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ABSTRACT 

The ultimate goal of most prognostic systems is accurate 

prediction of the remaining useful life of individual 

systems or components based on their use and 

performance.  This class of prognostic algorithms is 

termed effects-based, or Type III, prognostics.  A unit-

specific prognostic model, called the General Path Model, 

involve identifying an appropriate degradation measure to 

characterize the system's progression to failure.  A 

functional fit of this parameter is then extrapolated to a 

pre-defined failure threshold to estimate the remaining 

useful life of the system or component.  This paper 

proposes a specific formulation of the General Path Model 

with dynamic Bayesian updating as one effects-based 

prognostic algorithm.  The method is illustrated with an 

application to the prognostics challenge problem posed at 

PHM '08. 

1. INTRODUCTION 

Prognostics is a term given to equipment life prediction 

techniques and may be thought of as the "holy grail" of 

condition based maintenance. Prognostics can play an 

important role in increasing safety, reducing downtime, 

and improving mission readiness and completion.  

Prognostics is one component in a full health management 

system (Figure 1).  Health monitoring systems commonly 

employ several modules, including but not limited to: 

system monitoring, fault detection, fault diagnostics, 

prognostics, and management (Kothamasu et al., 2006 and 

Callan et al., 2006).  System monitoring and fault 

detection modules are used to determine if a component or 

system is operating in a nominal and expected way.  If a 

fault or anomaly is detected by the monitoring system, the 

diagnostic system determines the type, and in some cases, 

the severity of the fault.  The prognostics module uses this 

 

Figure 1: A Full Prognostics and Health 

Management System 

 

information to estimate the Remaining Useful Life 

(RUL) of the system or component along with 

associated confidence bounds.  With this 

information in hand, system operation may be 

adjusted to mitigate the effects of failure or to slow 

the progression of failure, thereby extending the 

RUL to some later point, such as a previously 

scheduled maintenance activity or the end of the 

planned mission.    

Prognostic system development has been a daunting 

task for several reasons.  One is that mission critical 

systems are rarely allowed to run to failure once 

degradation has been detected.  This makes the 

existence of degradation data rare and the 

development of degradation based models difficult.  

However, current individual-based, empirical 

prognostic techniques necessitate the availability of 

a population of exemplar degradation paths for each 

fault mode of interest.  In some cases, physical 

models may be developed to generate simulated 

degradation data or may be used in a model-based 

prognostics framework to infer RUL (Pecht and 
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Dasgupta, 1995, Valentin et al., 2003, and Oja et al. 2007).    

Second, if the components are subject to common fault 

modes which lead to failure, these fault modes are often 

designed out of the system through a proactive continuous 

improvement process.  Third, very few legacy systems 

have the instrumentation required for accurate prognostics.  

In the absence of such instrumentation, accurate physics of 

failure models may be used to identify key measurements 

and systems may be re-instrumented. 

This research focuses on RUL estimation for soft failures.  

These failures are considered to occur when the 

degradation level of a system reaches some predefined 

critical failure threshold, e.g. light output from fluorescent 

light bulbs decreases below a minimum acceptable level or 

car tire tread is thinner than some pre-specified depth.  

These failures generally do not concur with complete loss 

of functionality; instead, they correspond with the time 

when an operator is no longer confident that equipment 

will continue to work to its specifications. 

Traditional reliability analysis, termed Type I prognostics, 

uses only failure time data to estimate a time to failure 

distribution (Hines et al., 2007).  This class of algorithms 

characterizes the average lifetime of an average 

component operating in historically average conditions; it 

does not consider any unit-specific information beyond the 

current run time.  As components become more reliable, 

few failure times may be available, even with accelerated 

life testing.  Although failure time data become more 

sporadic as equipment reliability rises, often other 

measures are available which may contain some 

information about equipment degradation, such as crack 

length, tire pressure, or pipe wall thickness.  Lu and 

Meeker (1993) developed the General Path Model (GPM) 

to model equipment reliability using these degradation 

measures, or appropriate functions thereof, moving 

reliability analysis from failure-time analysis to failure-

process analysis.  The GPM assumes that there is some 

underlying parametric model to describe component 

degradation.  The model may be derived from physical 

models or from available historical degradation data.  

Typically, this model accounts for both population (fixed) 

effects and individual (random) effects.   

Although GPM was originally conceived as a method for 

estimating population reliability characteristics, such as the 

failure time distribution, it has since been extended to 

individual prognostic applications (Upadhyaya et al., 

1994).  Most commonly, the fitted model is extrapolated to 

some known failure threshold to estimate the RUL of a 

particular component.  This is an example of an Effects-

based, or Type III, prognostic algorithm (Hines et al., 

2007).  This class of algorithms estimates the RUL of a 

specific component or system operating in its specific 

environment; it is the ultimate goal of prognostics for most 

mission critical components. 

The following sections will present GPM theory 

including the original methodology for reliability 

applications and the extension to prognostics.  In 

addition, a short discussion of dynamic Bayesian 

updating methods to incorporate prior information is 

given.  Finally, an application of the proposed GPM 

methodology to the 2008 PHM Challenge problem 

is presented. 

2. METHODOLOGY 

As suggested by the “No Free Lunch” Theorem, no 

one prognostic algorithm is ideal for every situation 

(Koppen, 2004).  A variety of models have been 

developed for application to specific situations or 

specific classes of systems.  The efficacy of these 

algorithms for a new process depends on the type 

and quality of data available, the assumptions 

inherent in the algorithm, and the assumptions 

which can validly be made about the system.  This 

research focuses on the general path model, an 

algorithm which attempts to characterize the 

lifetime of a specific component based on measures 

of degradation collected or inferred from the system. 

2.1. The General Path Model 

Lu and Meeker (1993) first proposed the General 

Path Model (GPM), an example of degradation 

modeling, to move reliability analysis methods from 

time-of-failure analysis to process-of-failure 

analysis.  Traditional methods of reliability 

estimation use failure times recorded during normal 

use or accelerated testing to estimate a time of 

failure (TOF) distribution for a population of 

identical components.  In contrast, GPM uses 

degradation measures to estimate the TOF 

distribution.  The use of historical degradation 

measures allows for the direct inclusion of censored 

data, which gives additional information on unit-

wise variations in a population.   

GPM analysis begins with some assumption of an 

underlying functional form of the degradation path 

for a specific fault mode.  The degradation of the i
th

 

unit at time tj is given by: 

                    (1) 

where φ is a vector of fixed (population) effects, θi 

is a vector of random (individual) effects for the i
th 

component, and εij ~ N(0,σ
2
ε) is the standard 

measurement error term.  Application of the GPM 

methodology involves several assumptions.  First, 

the degradation data must be describable by a 

function, η; this function may be derived from 

physics-of-failure models or from the degradation 

data itself.  In order to fit this model, the second 
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assumption is that historical degradation data from a 

population of identical components or systems are 

available or can be simulated.  This data should be 

collected under similar use (or accelerated test) conditions 

and should reasonably span the range of individual 

variations between components.  Because GPM uses 

degradation measures instead of failure times, it is also not 

necessary that all historical units are run to failure; 

censored data contain information useful to GPM 

forecasting.  The final assumption of the GPM model is 

that there exists some defined critical level of degradation, 

D, which indicates component failure; this is the point 

beyond which the component will no longer perform its 

intended function with an acceptable level of reliability.  

Therefore, some components should be run to failure, or to 

a state considered failure, in order to quantify this 

degradation level.  Alternatively, engineering judgment 

may be used if the nature of the degradation parameter is 

explicitly known. 

Several methods are available to estimate the degradation 

model parameters, φ and θ.  In some cases, the population 

parameters may be known in advance, such as the initial 

level of degradation.  If the population parameters are 

unknown, estimation of the vector of population 

characteristics, φ, is trivial; by fitting the model to each 

exemplar degradation path, the fixed effects parameters 

can be taken as the mean of the fitted values for each unit.  

The variance of these estimates should be examined to 

ensure that the parameters can be considered to be fixed.  

If significant variability is present, the parameters should 

be considered random and moved to the θ vector.  A two-

stage method of parameter estimation was proposed by Lu 

and Meeker (1993) to estimate distribution parameters for 

the random effects.   

In the first stage, the degradation model is fit to each 

degradation path to obtain an estimate of θ for that unit; 

these θ's are referred to as stage-1 estimates.  It is 

convenient to assume that the stage-1 estimates, or an 

appropriate transformation, Θ=H(θ), is normally (or 

multivariate normally) distributed so that the random 

effects can be fully described using only a mean vector 

and variance-covariance matrix without significant loss of 

information.  This assumption usually holds for large 

populations as a result of the central limit theorem; 

however, if it is not justifiable, the GPM methodology can 

be extended in a natural way to allow for other random 

effects distributions.    

In the second stage, the stage-1 estimates (or an 

appropriate transformation thereof) are combined to 

estimate φ, μθ, and Σθ.  At this stage, if for any random 

parameter, m, the variance σ
2

m is effectively zero, this 

parameter should be considered a fixed effects parameter 

and should be removed from the random parameter 

distribution.   

In their seminal paper, Lu and Meeker (1993) 

describe Monte Carlo methods for using the GPM 

parameter estimates to estimate a time to failure 

distribution and corresponding confidence intervals.  

Because the focus of this paper is estimating time to 

failure of an individual component and not the 

failure time distribution of the population of 

components, these methods will not be described 

here. 

Several limitations and areas of future work of the 

GPM are identified by Meeker et al. (1998).  Some 

of these areas have been addressed in work by other 

authors.  First, the authors cite the need for more 

accurate physics of failure models.  While such 

models are helpful for understanding degradation 

mechanisms, they may not be strictly necessary for 

RUL estimation.  In fact, if exemplar data sets cover 

the range of likely degradation paths, it may be 

adequate to fit a function which does not explain 

failure modes but accurately models the underlying 

relationships.  With this idea, neural networks have 

been applied to GPM reliability analysis (Chinnam, 

1999 and Girish et al., 2003).   

In addition, the GPM was originally developed for 

reliability analysis of only one fault mode.  In 

practical applications, the system of interest may 

consist of several components each with different 

fault modes, or of one component with several 

possible, even simultaneous fault modes.  These 

multiple degradation paths may be uncorrelated, in 

which case extension of the GPM is trivial: 

reliability of a component for all degradation modes 

is simply the product of the individual reliabilities, 

and RUL can be considered some function of the 

RULs for each fault mode, such as the minimum.  If, 

however, the degradation measures are correlated, 

extension of the GPM is more complicated.  For 

example, in the case of tire monitoring, several 

degradation measures may contain information 

about tire reliability, including tread thickness, tire 

pressure, tire temperature and wall material 

characteristics.  However, it is easy to see that these 

measures may be correlated; a higher temperature 

would cause a higher pressure etc.  The case of 

multiple, competing degradation modes is beyond 

the scope of the current work.  A discussion of the 

problem can be found in Wang and Coit (2004).  

2.2. GPM for Prognostics 

The GPM reliability methodology has a natural 

extension to estimation of remaining useful life of 

an individual component or system; the degradation 

path model, yi, can be extrapolated to the failure 

threshold, D, to estimate the component's time of 
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failure.  This type of degradation extrapolation was 

proposed early on by Upadhyaya et al. (1994).  In that 

work, the authors used both neural networks and nonlinear 

regression models to predict the RUL of an induction 

motor.  The prognostic methodology used for the current 

research is described below.   

First, exemplar degradation paths are used to fit the 

assumed model.  The stage-1 parameter estimates are used 

to evaluate the random-effects distributions, to determine 

the mean population random effects, the mean time to 

failure (MTTF) and their associated standard deviations, 

and to estimate the noise variance in the degradation paths.  

The MTTF distribution can be used to estimate the time of 

failure for any component which has not yet been 

degraded.   

As data are collected during use, the degradation model 

can be fit for the individual component.  This specific 

model can be used to project a time of failure for the 

component.  Because of noise in the degradation signal, 

the projected time of failure is not perfect.  A prediction 

interval (PI) about the estimated parameters can be 

evaluated as:   

            
 

 
    

 

 
          

 

 
    

 

 
   (2)

 
 

where tn-1,α/2 is the Student's t-distribution, n is the number 

of observations used to fit the model, and s is the standard 

deviation of the degradation model parameters for 

normally distributed, uncorrelated parameters; if this 

assumption is not met, the method can be extended to 

estimate PIs for other distributions.  The standard 

deviation of the parameters can be estimated through 

traditional linear regression techniques.  The range of 

model parameters can be used to project an PI about the 

estimated time of failure.   

The methodology described considers only the data 

collected on the current unit to fit the degradation model.  

However, prior information available from historic 

degradation paths can be used for initial model fitting, 

including the mean degradation path and associated 

distributions.  This data can provide valuable knowledge 

for fitting the degradation model of an individual 

component, particularly when only a few data points have 

been collected or the collected data suffer from excessive 

noise.  The following section outlines a dynamic Bayesian 

updating method for including prior information in 

degradation model fitting. 

2.3. Incorporating Prior Information 

The current research investigates using Bayesian methods 

to include prior information for linear regression problems.  

However, as discussed above, the GPM methodology can 

be applied to nonlinear regression problems as well as 

other parametric modeling techniques such as neural 

networks.  Other Bayesian methods must be applied 

to these types of models, but such application is 

beyond the scope of the current research.  For a 

complete discussion of Bayesian statistics including 

other Bayesian update methods, the interested reader 

is referred to Carlin and Louis (2000) and Gelman et 

al. (2004).  In addition, work by Robinson and 

Crowder (2000) focuses on Bayesian methods for 

nonlinear regression reliability models. 

A brief review of Bayesian update methods for 

linear regression is given here; a more complete 

discussion can be found in Lindely and Smith 

(1972) as well as the texts cited above.  Bayesian 

updating is a method for combining prior 

information about the set of model parameters with 

new data observations to give a posterior 

distribution of the model parameters (Figure 2).  

This allows both current observation and past 

knowledge to be considered in model fitting. 

A linear regression model is given by: 

  (3) 

The model parameters are estimated using the 

pseudo-inverse formula as: 
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where Σy is the variance-covariance noise matrix, 

which gives an indication of the accuracy of each 

entry in the Y-vector.  It is important to note that the 

linear regression model is not necessarily a linear 

model, but is linear-in-parameters.  The data matrix  

 

Figure 2: Bayesian Updating Methodology 

 

  

Y = bX
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X can be populated with any function of degradation 

measures, including higher order terms, interaction terms, 

and functions such as sin(x) or e
x
.  If prior information is 

available for a specific model parameter, i.e. βj~N(βjo,σ
2
β ), then the matrix X should be appended with an 

additional row with value one at the j
th

 position and zero 

elsewhere, and the Y matrix should be appended with the a 

priori value of the j
th

 parameter.   

  

(5) 

Finally, the variance-covariance matrix is augmented with 

a final row and column of zeros, with the variance of the a 

priori information in the diagonal element.   

 

 (6) 

If knowledge is available about multiple regression 

parameters, the matrices should be appended multiple 

times with one row for each parameter. 

It is convenient to assume that the noise in the degradation 

measurements is constant and uncorrelated.  Some a priori 

knowledge of the noise variance is available from the 

exemplar degradation paths.  If this assumption is not valid 

for a particular system, then other methods of estimating 

the noise variance may be used; however, it has been seen 

anecdotally that violating this assumption does not have a 

significant impact on RUL estimation.  In addition, it is 

also convenient to assume that the noise measurements are 

uncorrelated across observations of y; this allows the 

variance-covariance matrix to be a diagonal matrix 

consisting of noise variance estimates and a priori 

knowledge variance estimates.  If this assumption is not 

valid, including covariance terms is trivial; again, these 

terms can be estimated from historical degradation paths.   

After a priori knowledge is used in conjunction with 

n current data observations to obtain a posterior 

estimate of degradation parameters, this estimate 

becomes the new prior distribution for the next 

estimation of regression parameters.  The variance 

of this new knowledge is estimated as: 

 

  (7) 

The Bayesian information may be used to 

dynamically update the model fit as new data 

become available for each desired RUL estimate.   

2.4. Combined Monitoring and Prognostic 

Systems 

Figure 3 shows a combined monitoring, fault 

detection, and prognostics system similar to the one 

used in this research.  The monitoring system 

employs an Auto-Associative Kernel Regression 

(AAKR) model for monitoring and the Sequential 

Probability Ratio Test (SPRT) for fault detection.  

Both of these methods are described in broad detail 

below.  The interested reader is referred to (Hines et 

al., 2008 and Garvey et al., 2007) for a more 

complete discussion of AAKR and (Wald, 1943) for 

SPRT.  

Auto-Associative models can generally be 

considered an error correction technique.  These 

models compare a new observation to those seen in 

the past to estimate how the system “should” be 

running.  These corrected predictions can be 

compared to the measured data to identify faulted 

operation.  Several auto-associative architectures are 

available, including auto-associative neural 

networks, auto-associative kernel regression, and 

multivariate state estimation technique (Hines et al., 

2008).  This research employs the AAKR algorithm 

for system monitoring.  

AAKR is a non-parametric, empirical technique.  

Exemplar historical observations of system 

operation are stored in a data matrix.  As a new 

observation is collected, it is compared to each of  

 

 

Figure 3: Combined Monitoring and Prognostic System
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the exemplar observations to determine how similar the 

new observation is to each of the exemplars.  This 

similarity is quantified by evaluating the distance between 

the new observation and the exemplar.  Most commonly, 

the Euclidean distance is used: 

 

   

di = X j - x i, j( )
2

j=1

m

å
  (8) 

where di is the distance between the new observation, X, 

and the i
th

 exemplar, xi.  The distance is converted to a 

similarity measure through the use of a kernel.  Many 

kernels are available; this research employs the Gaussian 

kernel: 

 

  (9) 

where si is the similarity of the new observation to the i
th

 

exemplar and h is the kernel bandwidth, which controls 

how close vectors must be to be considered similar.  

Finally, the “corrected” observation value is calculated as 

a weighted average of the exemplar observations: 

 

  (10) 

Monitoring system residuals are then generated as the 

difference between the actual observation and the error-

corrected prediction.  These residuals are used with a 

SPRT to determine if the system is operating in a faulted 

or nominal condition.  As the name suggests, the SPRT 

looks at a sequence of residuals to determine if the time 

series of data is more likely from a nominal distribution or 

a pre-specified faulted distribution.  As new observations 

are made, the SPRT compares the cumulative sum of the 

log-likelihood ratio: 

 
  (11) 

to two thresholds, which depend on the acceptable false 

positive and false negative fault rates: 

 

  (12) 

where  is the acceptable false alarm (false positive) rate 

and  is the acceptable missed alarm (false negative) rate.  

For this research, false alarm and missed alarm rates of 1% 

and 10% respectively are used.  If si < a, then the null 

hypothesis cannot be rejected; that is, the system is 

assumed to be operating in a nominal condition. If si > b, 

then the null hypothesis is rejected; that is, the 

system is assumed to be operating in a faulted 

condition.  When a determination is made, the sum, 

si, is reset to zero and the test is restarted.   

After a fault is detected in the system, the prognostic 

system can be engaged to determine the RUL for the 

system.  As discussed above, the GPM methodology 

uses a measure of system degradation, called a 

prognostic parameter, to make prognostic estimates. 

An ideal prognostic parameter has three key 

qualities: monotonicity, prognosability, and 

trendability.   

Monotonicity characterizes the underlying positive 

or negative trend of the parameter.  This is an 

important feature of a prognostic parameter because 

it is generally assumed that systems do not undergo 

self-healing, which would be indicated by a non-

monotonic parameter.  This assumption is not valid 

for some components such as batteries, which may 

experience some degree of self repair during short 

periods of nonuse, but it tends to hold for 

mechanical systems or for complex systems as a 

whole.   

Prognosability gives a measure of the variance in the 

critical failure value of a population of systems.  A 

wide spread in critical failure values can make it 

difficult to accurately define a critical failure 

threshold and to extrapolate a prognostic parameter 

to failure.  Prognosability may be very susceptible to 

noise in the prognostic parameter, but this effect 

may be reduced by traditional variance reduction 

methods such as parameter bagging and data 

denoising.   

Finally, trendability indicates the degree to which 

the parameters of a population of systems have the 

same underlying shape and can be described by the 

same functional form.  

The population of noise-free prognostic parameters 

shown in Figure 4 exhibits the three desired 

features.  The parameters are monotonic: they all 

generally trend upward through time.  They are 

prognosable: the parameter value at failure for each 

unit is at approximately the same value, as indicated 

by the red markers.  Finally, they are trendable:  

each parameter appears to follow the same upward 

exponential or quadratic trend. 

Monitoring system residuals, or combinations of 

residuals, are natural candidates for prognostic 

parameters because they inherently measure the 

deviation of a system from normal operation.  The 

following section investigates the application of this 

monitoring/prognostic method to the 2008 PHM 

challenge problem.   
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Figure 4: Population of "good" prognostic parameters 

3. PHM ’08 CHALLENGE APPLICATION 

This section presents an application of the proposed GPM 

prognostic method to the PHM Challenge data set.  The 

efficacy of the method is analyzed based on the given cost 

function for the 218 test cases.  RUL estimates far from 

the actual value are penalized exponentially. The cost 

function is asymmetric; RUL predictions greater than the 

actual value are penalized more heavily than those which 

predict failure before it happens.  The cost for each case is 

given by the following formula: 

 

  (13) 

where d is the difference between the estimated and the 

actual RUL.  If d is negative, then the algorithm 

underestimates the RUL leading one to end operation 

before failure occurs; if d is positive, then the algorithm 

overestimates the RUL and results in a greater penalty 

because one may attempt to operate the component longer 

than possible and thereby experience a failure.  The 

following sections give a brief description of the simulated 

data set used for the challenge problem, then outline the 

data analysis and identification of an appropriate 

prognostic parameter for GPM trending.  Finally, the 

application of the GPM method and Bayesian updating are 

presented with final results given for the described 

method.  The performance of the GPM algorithm with and 

without Bayesian updating is compared.   

3.1. PHM Challenge Data Set Description 

The PHM Challenge data set consists of 218 cases of 

multivariate data that track from nominal operation 

through fault onset to system failure. Data were provided 

which modeled the damage propagation of aircraft gas 

turbine engines using the Commercial Modular Aerop-

Propulsion System Simulation (C-MAPSS).  This engine 

simulator allows faults to be injected in any of the 

five rotating components and gives output responses 

for 58 sensed engine variables.  The PHM Challenge 

data set included 21 of these 58 output variables as 

well as three operating condition indicators. Each 

simulated engine was given some initial level of 

wear which would be considered within normal 

limits, and faults were initiated at some random time 

during the simulation.  Fault propagation was 

assumed to evolve in an exponential way based on 

common fault propagation models and the results 

seen in practice. Engine health was determined as 

the minimum health margin of the rotating 

equipment, where the health margin was a function 

of efficiency and flow for that particular component; 

when this health indicator reached zero, the 

simulated engine was considered failed.  The 

interested reader is referred to Saxena et al. (2008) 

for a more complete description of the data 

simulation.   

The data have three operational variables – altitude, 

Mach number, and TRA – and 21 sensor 

measurements.  Initial data analysis resulted in the 

identification of six distinct operational settings; 

based on this result, the operating condition 

indicators were collapsed into one indicator which 

fully defined the operating condition of the engine 

for a single observation (flight).  In addition, ten 

sensed variables were identified whose statistical 

properties changed through time and were well 

correlated (linear correlation coefficient of at least 

0.7, shown in Figure 5) to each other.  In this way, 

the 24 sensor data set was reduced to 11 variables, 

with original variable numbers: 1 (the operating 

condition indicator), 5, 6, 7, 12, 14, 17, 18, 20, 23, 

and 24.   

The GPM method uses degradation information, 

either directly measured or inferred, to estimate the 

system RUL.   Initial analysis of the raw data does 

 

Figure 5: Correlation Coefficient Matrix for Eleven 

Monitored Variables 

   

d = RULestimated - RULactual

score(d < 0) = exp(-d /13) -1

score(d > 0) = exp(d /10) -1
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Figure 6: Eleven PHM Data Set Variables 

 

not reveal any trendable degradation parameter.  That is, 

no sensed measurement has an identifiable trend toward 

failure.  Figure 6 is a plot of the eleven variables that were 

determined to statistically change with time.  These 

variables were used to develop a monitoring and 

prognostics system.  Visual inspection of the data does not 

indicate any obvious trends toward failure.  The 

monitoring system provides much greater sensitivity to 

subtle changes that may be indicative of failure. 

3.2. Monitoring and Prognostics Results 

An AAKR model is used to determine the expected values 

of the eleven variables of interest.   The baseline model is 

developed using the first 15% of each run as training data; 

this assumes that faults occur after at least 15% of each run 

is completed.  This assumption is not universally valid, but 

seems to be reasonable for this data set.  Based on the 

AAKR predictions, a residual is calculated between the 

nominal prediction and the actual value.  These residuals 

are potential candidates for inclusion into the degradation 

parameter.   

Figure 7 is a plot of sensed variable 17 and the 

corresponding residual for five of the training cases.  The 

final value for each of the five cases is indicated in the 

lower plot by red asterisks.  In this case, the residual does 

not provide a useful prognostic parameter.  The residual is 

not trendable; that is, the five cases show several distinct 

residual shapes.  In addition, the residual's prognosability 

is not high.  The residuals end at very different values for 

each case.  This could be indicative of different failure 

modes, but is not directly useful as a degradation 

parameter.  For the purpose of this analysis, it is 

assumed that all fault modes may be lumped 

together into one prognostic model.  Therefore, a 

single degradation parameter is desired to prognose 

all systems.  

Several of the residuals grow in a similar manner 

with time for all the units and have failure values 

without much variation.  These residuals can be 

used as a degradation parameter by trending them 

through regression and extrapolating the functional 

fit to some degradation threshold to give an estimate 

of RUL.  The top plot in Figure 8 shows one such 

sensed variable while the lower plot is the residual 

between the predicted and measured value.  It shows 

the unfiltered residual for 5 different training cases.  

This variable is a good prognostic parameter 

because the corresponding monitoring system 

residuals of each of the training systems have the 

same basic shape and failures occur at 

approximately the same negative value.  The task is 

to model the degradation parameter and predict the 

failure point when only a subset of the case is given.  

Five residuals were found to have a similar shape 

with well clustered values at failure.  

 
Figure 7: Residual trend indicating possible different 

failure modes 

 
Figure 8: Residual trend candidate for degradation 

parameter 
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By combining the five degradation parameters with similar 

shapes, an average parameter was developed.  The five 

residuals are combined in a weighted average, where each 

residual weight is inversely proportional to its variance.  

Figure 9 is a plot of one of the candidate residuals, and 

Figure 10 is the averaged degradation parameter resulting 

from a fusion of the five residuals for all 218 cases.  As the 

plots show, the residual parameters have very similar 

shapes for each training case.  However, the single residual 

is contaminated with greater noise and has a relatively 

larger spread in the final parameter value.  By combining 

several similar residuals, the spread in the failure value 

relative to the range of the parameter is significantly 

reduced, as shown in the second figure.  This is sometimes 

referred to as parameter bagging and is a common variance 

reduction technique.   

A second order polynomial model can been used to model 

the degradation parameter.  While an exponential model 

may be more physically appropriate, the quadratic model 

is more robust to noise and better describes the data fit for 

the chosen prognostic parameter.  For the methodology 

 
Figure 9: Single residual as a prognostic parameter 

   

 
Figure 10: Prognostic parameter for all 218 training cases 

 

proposed, the model must be linear in parameters; 

however, simple exponential models, such as 

y=exp(ax+b) parameterized as ln(y) = ax +b, cannot 

be used with negative y-values, because the natural 

logarithm of a negative number is undefined in the 

real number system.  This adds unnecessary 

complexity to the modeling method.  Quadratic 

equations, on the other hand, are naturally linear in 

parameters and can be used without significant 

concern for the effects of noise on the model fit.  

Shifting the prognostic parameter to the positive 

quadrant by adding 25.0 to every value eliminates 

the problem of taking the logarithm of negative 

values; however, the quadratic fit results in a lower 

fitting error than the exponential fit, with mean 

squared errors of 1.53 and 2.33 respectively.  

Because of its robustness to noise and reduced 

modeling error, the quadratic fit is chosen for this 

research.   

Figure 11 gives an example of a polynomial fit of 

the prognostic parameter with the time the model 

crosses the critical failure threshold indicated.  The 

threshold of -13.9 was chosen as the upper 95% 

level of the distribution of failure values for the 

known failed cases.  This gives an estimated system 

reliability of 95%, which is a conservative estimate 

of failure time and reduces the possibility of 

overestimating RUL leading to in-service failure.  

The time between the last sample and the estimated 

time of failure is the estimate of RUL, as indicated 

by the blue area.  For this case, the estimated RUL is 

exactly correct, with an estimated remaining life of 

36 cycles.   

The GPM methodology presented works well if 

many observations are available to fit a model to the 

degradation parameter as in case 106 shown above.  

However, when only a few observations have been 

collected, the model fit is highly susceptible to 

noise.  To counteract this, the Bayesian updating 

 
Figure 11: Prognostic parameter trending and RUL 

estimation 
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method described previously is used to include prior 

information about the degradation parameter fit.   

For the current problem, quadratic models (eqn. 14) were 

fit to the full degradation parameter for each of the 218 

training cases. 

   (14) 

The means and standard deviations for the three 

parameters (pi) are given in Table 1.  The parameters 

should be considered random effects because their 

standard deviations represent a significant proportion of 

the mean parameter value.  The large variance seen in p3 is 

assumed to correspond to the random level of initial 

degradation.  The variance of the degradation parameter 

can be estimated from the training examples by smoothing 

each example path and subtracting the smoothed path from 

the actual path.  This gives an estimate of the noise; the 

noise variance can be estimated directly as the variance of 

this data set.  For this data, the noise variance in the 

degradation parameter is estimated to be 0.0588 units.   

 

 Mean Std Dev 

p1 -0.0001 4.30E-05 

p2 0.0075 0.0028 

p3 -0.2057 0.37 

Table 1: Prior Distribution for Quadratic Parameters 

Figure 12 gives an example of a degradation case which is 

not well fit by the non-Bayesian approach.  Few 

observations (~30% of the total lifetime) are available, and 

those available have noise levels, which preclude 

appropriate model fitting.  The same data set, fit with the 

Bayesian approach described and the prior distribution 

estimates given above is shown in Figure 13.  As can be 

seen, the Bayesian fit reflects the shape seen in the 

historical degradation paths.  The RUL estimate obtained 

with the Bayesian approach is 135 cycles, versus an 

undeterminable estimate obtained from the non-Bayesian 

approach.  The actual RUL after the first 84 observations 

is 170 cycles, resulting in an RUL error of approximately 

20%.  While this error is still high, it is within a reasonable 

accuracy considering the amount of data available and will 

improve as more data are collected.  

The advantage of including prior information via dynamic 

Bayesian updating is to improve RUL estimates when very 

few observations are available, the data are very noisy, or 

both.  A comparison of the performance through time of 

the GPM algorithm and the GPM with Bayesian updating, 

hereafter referred to as GPM/Bayes, is given in Figure 14.  

In this analysis, the two methodologies were applied to 

each of the training cases using only a fraction of the full 

lifetime.  The models were applied to subsets of each 

lifetime in 5% increments, i.e. the models were run using 

 
Figure 12: Poor GPM fit 

 
Figure 13: GPM fit with Bayesian update 

 

5% of the full lifetime, 10%, 15%, etc.  The RUL 

error at each percentage was calculated across the 

218 full training cases to determine how the error 

decreases as more data become available.  As was 

seen in the example case above, the non-Bayesian 

method may result in an undeterminable RUL.  In 

fact, for the data used here, nearly half the runs 

resulted in an indeterminate RUL estimate using the 

GPM methodology without Bayesian updating for 

runs using less than half the total lifetime.  For these 

cases, the RUL is estimated using a Type I, or 

traditional reliability-based, method in order to give 

an estimate of RUL prediction error.  The mean 

residual life is found at each time using a Weibull fit 

of the failure times and the current lifetime (Figure 

15).  Mean Residual Life (MRL) is found by: 

  

 (15) 

where R(t) is the reliability function at time t.  In 

practice, the prognostic method would likely fall 

back to a more rudimentary method such as this if 

the Type III model did not produce a reasonable 

answer.   

  

d = p1t
2 + p2t + p3

   

MRL(t) =
1

R(t)
R(s)ds

t

¥

ò
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Figure 14: GPM Results With and Without Bayesian 

Updating 

 
Figure 15: Weibull Probability Fit 

 

The GPM/Type I model which does not include prior 

information gives an average error of approximately 55% 

when only 5% of the full lifetime is available and relies on 

the Type I method for approximately half of the cases.  

Conversely, the GPM/Bayes method gives approximately 

25% error and is able to predict an RUL for every case.  

As Figure 14 shows, the average error of both methods 

decreases as more data becomes available and eventually 

converges to approximately equal error values when the 

available data overpowers the prior information in the 

GPM/Bayes model.   

4. CONCLUSION 

This paper presented a method for performing prognostics 

on individual components or systems.  The General Path 

Model (GPM) method is used to extrapolate a prognostic 

parameter curve to a predefined critical failure threshold to 

obtain an estimate of the Remaining Useful Life (RUL).  

In cases where only a few data points are available or the 

data are contaminated by significant noise, a Bayesian 

method was introduced.  The Bayesian method includes 

prior information about the prognostic parameter 

distribution to "force" the functional fit to follow the 

trend seen in historic systems.  The method was 

applied to the 2008 PHM conference challenge 

problem to illustrate its efficacy.   

The given application utilized the results of a 

condition monitoring and fault detection system to 

characterize the degradation in a specific system.  A 

prognostic parameter was generated from a subset of 

the monitoring system residuals; monitoring system 

residuals are well-suited components of a prognostic 

parameter because they naturally characterize the 

deviation of a system from nominal condition.  A 

parametric, linear-in-parameters regression fit of the 

time series prognostic parameter was extrapolated to 

the critical failure threshold to give an estimate of 

the system RUL.  A Bayesian updating method was 

applied to allow for the inclusions of prior 

information, which improves model performance 

particularly when faced with small amounts of data 

or extremely noisy data.  The results show that the 

GPM/Bayes method greatly improved RUL 

predictive performance over a conventional 

regression solution.   

The need for a diversity of algorithms suggests that 

development of a large variety of prognostic 

methods can only strengthen the field.  While the 

algorithm described here may not be the best 

performing method for this data set, it has several 

key advantages that the winning PHM Challenge 

algorithms lack, which may make it better suited for 

other applications.  The proposed GPM/Bayes 

algorithm is qualitatively compared to the three best 

performing algorithms at the 2008 PHM Challenge 

in the following discussion. 

The similarity-based approach described in (Wang 

et al., 2008) shares several assumptions with the 

GPM method, namely (1) run-to-failure data from 

multiple units are available and (2) the history of 

each training unit ends at a soft failure, but may 

begin at some random level of initial degradation.  

However, this similarity-based method suffers the 

same deficiency that all similarity-based models 

suffer; it is only applicable within the range of data 

used for training.  The proposed GPM/Bayes 

method will trend toward the training data when the 

Bayesian information is dominant, early in 

equipment degradation or when data are very noisy, 

but as more data become available, the method will 

accommodate degradation paths outside those seen 

in training.  Additionally, the proposed similarity 

method requires storage of a large bank of historical 

data.  This may not be a problem for large computer 

systems, but it can become cumbersome for onboard 

prognostic algorithms and systems with many fault 



International Journal of Prognostics and Health Management 

 

12 

modes requiring many historical paths.  Conversely, the 

GPM/Bayes method requires storage for only the 

regression model to be fit and the Bayesian prior 

information. 

The second and third place submissions both focused on 

recurrent neural networks for prognostic estimation 

(Heimes, 2008; Peel, 2008).  Neural networks require a 

certain level of expertise and finesse to develop.  While 

they are very powerful modeling tools, neural networks 

lack the accessibility of the GPM/Bayes method or other 

regression models.  A well-developed neural network may 

outperform many other prognostic algorithms, but 

development is not a trivial task.  Neural network 

approaches should not be discounted by any means, but 

the advantage of the GPM/Bayes method is its relative 

simplicity. 
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