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ABSTRACT 

Acoustic Emission (AE) is an effective nondestructive 

method for investigating the behavior of materials under 

stress. In recent decades, AE applications in structural 

health monitoring have been extended to other areas such as 

rotating machineries and cutting tools. This research 

investigates the application of acoustic emission data for 

unbalance analysis and detection in rotary systems. The AE 

parameter of interest in this study is a discrete variable that 

covers the significance of count, duration and amplitude of 

AE signals. A statistical model based on Zero-Inflated 

Poisson (ZIP) regression is proposed to handle over-

dispersion and excess zeros of the counting data. The ZIP 

model indicates that faulty bearings can generate more 

transient wave in the AE waveform. Control charts can 

easily detect the faulty bearing using the parameters of the 

ZIP model. Categorical data analysis based on generalized 

linear models (GLM) is also presented. The results 

demonstrate the significance of the couple unbalance. 

1. INTRODUCTION 

Acoustic emission (AE) is defined as transient elastic waves 

generated due to localized physical changes in a solid 

material under mechanical or thermal stresses (Tan et al., 

2007). AE is also referred to as the practical non-destructive 

technology to investigate the behavior of stressed materials 

using the transient elastic waves. The major advantage of 

this technology is its sensitivity to capture surface and 

subsurface micro-damage. It has been proven that in some 

cases AE can ensure superiority over vibration-based 

monitoring systems in early fault detection (Tan et al., 2007, 

Alghamd & Mba, 2006, Tandon & Mata, 1999, 

Eftekharnejad & Mba, 2009). In case of rolling-element 

bearings, AE detects the fault earlier compared to other 

technologies (Mba & Rao, 2006, Yoshioka & Fujiwara 

1982). Significant changes in vibration signatures can be 

observed when the remaining operational life of a bearing is 

very short. Hence, AE offers good potential for prognostic 

capabilities. Additionally, insensitivity to structural 

resonance and mechanical background noise gives AE an 

additional advantage over typical vibration-based 

monitoring systems. However, AE signals may suffer severe 

attenuation and reflections due to sensor positioning and 

machine complexity. AE is a well-established diagnostic 

method for static structures. In recent decades, AE 

applications in structural health monitoring have been 

extended to other areas such as rotating machineries and 

cutting tools (Niknam & Liao, 2011). The readers are 

referred to ISO 22096:2007 for the general principles of AE 

application. 

AE hit is defined as the process of detecting and measuring 

an AE signal on a channel (PAC, 2007). The fundamental 

features of the AE hit include amplitude, duration, count, 

and rise time. These parameters can be used to provide 

additional signal features such as root mean square (RMS), 

AE cumulative event count, counts to peak, rise time slope, 

crest factor and Kurtosis (Alghamd & Mba, 2006, Tandon 

& Mata, 1999, K. Miyachika et al. 1995, He  et al. 2010, 

Bansal et al. 1990,  Choudhury & Tandon, 2000). Figure 1 

illustrates the diagram of AE hit feature extraction (PAC, 

2007). 

AE count is defined as the number of times the signal 

crosses the threshold in an AE hit. In the literature, this 

parameter is also known as ring down count or threshold 

crossing count. In effect, AE counts imply the existence of a 

transient wave in the AE waveform. One major drawback of 

this parameter is its dependence on the threshold level. It is 

to be noted that the average counts is a measure of AE 

intensity i.e. the size of the emission signals detected. 
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Furthermore, AE counts divided by duration gives the 

average frequency of the signal. The next section provides 

more details of the application of AE count for fault 

detection. The parameter of interest in this study is PAC-

energy (PAC is the registered trademark of Physical 

Acoustics Corporation). PAC-energy is a 2-byte parameter 

derived from the integral of the rectified voltage signal over 

the duration of AE hit (PAC 2007). The unit of PAC-energy 

is micro-volt-seconds per count and the range is 0 to 65535 

in each AE hit. Therefore, this parameter is a discrete 

random variable that covers the significance of count, 

duration and peak amplitude. Thus, the statistical models for 

count data can be applied for the PAC-energy. 

 

 

Figure 1. Diagram of AE hit feature extraction (PAC 2007) 

This research attempts to provide effective diagnostic and 

prognostic algorithms for wind turbine drive trains. In 

practice, rotor unbalance is a major concern in wind turbine 

reliabilities. Rotor unbalance in wind turbines is caused by 

manufacturing defects, accumulated damage to the rotor 

blades, and non-uniform accumulation of ice, dust, and 

moisture (Lu et al. 2009, Hyers  et al., 2006). Rotor 

unbalance has an important influence on the pitch 

mechanism, the yaw brakes and the variations in the rotor 

speed which can even affect the output power waveform. 

Furthermore, rotor unbalance imposes additional vibrations 

of the nacelle, tower and the drivetrain components (Lu et 

al. 2009, Hyers  et al., Hameed et al., 2009). It may also 

shorten the life of the rotor blades. In particular, this 

research investigates the application of AE data in analyzing 

unbalanced rotary systems. Categorical data analysis based 

on generalized linear models (GLM) is presented in this 

study. The objective of this analysis is to provide a 

meaningful interpretation of the test variables’ effect on AE 

features. In addition, a statistical model based on Zero-

Inflated Poisson (ZIP) regression is proposed to handle 

over-dispersion and excess zeros of the counting data. The 

ZIP model considers the data set as a mixture of processes 

that generates only zeros or non-negative integers.  

The remainder of the paper is organized as follows:  Section 

2 provides the background for unbalanced systems, a review 

of using AE count in fault detection, and modeling of count 

data.  Section 3 presents a detailed description of the 

experimental setup and the test procedure.  Section 4 

provides the analytical results and discussions. Finally, 

section 5 concludes this paper. 

2. BACKGROUND 

2.1. AE count 

Traditionally, AE count has been widely used in the 

literature as condition indicator. Tandon and Mata (1999) 

realized that defects in gear systems would result in broader 

distribution of AE counts and peak amplitude. They claimed 

that AE counts showed better results than other AE 

parameters in gear defect detection. Miyachika et al. (1995) 

postulates that AE cumulative event count increases with 

crack growth in the case-hardened gears. Tandon and Nakra 

(1990) considered AE counts for condition monitoring of 

radially loaded ball bearing. They observed a direct 

relationship between AE count and speed in case of outer 

race defect. The results showed that AE count is a practical 

indicator for defects less than 250µm in diameter. However, 

Morhain and Mba (2003) declared the AE count is able to 

detect large defects up to 15 mm in lengths and 1 mm in 

width. This study also emphasized the sensitivity of AE 

counts to the level and grade of lubricant. AE parameter 

analysis for tool condition monitoring has received 

attentions mainly for real time applications. AE count rate 

was introduced as a reliable parameter for monitoring tool 

wear during turning, although AE signals highly depend on 

process parameters (Li 2002, Sharma et al. 2007). Carpinteri 

et al. (2007) applied AE technology to monitor concrete and 

masonry buildings. The cumulative number of counts was 

found to be informative for analyzing the evolution of 

cracks and determining the released strain energy. 

Carpinteri et al. (2007) observed that the maximum counting 

of AE corresponds to the maximum velocity of crack 

propagation. Considering the proven usefulness of AE count 

for various AE applications, it seems an appropriate 

modeling and analysis of AE count or its derivatives would 

lead to fruitful diagnostic. As mentioned earlier, PAC-

energy is a function of AE counts and it will be used for the 

statistical modeling in this study.    

2.2. Modeling count data 

In the literature, linear regression models have been 

primarily utilized to correlate the AE signatures and the 

physical features of interest. Traditional regression (non-

Bayesian) methods have been widely used to model count 

data in both natural and social sciences. In effect, the 

response variable in such models is a nonnegative integer. 

The most common regression-based count data model is 

Poisson GLM which is an extension of ordinary least 
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squares regression and agrees with distributions from the 

exponential family. The Poisson GLM has the form   

 

y ~ Poisson(λ) 

The log link is specified by   

 

          ∑         (1) 

 

The logistic model where p is the probability of success is 

given by 

y ~ Binomial (p,n) 

 

The logit link is given by 

 

           
 

   
      ∑         (2) 

 

The major drawback of Poisson regression is the restrictive 

assumption of equality between the variance and the mean 

i.e. equidispersion (Liu & Cela 2008, Lambert 1992, 

Guikema & Coffelt 2008). On the other hand, 

overdispersion occurs when the variance is greater than the 

mean. The overdispersion can be handled through negative 

binomial GLM. Generalized linear mixed models (GLMM) 

add an error term to GLM which is not part of our 

discussion.  

In practice, depending on the preset reference threshold 

value, there may be a high frequency of zero counts in the 

AE signals, which indicates excess zeroes. In this case, a 

simple Poisson regression would not satisfactorily fit the 

data. Zero-inflated Poisson (ZIP) model, introduced by 

Lambert (1992), fittingly handles overdispersion and excess 

zeros. Principally, ZIP model considers the data set as a 

mixture of a process that generates only zeros and a process 

that generates counts from a Poisson or a negative binomial 

model. In other words, ZIP models calculate the probability 

(p) of having observations of 0. Therefore, 1-p would be the 

probability of having non-negative integers. Therefore the 

count response can be written as 
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2.3. Unbalanced rotary systems 

The lack of balance causes excessive vibration in rotary 

systems. Vibrations impose centrifugal force and oscillatory 

force. For wind turbines, unbalance occurs primarily due to 

uneven material deposit on the rotor about its rotating 

centerline. High vibration amplitude at the rotating speed is 

the primary indicator of this fault. Other sources of 

unbalance include imperfect manufacturing and operational 

changes. Bearings are a significant contributor to unbalance 

in rotary system because of internal clearance and run-out. 

In effect, the existence of heavy spot in rotors leads to shaft 

bending and cyclical forces on bearing. Both centrifugal and 

oscillatory forces affect the bearing life. The magnitude of 

centrifugal force can be obtained by  

Fc = m r ω
2   

(5) 

where m represents mass, ω represents the angular speed 

and r is the radius from center of rotation.  

There are various types of unbalance based upon the relation 

between the center of gravity (CG) and the heavy spot. In 

static unbalance, the CG and the heavy spot are in the same 

plane. Couple unbalance occurs due to existence of two 

equal heavy spots which are 180 degrees apart. In this case, 

the shaft axis intersects the principal mass at the CG. Couple 

unbalance imposes radial force on bearings. Dynamic 

unbalance is the most common type of unbalance and it 

represents a combination of static and couple unbalance. In 

essence, balancing treats the cause rather than symptom. 

Balancing may involve the followings: correction of mass 

distribution, creating centrifugal force, changing orientation 

of parts and adding/removing mass from non-rotating part 

(Wowk 1995). These actions would provide mass 

symmetry, change the center of gravity, and affect bending 

moments. It is important to note that cyclical forces on 

bearings measured through vibration analysis are utilized for 

balancing. However, in this research, the magnitudes of the 
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balancing masses were found graphically. Details pertaining 

to the unbalance disks are presented in the next section.   

3.  EXPERIMENTAL SET-UP AND PROCEDURE 

A multi-purpose test rig was designed and developed to 

simulate the drive train of wind turbines. Figure 2 shows the 

test rig. A WindMax 2 kW wind turbine generator was used 

in this setup. The test rig’s motor provided a rotational 

speed in the range of 10- 1760 round/min. The control drive 

along with a LabVIEW-based program allowed the motor to 

provide variable speed according to a pre-defined speed 

pattern. Other main components of the test rig include a 

single phase planetary gearbox, support bearings, and two 

test bearings of different size. 

 

Figure 2. Test Rig 

 

The test bearing used was a SKF self-aligning ball bearing 

type 1205 ETN9 (Figure 4). The characteristics of the test 

bearing are as follows: internal (bore) diameter 25 mm, 

external diameter 52 mm, 26 rollers, and diameter of roller 

7.4 mm. To make a faulty bearing, a groove with the width 

of 0.5 mm and the maximum height of 1.41 mm was made 

by using electrical discharge machine on the inner race of a 

bearing (Figure 4). Prior to the main tests, two bearings 

were run for 20 hours at the speed of 1700 rpm i.e. over 2 

million cycles. These bearings will be called “used 

bearings” in the analysis. It is important to note that all the 

bearings were used in dry condition. One reason for this is 

to ensure that the used bearings will not remain as good as 

new bearing after 2 million cycles.  

To impose the unbalance force two uniform disks with the 

diameter of 6 inch and the thickness of 1 inch were used. To 

be able to attach the disks to the shaft and also change the 

angle of the disks, a shaft collar with a thickness of 0.5 inch 

was welded to each disk (Figure 3). An off-center hole with 

the diameter of 1.375 inch was then made for each disk as 

shown in Figure 5. 

The mass of the disk with and without the hole were 

approximately 8 pounds and 7.6 pounds respectively. The 

new center of gravity moved off-center about 0.078 inch. 

The disks could be placed between the test bearings as 

shown in Figure 2. Consequently, several different sets of 

experiments could be performed by changing the number 

and orientation of the disks. In this study, the following 

loading configurations were used: no disk, one disk, two 

disks with an angle of zero, two disks with an angle of 120 

and two disks with an angle of 180 namely couple 

unbalance. 

 

Figure 3. Sensor placement and an unbalance disk 

 

 

Figure 4. SKF 1205 ETN9 with a seeded fault 

 

In this study, three major variables were considered: (1) 

bearing type, (2) shaft speed and (3) unbalance. Table 1 

shows different categories of the variables. As shown in the 

table, three speed levels , three bearing types, and 5 loading 

patterns were designed for the experiments. 
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Figure 5. Disk with off-center hole  

 

 Settings Category 

Unbalance 

No Disk 1 

1 Disk 2 

   is  w     3 

   is  w       4 

   is  w      5 

Bearing 

New 1 

Used 2 

Faulty 3 

Shaft Speed 

(rpm) 

150  1 

300 2 

450 3 

Table 1. Test Data Description 

 

A 2-channel PCI-2 based AE system was utilized for data 

acquisition. The PAC R15I-AST acoustic sensor was used. 

This sensor has an operating frequency range of 80-200 

kHz. The sensor housing contains a filter and an integral 

preamplifier of 40 dB. With an improved 18 bit analogue to 

digital conversion scheme, PCI-2 board provides a sampling 

rate of up to 40 MHz and a dynamic range of more than 85 

dB. This data acquisition system is able to record up to 

65535 counts per hit. The data acquisition was performed 

with a sampling rate of 5 mega points per seconds. The 

upper and lower limit of filter was set to 10 KHz and 1 MHz 

respectively. The sensors were placed on the bearing 

housing as shown in Figure 3. The sensor which was placed 

on the top provided more data than the sensor which was on 

the side of the housing. In essence, one can expect less data 

from the side sensor due to the interfaces that exist between 

the source and the side sensor. In figures 6 and 7 the left 

graph shows the energy collected from the top sensor and 

the graph on the right shows the energy collected from the 

side sensor. As shown in these figures, data from the side 

sensor is not really helpful. In Figure 6 the seeded fault was 

exactly below the top sensor. Experimenting various 

position of the seeded fault, it was realized that placing the 

fault exactly below the top sensor provides more energy. 

 

In Figure 7 the seeded fault was placed 90 degrees apart 

from the top sensor and 180 degrees apart from the side 

sensor. For our analysis, only the data collected from the top 

sensor was utilized. Moreover, the movement of the bearing 

with inside the housing was negligible.  

 
Figure 6. PAC-energy from the sensors while the fault was 

under the top sensor 

 
Figure 7. PAC-energy from the sensors while the fault was 

90 degrees apart from the top sensor 

The results of variable speed tests indicate the sensitivity of 

AE count to the shaft speed as shown in Figure 8 where the 

speed was gradually changed from 0 to 300 rpm and 

dropped back to 0.  

 

Figure 8. Dependence of AE parameters to the shaft speed 

 

4. RESULTS AND DISCUSSION 

4.1. Categorical data analysis 

The data set for the categorical data analysis consisted of 

data from six bearings: one faulty bearing, two used bearing 

and three new bearings. The cumulative energy (CE) was 
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selected as the response variable. The objective of this 

categorical analysis is to reveal the effects of explanatory 

variables (i.e. bearing, speed and unbalance) on the response 

variable. Due to time limit, it was not possible to perform all 

the loading patterns for the speed level of 150 and 450 rpm. 

Although, this can be a drawback for the categorical 

analysis, the results are satisfactory. The GENMOD 

procedure in SAS was used to conduct the statistical tests. 

This procedure fits a GLM to the data by maximum 

likelihood estimation. Through an iterative fitting process, 

the parameters of the model are numerically estimated in 

this procedure. Based on the asymptotic normality of 

maximum likelihood estimators, standard errors, and p-

values of the estimated parameters are computed. The 

parameter with the smallest p-value will be the most 

significant parameter in that category. The GENMOD 

procedure provides a number of probability distributions 

and link functions such as log-link function.  

 

4.1.1 Analysis of AE data with various speed levels 

 

The categorical data analysis (CDA) shows that speed has 

the most significant effect among the explanatory variables. 

The bearing type has the least significant effect with the p-

value of 0.6295 (Table 2). Figure 6 supports the SAS 

results, that speed would positively affect the number of 

count and the energy of the signal. The interaction between 

explanatory variables (speed, unbalance and bearing) is 

added to the model. This 3-way interaction is significant (p-

value = 0.1041). This model shows that speed and 

unbalance have significant effects on the CE level (Table 3).  

Parameter Estimate 
Standard 

Error 
Pr > Chi Sq. 

intercept 0.1278 0.3054 0.6757 

bearing -0.0475 0.0985 0.6295 

speed 0.0011 0.0007 0.1254 

unbalance  0.0336 0.0493 0.4962 

Table 2. CDA– Model 1 

Parameter Estimate 
Standard 

Error 
Pr > Chi Sq. 

intercept -0.6358 0.5584 0.2549 

bearing 0.1680 0.1617 0.2987 

speed 0.0022 0.0010 0.0229 

unbalance  0.1717 0.0971 0.0769 

Interaction -0.0002 0.0002 0.1041 

Table 3. CDA– Model 1 with 3-way interaction 

A new model was built based on the interactions between 

every two explanatory variables (Table 4). The most 

significant interaction is the bearing-unbalance. In this case, 

unbalance type is the most significant variable. The effect of 

categories of each variable on the AE generation was then 

investigated. One category was selected as the baseline and 

the significance of the other categories were analyzed. For 

speed, 450 rpm was selected as the baseline. As expected, 

the results indicate that this speed level is more significant 

than the other two levels. The bearing type 3 (i.e. faulty) 

was the baseline to analyze bearing types. As shown in the 

Table 5, type 1 (new bearing) and 2 (used bearing) are not 

significant compared to the faulty bearing. For the 

unbalance, type 5 was the baseline. As shown in the Table 

6, type 1 and 2 are not significant at all compared to the 

couple unbalance i.e. type 5. Interestingly, the SAS output 

results indicate that couple unbalance is the most significant 

type of unbalance in comparison with type 3 and 4. This 

result is very similar to the graphical balancing calculation 

that shows couple unbalance needs the highest amount of 

balancing mass.  

 

Parameter Estimate 
Standard 

Error 
Pr > Chi Sq. 

intercept -1.0091 0.9006 0.2625 

bearing 0.0924 0.3834 0.8095 

speed 0.0013 0.0025 0.6070 

unbalance 0.6373 0.2128 0.0027 

bearing*speed 0.0013 0.0010 0.1604 

bearing*unbal. -0.1836 0.0679 0.0069 

speed*unbal. -0.0008 0.0005 0.1094 

Table 4. CDA – Model 1 with 2-way interactions 

Parameter 

T
y

p
e 

Estimate 
Standard 

Error 
Pr > Chi Sq. 

intercept  0.1088 0.3034 0.7199 

bearing 1 0.0101 0.199 0.9593 

bearing 2 -0.2117 0.2195 0.3347 

speed  0.0011 0.0007 0.1256 

unbalance  0.0338 0.0493 0.4928 

Table 5. CDA - Bearing 3 is the baseline 

 

Parameter 

T
y

p
e 

Estimate 
Standard 

Error 
Pr > Chi Sq. 

intercept  0.2736 0.4105 0.505 

bearing  -0.0421 0.0986 0.6696 

speed  0.0009 0.0009 0.3432 

unbalance 1 0.0808 0.214 0.7058 

unbalance 2 -0.2115 0.2814 0.4521 

unbalance 3 -0.4037 0.2917 0.1664 

unbalance 4 0.3487 0.251 0.1648 

Table 6: CDA – Unbalance type 5 is the baseline 

 

4.1.2 Analysis of AE data without the effect of speed 

Since it was realized that speed has the most significant 

effect on CE, the next set of statistical tests were conducted 

with the speed level of 300 rpm. Having more data was the 

reason for selecting this speed level. The results of this data 

analysis indicated that unbalance is more significant in the 
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absence of speed effect (Table 7). Similar to the case with 

various speeds, adding the interactions of these variables 

lead to the results that all the inputs are significant. 

Parameter Estimate 
Standard 

Error 
Pr > Chi Sq 

intercept 0.4184 0.3326 0.2084 

bearing -0.1906 0.1393 0.1712 

unbalance  0.1362 0.0706 0.0538 

Table 7: Categorical data analysis –  

without the effect of speed 

4.2. ZIP model 

The independent variables in this study were shaft speed and 

unbalance. The amount of mass required for balancing was 

used as the unbalance values in the ZIP model. The 

graphical balancing techniques were utilized to calculate the 

amount of the balancing mass. The procedure of balancing 

considers both the balance of forces and couples. It is to be 

noted that couple unbalance (type 5) needs the highest 

amount of mass for balancing.  

The COUNTREG procedure in SAS was used to develop 

the ZIP models. This procedure performs nonlinear 

optimization. Two iterative minimization method were 

applied; (1) the quasi-Newton method and (2) the Newton-

Raphson method. The ZIP models provide the probability 

(p) of obtaining zeros and the parameter (λ) for the Poisson 

model. The probability of obtaining zero for the faulty 

bearing is almost zero for all the tests. This implies the 

existence of strong burst signal in all the AE hits. To 

provide a fair comparison, Figure 9 shows the λ for different 

unbalance types at the speed level of 300 rpm.  

 

Figure 9. The Lambda from the ZIP model for different 

unbalance type at 300 rpm 

 

In this graph, bearing 9 represents the faulty bearing; 

bearing 7 and 8 represent the used bearings. It is clear that 

the highest values of λ belong to either used or the faulty 

bearings. It implies that these bearing generate stronger 

burst signals in comparison with all the six new bearings 

used in this study. It is interesting to note that the highest λ 

(= 429) was obtained for the couple unbalance of the faulty 

bearing. 

In order to provide a platform for diagnostics, cumulative 

sum (CUSUM) chart was utilized (He et al., 2011, 

Montgomery2001, Leger et al., 1998). This chart detects the 

deviation of the process mean through cumulative sums of 

the shift between sample averages from a target value. 

CUSUM charts are sensitive to small and moderate changes 

in the process mean. Such changes, e.g. one-sigma shift in 

the mean, are hardly detectable by Shewhart-charts. The run 

chart of CUSUM displays the successive differences 

between the sample average and the target i.e. process 

mean. The two-sided tabular CUSUM chart is defined by 

  ( ) {
                                                                  

   {    (   )  (    ̂ )    ̂ }             
 

where       (or   ), S
+

 
(n) and S

-

 
(n) give the cumulation 

on high side and low side respectively and k is the threshold 

for cumulation which is also called allowable slack. This 

parameter is the minimum difference between the target and 

sample average. We have H =     =    ( )      as the 

decision interval and h is called the decision parameter as 

shown below.  

 

If S
+

 
(n) or S

-

 
(n) exceeds H, the process is out- of-control. 

Figures 10 and 11 show the two-sided CUSUM charts of λ 

and p for the case when only the new bearings were used. 

Here, as none of the plotted points cross the arms of the V-

mask we conclude that the process is in control.  

 

 

Figure 10. CUSUM charts of λ for new bearings 
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Figure 11. CUSUM charts of p for new bearings 

 

Figures 12 and 13 show the CUSUM charts of λ and p for 

the case when used bearings were also taken into account. 

The chart for λ clearly shows that the bearings experienced 

certain deviation and they are not as good as new bearings.  

 

 

Figure 12. CUSUM charts of λ for new and used bearings 

 

 

Figure 13. CUSUM charts of p for new and used bearings 

 

Figures 14 and 15 show the CUSUM charts of λ and p for 

the case when all types of bearings were taken into account. 

These charts clearly depict the out of control condition.  

 

Figure 14. CUSUM charts of λ for all bearings 

 

Figure 15. CUSUM charts of p for all bearings 

5. CONCLUSION 

This paper investigates the usefulness of AE data for 

unbalance analysis in rotary systems. The parameter of 

interest in this study is the PAC-energy which covers the 

significance of count, duration and peak amplitude in AE 

signals. The categorical data analysis based on generalized 

linear models is presented. The results of this analysis 

confirm the visual observations of the AE signals during the 

data acquisition process. It was discovered that speed has 

the most significant effect on PAC-energy. The results of 

the categorical analysis indicated that loading patterns with 

two disks were more significant. More importantly, the 

results specified the significance of couple unbalance. In 

addition, it was also understood that bearing types influence 

the level of cumulative energy. It was realized that the faulty 

bearing is the most significant in producing more PAC-

energy. Interestingly, the effect of used bearing was more 

significant than new bearings in this respect.  

A statistical model based on Zero-Inflated Poisson 

regression is presented to handle over-dispersion and excess 

zeros of the counting data. Combined with CUSUM chart, 

the ZIP model can provide a platform to diagnose the faults 

in bearings. It was observed that CUSUM charts of both λ 

and p can be utilized for fault detection and also to track the 
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health of bearings. It was also observed that while 

unbalance influences the amplitude of signal, speed directly 

affects the probability of getting more zero counts.  

For more effective diagnosis, the pattern of control charts 

can be recognized through artificial intelligence methods. 

Moreover, distribution-free tabular CUSUM chart can be 

investigated. It is noteworthy to point that AE can be 

utilized to detect and quantify unbalance in the rotary 

systems. However, it is essential to consider the sources of 

uncertainty such as the instrumentation errors, rotor system 

nonlinearities, stiffness (rotor, bearing support and 

foundation), and the nature of bearings.  
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