

respectively. The plots qualitatively reflect the trend of the 

particle size distribution to spread more widely and shift to 

larger particle size region. Figure 5 depicts the radius 

evolution of all particle groups with aging, with the mean 

radius plotted in bold blue line. It can be seen that the 

smaller groups dissolve and disappear one by one (indicated 

by crossing the green horizontal line that represents the Pt 

atom radius), while the larger particles grow at the cost of 

these small particle size groups. 
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Figure 2. Particle size distribution in the initial state 

 

Figure 3. The evolution of the catalyst magnifying 

coefficient for 64-particle model (constant 0.97V) 
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Figure 4. Evolution of the particles size distribution during 

aging (constant 0.97V) 
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Figure 5. Radius evolution of all particle groups with time 

(constant 0.97V) 

It is now clear that with sufficient partitioning of the particle 

groups of the catalyst, the electrochemically driven 

dissolution and re-deposition catalyst ripening mechanism 

can well explain and capture the exponential decay of the 

ECSA damage variable. However, in terms of on-line 

prognostic, fine partitioning of the catalyst particle model 

also imposes a great computational burden on the prognostic 

scheme and thus considered to be unsuitable for this 

purpose. Next, by analysis of the underlying principle of the 

catalyst degradation, investigation of the interacting 

behavior of multi-group particles of the catalyst and the 

effect of the particle size distribution, we analytically derive 

a reduced order aging model that not only keeps the model 

complexity minimal, but is also capable of describing and 

predicting the lumped ECSA. 
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2.3. Model Simplification for Prognostic Purpose 

Before deriving the simplified degradation model, we 

analyze 2-particle-size model in more details. Simulation is 

carried out using a cycling potential load with 0.8V-1V 

square profile, as shown in Figure 6. Simulation results are 

presented in Figure 7~Figure 9. 

 

Figure 6. The evolution of the catalyst magnifying 

coefficient for 2-particle-size model (cycling potential with 

square profile, 0.8V-1V) 

 

Figure 7. Evolution of the catalyst magnifying coefficient 

and the two radius with time (cycling potential with square 

profile, 0.8V-1V) 

 

Figure 8. PtO coverage of the two groups and the Pt ion 

concentration with time (cycling potential with square 

profile, 0.8V-1V) 

 

Figure 9 Dissolution rate for the two groups with time 

(cycling potential with square profile, 0.8V-1V) 

In Figure 7, ECSA (equivalent to the catalyst magnifying 

coefficient) is seen to have a much greater degradation rate 

at high potential, i.e., 1V hold, in contrast to the 0.8V hold. 

This can be better illustrated by Figure 9, where it is seen 

that, during the 1V hold, Pt particles with smaller size 

(group 1) has a positive dissolution rate while Pt particles 

with larger size (group 2) has a negative dissolution rate, 

meaning the Pt dissolution and Pt ion redeposition are 

actually occurring at the same time even if the potential load 

is hold constant.  

From Figure 8, we can see the Pt ion concentration reaches 

its steady state about 20s after the potential rise. The steady 

state is possible only when the number of dissolving Pt atom 

per unit time equals the number of redepositing Pt ion per 

unit time. By referring to the Pt ion dynamics in (7), we 

have at steady state that 
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From the above equation, we then get the steady state of the 

Pt ion concentration corresponding to the equivalent 

potential input
c
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(10) 

where
avg

r is the equivalent average radius defined by the 

above equation. Note that the steady state Pt ion 

concentration is independent with the kinetic reaction rate 

k1, while a function of the potential load and the average 

radius of the Pt particles. 

Now revisit the dissolution 

rate
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, and 

note that   1
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is a decreasing function. It 

then becomes obvious that, at a certain level of Pt ion 

concentration, the smaller particles have higher dissolution 

rates. In fact, there theoretically exists a radius such that the 

dissolution rate v1=0, i.e. the particles with this radius would 

neither dissolve nor be redeposited by the Pt ions. The 

radius, which is defined by us as balanced radius and 

denoted as rbal, satisfies the following equation: 
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 (11) 

By comparing the above equation to (10), it is clear that, rbal 

and ravg are equivalent with each other in the sense of Pt ion 

concentration balance. All the particles with smaller radius 

than the balanced radius have positive dissolution rate and 

shrink in size, while the other particles larger than the 

balanced radius have negative dissolution rate (redeposition) 

and grow.  

Now, by taking the derivative of the geometric catalytic 

surface area 
2

geo
4

i i

i

A r N   with respect to time, we have 

 

 

 

 

geo 2

Pt

1

Pt

P t

1

Pt

4 4 2

4 2

8

i i i i i

i i

i

i i

i

i

i i

i

dA d
r N r r N

dt dt

M
r v N

M
r v N

 







    

 
     

 

    

 





 (12) 

Substituting (9) and (10) into the above equation, we get 

 

 

 

 

 

 

 
 

2

2

geo Pt

1

Pt

1

Pt

1 vac

Pt P t
ref

P t 1

1

Pt

21 vac
2

Pt

1 avg

1

8

8

8

i

i i

i

c

i

i

i i

i

c i

c

i

i

i i

i c

c i

dA M
r v N

dt

u
f r

uM
r N k

C u

C u f r

u
f r

uM
r N k

u u
f r

u f ru














 


 






    

 
 

 
    

 
   
   

 
 

 
    

          







 

 
 

 
 

 

2

1 avggeo Pt

1 vac 1

Pt 1

8
ic

i i i

i i

f rdA M u
k r N f r

dt f ru


 


  
  

     

 
 

 (13) 

To establish a connection between the catalytic area 
geo

A and 

the average particle radius
avg

r , the following approximation 

is made 

 Pt

avg a

geo

3 V
r r

A


   (14) 

where 
a

r is the average radius in the sense of particle 

geometry, and is the mean radius plotted in Figure 5.  

Now, to further simplify the degradation rate equation as 

expressed in (13), we make the following assumptions: 

1) At any time during the aging process, there are two 

fictitious Pt particle groups with radius r1 and r2 that 

can represent the averaged effect of the Pt particles with 

smaller and larger radius than
a

r , respectively 

(
1 a

r r and
2 a

r r ); 

2) The sum of the areas of the two fictitious Pt particle 

groups equals to the total catalytic area, 
1 2 geo

a a A  ; 

3) By defining the difference between the averaged and 

the fictitious radius as 
1 a 1

r r r   , and
2 2 a

r r r   , we 

assume that 1

a

r

r


and 2

a

r

r


are constant throughout the 

aging process.  

Assumption 3) is made by observation from Figure 5 and is 

consistent with the fact that the particle size distribution is 

spreading wider during the aging process. By making this 

assumption the modeling process is greatly simplified, and 

the simulation results show that it is a valid approximation. 

From assumption 1) and by observing that the values of 
 

vac

i
 for particle groups with different radii are very close to 
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each other (which can be seen in Figure 8), we can impose 
 

vac vac

i
  for i=1,2, and (13) can be written as 

  
 

 

2

1 ageo Pt

1 vac 1

1, 2Pt 1

8
c

i i i

i i

f rdA M u
k r N f r

dt f ru


 
 

    
      

  

  (15) 

From the assumption that Cpt
2+

 is at steady state, we have 

  
 

 

2

2

1 a2Pt

1

1

0 0
i i i

i i

f rdC
r N f r

dt f r



    
    

  

  (16) 

Substitute the total surface area for the particles in the i-th 

group 2
4

i i i
a r N  (i = 1, 2), the above equation becomes 

 
 

 
 

 

 

 

 
 

 
 

 

 

 

 

 

 

 

 

 

2 2

1 a 1 a2

1 1

1 1

2

1 a 1 a 1 2

1 2

1 2 1 2 1 a1

2

1 1 1 a2
1 a

1 1
1 a 1 1

1 1

1 1

a 2 a 2

0 0

1 1 1 1
exp exp

i i i i i

i ii i

f r f r
r N f r a f r

f r f r

f r f r f r
f r

f r f r f ra

f r f ra f r
f r

f r f rf r

F F

RT r r RT r r

 

            
       

      

  
 

  

   

    
       

    


 

1 1

1 a 1 a

1 1 1 1
exp exp

F F

RT r r RT r r

 

 

 
 


      

         
      

 

 

1 2 1 2

a 2 a 21

2 1 1 1 1

a 1 a 1

exp exp

exp exp

F r F r

RT r r RT r ra

a F r F r

RT r r RT r r

 

 

       
       

      


       
       

      

 (17) 

when 1 2

1 2

,
r r

r r

 
are small, 1 1 1 2

a 1 a 2

,
F r F r

RT r r RT r r

     
   
   

is also 

small, we can then make the following approximation by 

utilizing the Taylor expansion of the exponential function: 

 1 1 1

a a a

exp exp 2
i i i

i i i

r r rF F F

RT r r RT r r RT r r

            
           

           

 (18) 

Substitute (18) into (17), we have  

 1 2 1

2 12

a r r

r ra

 
  (19) 

Note that
1 2 geo

a a A  , then the total catalyst area in each 

group can be written as 

 

2 1 2

1 geo

2 1 2

1 1 2

2 geo

1 1 2

r r r
a A

r r r

r r r
a A

r r r

    
    

  


   
   

 

 (20) 

We already have from (15) 

 
 

 

 

 

 
 

 

 

 

geo 1 1 aPt

1 vac 1 a

1, 2Pt 1 a 1

1 1 aPt

1 vac 1 a

1, 2Pt 1 a 1

8
4

1
8

4

ic i

i i i

ic i

i i i

dA f r f rM u a
k f r

dt r f r f ru

f r f rM u a
k f r

r f r f ru





 
 

 
 





  
      

  

  
      

  





By substituting (20), the following approximation is 

obtained:

1 1 1

1 a 1geo Pt Pt

1 vac 1

Pt geo
2 1 2

2 a 2

2

3 1
8

4
2

c

a F r

r RT r rdA M u V
k f

dt Au a F r

r RT r r





 
  

   
   

       
               

    
    

 

geo Pt 1

1 vac

Pt

geoPt 1 1 2 2

1

geo Pt 1 1 2 2

4

3

3

c
dA u M F

k
dt RTu

AV a r a r
f

A V r r r r







     

         
         

      

 (21) 

Define 2

1 2

a

,
r r

r
r r

r
 


    , the simplified aging model 

can finally be expressed as 

 
   

geo geoPt 1 1

1 vac

Pt P t

3 2

geo

2

Pt

PtO PtO a2

m ax a

4 exp
3

9 1 1

2

c

r r

r r r

dA Au M F F
k

dt RT RT Vu

A

V

d drv

dt r dt



 




 

  

 

  
        

 





 



  
 

(22) 

where  vac PtO
m ax 0,1   . The degradation model is now 

simplified to a second-order system with the catalyst surface 

area (
geo

A ) and the PtO coverage as the state variables. 

Also, in terms of factorability, the expression for 

degradation rate of
geo

A is in good shape since it can be 

factorized in the form of a product of a function of the 

current amount of damage  2 geo
g A  times a function of the 

excitation amplitude  1
g

c
 , as shown in (23) 

    
geo

1 2 geo
g g

c

dA
A

dt
     (23) 
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The advantage of the degradation rate expression meeting 

condition (23) is that the Palmgren-Miner rule can now be 

tied to the damage accumulation equation. Basically, the 

Palmgren-Miner rule (Todinov, 2001) is an “additivity” 

property stating that it is possible to approximate the 

damage development under variable excitation amplitude by 

considering steps of constant amplitude and by summing the 

aging effects. This approach is used, for example, in [23], 

[24] to track damage evolution in machinery.  

Simulations are carried out for the model validation by 

comparing the simple model output with the detailed one. 

The results are shown below in Figure 10 and Figure 11. 

Respectively, a constant 0.97V and a cycling potential 

profile from 0.8V ~ 0.97V are used as the input potential 

loads to emulate the OCV aging condition and a working 

fuel cell operating condition. In both cases, the model 

parameters are chosen to be 1.1,
r

  and 0.038
r

  . It can 

be seen that, by tuning the model parameters, the simple 

model achieves good approximation to the more complex 

one. The right plots of the figures show the evolution of the 

average radius
a

r and the two fictitious radii
1

r and
2

r . 
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Figure 10. Comparison between the catalyst magnifying 

coefficient evolution for 64-particle model (constant 0.97V) 

0 500 1000
40

50

60

70

80

90

100

110

120

time (h)

E
C

S
A

/A
fc


c
=0.8~0.97V

 

 
complex model

simple model

0 500 1000
2

3

4

5

6

7

8

time (h)

ra
d
iu

s
 (

n
m

)

 

 

Average radius

r
1

r
2

 

Figure 11 Model comparison (cycling potential 0.8V ~ 

0.97V) 

3. A UKF-BASED FRAMEWORK 

3.1. Bayesian framework for joint estimation 

We first consider a general joint estimation problem based 

on the following discrete system 

  k +1 k k k k
x = f x , u , v , w  (24) 

  k k k k k
y = h x , u , n , w   (25) 

where
k

x represent the states of the system, 
k

y the 

outputs,
k

u the inputs , ,
k k

v n the process and measurement 

noises, respectively, and
k

w the time-varying system 

parameters. f is the state equation representing the system 

dynamics, which is generally nonlinear; and h is the 

measurement equation, in the form of a nonlinear map in 

general. 

Since the parameters
k

w are unknown and time-varying, the 

state and parameter must be simultaneously and jointly 

estimated based on the noisy measured output. On the other 

hand, the dynamics of the time-varying system parameters 

are usually hard to describe, i.e., there is a lack of 

descriptive dynamic equation to characterize the parameters. 

A commonly used method to address this issue is to treat the 

parameter as a stochastic signal driven by a white noise (
k

r ) 

 
k +1 k k

w = w + r  (26) 

Then, by concatenating the states and parameters to form an 

augmented state vector 
T

a T T
 
 k k k

x x w , joint state space 

equations (Wan & Merwe, n.d.) (assuming additive noises) 

can be obtained as follows 

 

 

 

a

a

    
      

    

 
   

 

k + 1 kk k k

k + 1

k + 1 kk

k

k k

k

x B vf x , u , w
x

w rI w

B v
F x , u

r

 (27) 

    a
  

k k k k k k k k
y = h x , u , w n H x , u n   (28) 

The joint estimation problem of states and parameters based 

on observation can be formulated in an optimal recursive 

estimation framework as given in the following equation 

 ˆ
a a a

E E    
   k k k k 0, 1, k

x x Y x y y y  (29) 

Two step process (recursively) are involved, the first is the 

measurement correction 

  
   

 

1

1

a a

a
p p

p
p






k k k k

k k

k k

x Y y x

x Y
y Y

 (30) 

where p(.) indicates the probability density function. 
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And the second is the one-step prediction 

      1 1

a a a a a
p p p d

 
 k k k k k k k

x Y x x x Y x  (31) 

Various filtering techniques can be implemented in this 

general recursive estimation framework, including the most 

widely used extended Kalman filter (EKF), particle filtering 

(PF), and unscented Kalman filter (UKF). EKF is difficult 

to tune, and the Jacobian is usually hard to derive, and it can 

only handle limited amount of nonlinearity; while PF can 

handle arbitrary distributions and nonlinearities but is 

computationally very complex. In this paper, we focus on 

the UKF approach since we believe it gives a nice tradeoff 

between PF and EKF. 

3.2. UKF implementation 

We assume the additive (zero mean) noise case and follow 

the UKF procedure given in (Wan & Merwe, n.d.). 

First, the augmented state estimation and covariance matrix 

are initialized with (32) and (33).  

 
0 0

ˆ
a a

E  
 

x x  (32) 

    0 0 0 0 0
ˆ ˆ

T
a a a a a

E    
  

P x x x x   (33) 

Then, for each iteration (k=1,2,…), the sigma points for the 

state variables in the last step are obtained and concatenated 

to form a matrix as follows 

 
1 1 1 1 1 1

ˆ ˆ ˆ
a a a a a

k k k k k k
c c

     
   
 

X x x P x P  (34) 

where  
2

,L L c L        , L is the dimension of 

the system given by (27), and ,  and  are all tunable 

parameters (in this paper, 3
10 , 0, 2  


   is chosen 

according to (Wan & Merwe, n.d.). Note that the addition 

(or subtraction) in (34) is not a strict mathematical notation, 

but rather a concise notation adopted from m-script of 

Matlab that actually adds (or subtracts) a vector to every 

column of a matrix. 

These sigma points are then fed to the state equation to 

generate a new set of sigma points for the state variables in 

the current step:     | 1 1

i i

k k k 


k
X F X , u , where the superscript 

(i) denotes the i-th column of the corresponding matrix, i.e., 

the i-th sigma point, and F as in (27).  

The one-step prediction for the augmented state vector in 

(31), when implemented with UKF approach, can now be 

expressed as 

 
 

2

| 1

0

ˆ

L
ia m

k i k k

i

w






 x X  (35) 

 
   

2

| 1 | 1

0

ˆ ˆ

L T
i ia c a a

k i k k k k k k

i

w
  

 



       
   P X x X x Q   (36) 

where Q is the process noise covariance matrix, and 

,
m c

i i
w w are the weights for the corresponding sigma points. 

Measurement correction, on the other hand, is given through 

(37) ~ (43) 

     | 1 | 1

i i

k k k k 


k
Y H X , u  (37) 

 
 

2

m

| 1

0

ˆ

L
i

k i k k

i

w






 y Y  (38) 

 
   

2

c

| 1 | 1

0

ˆ ˆ
k k

L T
i i

i k k k k k k

i

w
 

 



       
   y y

P Y y Y y R  (39) 

 
   

2

c

| 1 | 1

0

ˆ ˆ
k k

L T
i ia

i k k k k k k

i

w
 

 



      
   x y

P X x Y y  (40) 

 1

k k k k
k




x y y y
K P P  (41) 

  ˆ ˆ ˆ
a a

k k k k k

 
  x x K y y  (42) 

 
k k

a a T

k k k k


 

y y
P P K P K  (43) 

where R is the measurement noise covariance matrix, and H 

as in (27). 

The weights typically employed in UKF are given as 

follows 

0

m
w

c
 ,  2

0
1

m
w

c
      ,

2

m c

i i
w w

c
  . 

3.3. UKF Approach for Prediction  

The Bayesian method is an iterative method that involves 

two steps in each iteration, i.e., prediction and measurement 

correction. In the general Bayesian estimation framework, 

the one-step prediction in (31) can be extended to (m+1)-

step long-term prediction as follows,  

 

     

     

     

   

1 1

1 1 1 1

1 1 1 1

1

a a a a a

k m k k m k m k m k k m

a a a a a a a

k m m k m k m k m k k m k m

a a a a a a a

k m k m k m k m k m k k m k m

k m

a a a a a

k k j j k k m

j k

p p p d

p p p d d

p p p d d

p p d d

      

          

          



 





 
 







 



 

k

x Y x x x Y x

x x x x x Y x x

x x x x x Y x x

x Y x x x x

(44) 

In this case of (m+1)-step long-term prediction, when 

implemented with UKF approach, the equations (35) can be 

written as (45),  
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1| | 1

2

m

1| 1|

0

2

c

1| 1| 1| 1| 1|

0

ˆ

ˆ ˆ

i i

k m k k m k k m

L
ia

k m k i k m k

i

L T
i ia a a

k m k i k m k k m k k m k k m k

i

w

w

    

   



         





 

       
   





X F X , u

x X

P X x X x Q

(45) 

As can be seen from (45), the long-term prediction utilizes 

only the one-step prediction iteratively without 

measurement correction, since the future measurement is 

unavailable at the current step when prediction is made. 

Equivalently, the standard UKF procedure can be used with 

the Kalman gain in (42) set to 0, i.e., 
k
K 0 . 

Also note that in (45), the system input
n

u at step n (n > k) is 

required to generate the new set of sigma points at each 

iteration. Generally speaking, the future input can be 

obtained by analyzing its past stochastic feature and then 

projecting into the future, while at the same time including 

the uncertainty of the input itself. For simplicity purpose, in 

this paper, the current input uk is taken as the constant input 

for all future steps during the prediction, and the uncertainty 

issue is not considered.  

4. APPLICATION OF THE AGING MODEL FOR PHM 

4.1. Damage Tracking and Prognostics for Catalyst 

Degradation 

As a first step, we investigate the health monitoring and 

prognostic problem for the catalyst degradation only.  

In Section 2, we have already established a prognostic-

oriented fuel cell aging model to describe the catalyst 

degradation process. The model is a second order system 

with simple structure. For simplicity of demonstration, we 

further simplify that model to a first order dynamic model, 

as shown in (46), by neglecting the dynamics of the 

platinum oxide coverage during the load cycling.  

 
geo geo 3 2Pt1 1 1

vac geo2

Pt PtPt

4
exp

39

c

r r

dA Au Mk F F
A

dt RT RT VV u


 
  



 
        

 

(46) 

Since k1 is extremely small in value, we can scale the above 

equation in time with a scaling coefficient  to denote its 

slowness explicitly. Also note that k1 is an implicit function 

of the temperature T, thus we can write the degradation rate 

of the catalytic surface area as a function of the input 

potential load, the temperature, the parameter 
r

 , and the 

catalytic surface area itself. 

  
geo

geo
, , ,

c r

dA
A T

dt
    g  (47) 

As we mentioned above, dynamics of the platinum oxide 

coverage is neglected in this first order system. Thus the 

platinum oxide coverage is considered as a static function of 

the equivalent load input:  vac
map

c
u  . Now, by taking 

into account the uncertain factors as additive process noise, 

the following stochastic degradation model can be obtained 

 
   

 

geo

geo 1

2

, , ,
c r

r

dA
A T w t

dt

w t

  



   



g
 (48) 

where the unknown time-varying parameter 
r

 is taken as a 

state variable, and its derivative as a process noise. 

The cell voltage given in (49) is utilized as the measured 

system output, 

 

 
 

 
 

 2 2

fc fc

0 fc cat

* *fc fc

fc

ln ln
4 1 4 1

ln ln
2 4 1

cell leak

H O ohm

RT RT
V E T i i

F F

RT RT
p p i A R

F F


 



   
 

    


 (49) 

where  0 fc
E T is the voltage component that only depends 

on the fuel cell temperature for a specific type of fuel cell; 

 is the transfer coefficient of the oxygen reduction 

reaction; i and ileak are the current density and the leak 

current density; 
2 2

* *
,

H O
p p are the hydrogen and oxygen 

partial pressures at the reaction site; and Rohm is the total 

ohmic resistance of the fuel cell. 
geo

cat

geo
0t

A

A




 is the ratio of 

current and initial catalytic geometric (or equivalently 

electrochemical) surface area, the value of which is 1 when 

the fuel cell is at its fresh state.  

From (49), it is obvious that the measured voltage is not 

only a function of the slowly varying damage variables, i.e, 

ileak and 
cat

 , but also a function of the fast varying system 

variables
2 2

* *
,

H O
p p . To obtain an output variable that is 

solely related to the slowly varying damage variables, i.e., 

the state variables in the aging model describing the 

degradation process, we propose an output acquisition 

system as shown in Figure 12. 

Basically, the output acquisition method utilizes an aging-

free dynamic model of the fuel cell system that captures the 

fast dynamics of the FCS in the normal time scale while 

assuming constant, non-degrading damage variables in the 

long time scale. The model output is given in (50).  

 

 
 

 
 

2 2

* *fc fc

0 fc

0fc

fc

ˆ ˆ ˆln ln
2 4 1

ln
4 1

cell H O

ohm leak

RT RT
V E T p p

F F

RT
i A R i i

F





  


    


 (50) 
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where 0

leak
i is the membrane leak current density at the initial 

time, and here we assume that the total ohmic resistance 

Rohm is readily available.  

 

Figure 12 Acquisition of the output signal for UKF 

The difference of the outputs of the actual FCS and the 

aging-free dynamic FCS model can then be calculated and 

written as follows.  

 
   

 

2 2

2 2

fc fc leak

cat 0

* *

fc fc

* *

ˆ ln ln
4 1 4 1

ln ln
ˆ ˆ2 4 1

cell cell

leak

H O

H O

RT RT i i
V V

F F i i

p pRT RT

F Fp p


 



 
    

   

   
    
      

(51) 

Ideally, given that the model is accurate in capturing the fast 

dynamics of the system and no disturbance is present, we 

have 2 2

2 2

* *

* *
1, 1

ˆ ˆ

H O

H O

p p

p p
  , and the difference in (51) would 

depend only on the slowly varying damage variables. 

However, in practice, the instantaneous voltage degradation 

( ˆ
cell cell

V V ) would inevitably be affected by modeling error 

that may result in model prediction deviation especially in 

transition, and by disturbances such as the water content in 

the gas diffusion media that could even result in offset 

between the two outputs at their steady states. By denoting 

the two kinds of sources of mismatches with nd and ns 

respectively, the difference z in Figure 12 can be expressed 

as follows, 

 
   

fc fc leak

cat 0
ln ln

4 1 4 1
d s

leak

RT RT i i
z n n

F F i i


 

 
    

   

 (52) 

The deviation between the model and the actual plant 

outputs is then fed to the low pass filter in Figure 12 to 

remove the fast dynamics mismatch nd and to obtain the 

filtered deviation zf as in (53).  

 
   

fc fc leak

cat 0
ln ln

4 1 4 1
f s

leak

RT RT i i
z n

F F i i


 

 
   

   

(53) 

where 
s

n  contains also the distortion effects introduced by 

the filter on z. 

To apply the UKF approach introduced in the previous 

section, we need to first discretize the continuous system 

equations. By denoting the fixed sample time as T , the 

state equations can be written as 

 
 geo, 1 geo, , , fc 1,

, 1 , 2 ,

, , ,
k k c k r k k

r k r k k

A N T A T N T w

N T w

 



   

  





          

     

g
(54) 

and the output equation is given by (55) 

 
   

leak,fc fc

, cat, ,0

,

ln ln
4 1 4 1

k k

f k k s k

k leak k

i iRT RT
z n

F F i i


 

 
   

    

 (55) 

where the k represents the discretization time step. Note 

that, since the fuel cell catalyst degradation is an extremely 

slow process (the fresh to failure life cycle typically takes 

several hundred hours or longer), the sample time T for the 

discretized model employed by the UKF can be chosen in 

the hour scale, instead of second, to lower the unnecessary 

computational burden. In this paper, we choose 1500T s   

(25 min). Under such a slow time scale, disturbances 

induced offset between the two voltage outputs
,s k

n can then 

be treated reasonably as a white noise. 

As seen in Figure 12, 
,f k

z in (55) can be practically obtained 

as 

  , cell, cell ,
ˆLPF

f k k k
z V V   (56) 

where LPF stands for the low pass filter.  

Simulation is carried out where we assume a cyclic load 

profile as given in Figure 13. 
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Figure 13 Load profile for PHM scheme simulation 

validation 
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The simulation result for health monitoring validation is 

presented in Figure 14, where the estimated damage variable 

is compared with the “real” value obtained from the 64-

particle catalyst aging model. It can be seen that the ECSA 

has been tracked satisfactorily, while
r

 varies between the 

range [0.03, 0.04], and gradually settles down after 100 

hours. The result also justifies our previous assumption that 

1

a

r

r


and 2

a

r

r


are constant during the aging process. In fact, 

the first 100 hours can be considered as the necessary phase 

for parameter identification. After this phase, the 

parameter
r

 would stay relatively stable around some 

constant value. We will see later that this characteristic 

feature can be exploited to do fault diagnostics for the 

purpose of early detection of the massive gas crossover.  

The parameters used for this simulation are grouped in the 

following table: 

Table 1 Parameters used in the simulation  

Initializa-

tion 

Initial 

state 

estimate 

0 0

0

ˆ 1.1

ˆ 0.035

Pt Pt

r

A A



   
   

    

 

Initial 

covarian

ce matrix 

0 2

0 2

(0.02 ) 0

0 (0.04 0.15)

Pt
A

P
 

  
 

 

Noise 

covariance 

matrix 

Process 

noise 

0 6 2

1

6 2

2

0 ( 2 10 ) 0

0 0 (0.035 2 10 )
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Q





   
   

    

 

Measure-

ment 

noise  
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Figure 14 Simulation result for health monitoring  

The simulation results for prognostic validation are 

presented in Figure 15 and Figure 16. 
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Figure 15 Simulation result for prognostics at the beginning 

of life 

In Figure 15, prognostic is performed at the very beginning 

of life of the fuel cell. It can be seen that the 95% 

confidence interval is growing larger with increasing 

prediction step due to lack of measurement correction. 
r

 is 

seen to be constant all the time with the same reason. Two 

values for the process noise Q1 are compared, i.e., 
0 6 2

( 2 10 )
Pt

A


  and 0 6 2
( 5 10 )

Pt
A


  . As expected, the 

smaller value of the process noise results in a narrower 95% 

bound, and thus a more accurate prediction.  

Figure 16 shows the simulation results with prognostic 

starting from the middle of the durability test, here at 100 

hours. Due to lack of measurement correction, 
r

 stops 

updating and is taken as a constant after100 hours. The 95% 

confidence interval is also seen growing larger with 

increasing prediction step, but much narrower compared to 

that in Figure 15. 
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Figure 16 Simulation result for Prognostics at 100h 
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4.2. Fault Detection of the Initiation of Massive 

Hydrogen Crossover 

The initiation of massive gas crossover through the 

membrane is rather stochastic and can be very difficult to 

predict. On the other hand, the time of the initiation is also 

very critical since it indicates the beginning of the end phase 

of the fuel cell lifetime: the massive gas crossover would 

accelerate exponentially after its initiation, resulting in a 

“quick death” of the fuel cell. Therefore, from a prognostic 

point of view, it is extremely important to be able to detect 

this initiation time at an early stage. A prognostic scheme 

for the membrane damage can then be activated after the 

fault detection to track the membrane health and predict the 

remaining useful life of the fuel cell. In this subsection, we 

utilize the health monitoring scheme developed for catalyst 

degradation to detect this incipient membrane failure.  

We conduct the simulation study with the current load 

profile presented in Figure 17. Membrane crossover fault is 

injected at 250 hour to grow exponentially afterwards. The 

corresponding output voltage is presented in Figure 18. The 

gradual performance loss phase from 0~250h and the sharp 

performance loss phase from 250h~350h can be clearly seen 

in the figure. Measurement noise covariance matrix used in 

this simulation is
4
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Figure 17 Current profile for the aging simulation 
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Figure 18 Voltage output from the simulated aging test 

The simulation results for the damage tracking of ECSA and 

detection of current leak are shown in Figure 19. It can be 

seen that the parameter
r

 can be utilized as a good indicator 

for the early detection of the initiation of massive hydrogen 

crossover. By appropriately choosing the threshold, the 

serious current leak can be detected shortly after its 

initiation, in this case, less than 30h. Note that the aging 

model information of the membrane, i.e., the dynamics for 

the leak current density growth is not necessary for the 

application of this scheme.  
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Figure 19 Simulation results for the damage tracking of 

ECSA and detection of current leak 

5. CONCLUSION 

Prognostic-oriented aging models are created to describe the 

slowly-varying dynamics in the fuel cell that characterize 

the degradation process of the MEA of the fuel cell. The 

ECSA and the membrane gas crossover are chosen as aging 

parameters based on the experiment results. The focus of 

this paper is the development a prognostic-oriented catalyst 

degradation model. Physics principles of the potential 

driven Ostwald ripening process are explored to establish a 

first-step detailed catalyst aging model. Model analysis is 

then conducted on this model to provide insight as for 

further simplification of the model for prognostic purpose. 

The modeling approach employed to build the degradation 

model for the catalyst can be extended for other materials.  

An UKF-based framework is proposed for the health 

monitoring and prognostic scheme and applied to solve the 

problems. The outcome of the prognosis scheme provides 

information about the precision and accuracy of long-term 

prediction, RUL expectations and 95% confidence intervals. 

Simulation is carried out for the validation of the proposed 

scheme. The results show that with measurement correction, 
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the health monitoring system can successfully track the 

damage variable throughout the degradation process; while 

at any time during the aging process, the remaining useful 

life can be predicted with satisfactory accuracy given that 

future load input information is precisely known.. 

NOMENCLATURE 

Symbol Unit Description 

k1 mol/s/cm
2
 Pt dissolution reaction rate 

constant 

k2 mol/s/cm
2
 Pt oxidation reaction rate 

constant 

fc
A  cm

2 
Nominal fuel cell area 

2

ref

P t
C   mol/L Reference concentration for Pt

2+
 

F  Faraday constant 

Pt
M  g/mol Molecular weight 

R J/mol·K Universal gas constant 

1
U

  V Standard equilibrium potential of 

Pt dissolution reaction for bulk 

platinum 

2
U

  V Modified standard equilibrium 

potential of Pt oxidation reaction 

Pt
  g/cm

3
 Density of platinum 

C L
  cm Catalyst layer  thickness 

  kJ/mol PtO-PtO interaction coefficient 

max
  mol/cm

2 
Number of moles of active sites 

per unit of platinum area 

i
r  cm Radius of group i of the catalyst 

particles 

avg
r  cm Equivalent average Pt particle 

radius (in the sense of Pt
2+

 

concentration balance) 

a
r  cm Average Pt particle radius (in the 

sense of particle geometry) 

v1 mol/s/cm
2
 (Pt 

surface area) 
Reaction rate of Pt dissolution 

v2 mol/s/cm
2
 (Pt 

surface area) 
Reaction rate of Pt oxidation 

geo
A  cm

2
 Geometric surface area of the 

catalyst 

2
Pt

C   mol/L Pt
2+

 concentration 

 

vac

i
   Fraction of the platinum surface 

that is not covered by oxides 

c
  V Potential difference between the 

electrolyte phase and the cathode 

phase 
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